
Communicating with Synchronized Environments

Tiberiu Seceleanu
University of Turku, Finland

tiberiu.seceleanu@utu.fi

Axel Jantsch
Royal Institute of Technology, Stockholm, Sweden

axel@imit.kth.se

Abstract

In the modern design environments, different modules,
available in existent libraries, may obey different archi-
tectural styles and execution models. Reaching a well–
behaved composition of such modules is a very important
task of the system designer. In the framework of the action
systems formalism, we analyze the co-existence of two mod-
els of execution, one synchronized, the other, interleaved.
We devise a communication scheme, similar to the classical
paradigm of polling, which allows us to model synchronized
components that correctly exchange information, within the
borders of a global system, with their non-synchronized
partners. Derivations of such mechanisms follow specific
correctness rules for refinement. We illustrate our methods
on an audio system example, implementable as either a soft-
ware or a hardware device.

Keywords: System modeling, synchronized / inter-
leaved communication, action systems

1 Introduction

The design of a reactive system deals with issues like
communication, composability, concurrency and preemp-
tion. The complexity of such systems comes as an inher-
ent byproduct, which leads further to problems concerning
the correctness of the steps performed in the development
flow. On one hand, component-based design is a solution
towards partially reducing the task of the designer of com-
plex systems. On the other hand, the employment of formal
methods in system design tries to solve the aspects related
to correctness.

A reasonable system design methodology requires the
top-level designer, that is, the system integrator, to com-
pose the system from parallel concurrent components called
modules. The task of the system integrator is to identify and
appropriately connect the components in order to obtain the
required functionality. These components may comport cer-
tain characteristics that will require from the system-level
designer to develop appropriate communication schemes in

order to facilitate a correct behavior of the global system.

Berry [7] separated computing systems into interactive
and reactive classes. However, in complex applications, one
may find components of both classes. One of the main con-
cerns is to accommodate a proper communication between
the non-deterministic behavior of the interactive and the de-
terministic behavior of the reactive modules.

Such modules are modeled here in the formal framework
of action systems. As illustrated by Cerschi Seceleanu and
Seceleanu [16], the synchronized approach to system de-
sign improves the control and determinism of the reactive
system, as well as its modularity characteristics. Still, it
may often be the case that the environment of the devised
reactive system does not allow a synchronized model, ei-
ther because this will impose unrealistic restrictions on the
model, or because the environment is highly unpredictable
and therefore, the non-deterministic model covers its be-
havior very well. However, a simple, parallel composition
of a synchronized system and its environment is not suf-
ficient, as it may render the benefits of the synchronized
model useless, due to the intrinsic non-determinism. There-
fore, in such situations, communication between the envi-
ronment and the synchronized system modules must follow
specific rules, such that the functional goals of the design
are met.

In the present study, we focus on the analysis of such
rules, for which we offer a solution inspired by the polling
mechanisms employed in both hardware and software sys-
tems. More clearly, we address communication issues be-
tween action systems that operate in parallel by employing
a safe points approach [10, 13], which establishes moments
during the program (system) execution, when any pending
(asynchronous) exceptions can be analyzed and securely
served. The “lines” through which our synchronized mod-
ules observe incoming, asynchronized events, are modeled
here as watched variables.

Related work. When discussing communication between
interacting systems, we usually think of resource sharing,
critical regions, blocking procedures. There is a rich litera-
ture on these topics, especially coming from the Java com-
munity. However, there are several distinctions between our

approach and others described in the literature.
Early Java systems suffered from unexpected interac-

tions between data, threads, and code. Hawblitzel and von
Eicken [10], address the problem of isolation and commu-
nication between threads, in a Java extended framework,
Luna. Safe points are identified and implemented such that
transactions on multiple-accessed resources are not collid-
ing.

Modularity and exception handling are subjects of the
study presented by Marlow at al. [13]. In Haskell, a func-
tional language, it is not possible to use polling mechanisms
for modeling non-synchronized communication. Therefore,
blocking and unblocking procedures are devised.

Rudys and Wallach [14] employ both blocking methods
and safe points when introducing the soft termination con-
cept, a general language mechanism, illustrated in Java pro-
grams. The mechanism is intended to be an interface be-
tween man and machine, allowing the former to terminate
infinite loops in codelets. Therefore, it requires the presence
of an administrator or a system resource monitor.

Seceleanu and Garlan [17] address the subject of adap-
tive system behavior in the same context of synchronized
composition, by promoting changes similar, but not identi-
cal, to the ones we perform in this study. The focus is only
on the processing elements, and not on the user-system in-
teraction, which is considered somehow regulated.
Paper outline. Section 2 introduces those parts of the ac-
tion system formalism that are relevant for our study. In
particular we review and compare parallel, prioritized and
synchronized compositions. We also introduce trace re-
finement of action systems since we will demonstrate that
the introduction of watched variables in a given action sys-
tem is a trace refinement step and thus automatically leads
to a correctly refined action system that does not require
additional verification. Section 3 presents the case study
and motivating example. An audio filter is modeled as a
synchronized cooperation of sub-modules. A user model
is then composed with the filter, by employing the parallel
composition. Section 4 discusses how user and filter mod-
ules interact with each other exposing potentially unwanted
system behavior. To rectify the observed problems we intro-
duce watched variables in section 4.2. Section 4.4 discusses
the implications of our approach, compares and contrasts it
with alternative approaches. Finally, section 5 concludes
the study and points to future work.

2 Action Systems

Back and Kurki-Suonio [3] introduced the action sys-
tems formalism, providing a framework for specifying and
refining concurrent programs. An action system is in gen-
eral a collection of actions (guarded commands), executed
one at a time. An action system is built according to the

following syntax:

A(z : Tz)
∧
= begin var x : Tx • Init ; (1)

do A1[] . . . [] Anod end

Here, A contains the declaration of local variables x (of
type Tx), followed by an initialization statement Init and
the actions A1, . . . , An. Variables z (of type Tz) are global
to the action system. The initialization statement assigns
starting values to the global or local variables. After that,
enabled actions are repeatedly chosen and executed. In this
paper, we regard an action Ai as being of the form gi → Si.
An action is enabled, thus the action body Si is executed,
when the boolean condition gi (called guard) evaluates to
true. Two or more actions can be enabled at the same time,
in which case one of them is chosen for execution, in a de-
monically nondeterministic way. The statements inside A
are iterated as long as the disjunction of the guards holds.

The rest of the system (the environment) communicates
with the action system via shared variables. In the follow-
ing, we assume the following notations: the set of state vari-
ables accessed by some action A is composed of the read
variable set of action A, denoted rA, and the write variable
set of action A, denoted wA. We build the same sets at the
system level, considering the local / global partition of the
variables: for a given action system A, we have the global
read / write variables, grA/gwA and the local read / write
variables, lrA/lwA. We say that an action A of A is global,
if gwA ∩ wA 6= ∅ or local, if wA ⊆ lwA.

A statement Si is defined by the following grammar:

Si ::= skip (stuttering, empty statement)

x : = e ((multiple) assignment)

Sm ; . . . ; Sn (sequential composition)

gm → Sm[] . . . [] gn → Sn (nondeterministic choice)

x : = x′.Q (nondeterministic assignment)

Above, Sm, . . . , Sn are statements, gm, . . . , gn and Q
are predicates (boolean conditions), x a variable or a list
of variables, and e an expression or a list of expressions.
Actions can be much more general, but this simple syntax
suffices for the purpose of this paper.

Statements in the action systems language are defined
using weakest precondition semantics, consistent with Dijk-
stra’s original semantics for the language of guarded com-
mands [9]. For statement S and postcondition Q, the for-
mula wp(S,Q), called the weakest precondition of S with
respect to Q, gives the largest set of initial states (the weak-
est predicate) from which the execution of statement S is
guaranteed to terminate in a state satisfying Q [6]. In this
paper, we assume that all statements are conjunctive mono-
tonic predicate transformers, that is, ∀p, q •wp(S, (p∧q)) =

wp(S, p) ∧ wp(S, q) (conjunctivity) and ∀p, q • (p ⇒ q) ⇒

wp(S, p) ⇒ wp(S, q) (monotonicity). The guard of S is de-
fined as g

∧
= ¬wp(S, false). The guard of an action system

given by (1) is ggA
∧

=
∨n

1
gk.

Prioritized composition. One way to express preemp-
tion, in action systems, comes in the form of a macro op-
erator, based on the semantics of the choice operator. The
prioritized composition of two actions A and B was defined
by Sekerinski and Sere [18] as:

A // B =̂ A [] (¬gA → B)

At system level, the composition A // B allows an action
in B to be executed, only if there is no enabled action in A.

Invariants. A predicate I(vA) – I in short – is an invari-
ant of the action system A, given by (1) if: it is established
by Init, i.e. true ⇒ wp(Init, I), and it is preserved by
each action Ai, i.e. gi ∧ I ⇒ wp(Si, I), i = 1, . . . , n.

Refinement of Actions. An action A is refined by the ac-
tion C, written A ≤ C, if, whenever A establishes a certain
postcondition, so does C [2]. Additionally, let I(c, z) be an
invariant over the action C. Then, action A is refined by
action C using the invariant I , denoted A ≤I C, if

∀Q.I ∧ wp(A, Q) ⇒ wp(C, ∃a.I ∧ Q)

Trace Refinement of Action Systems. The semantics of
a reactive action system is given in terms of behaviors [5].
A behavior of an action system is a sequence of states,
b = 〈(x0, y0), (x1, y1) . . .〉, where each state has two com-
ponents: the local and the global state. A trace of a behav-
ior is obtained by removing all finite stuttering (no change
of the visible states) and the local state component in each
state of a given system. Informally, we say that an action
system C refines A, written as A v C, if every trace of C
contains a trace of A. The theoretical basis for the trace
refinement is expressed by the following trace refinement
lemma [4]:

Lemma 1 Given the action systems

A(zA)
∧
= begin var a • a, zA := a0, zA0 ;

do A od end

C(zC)
∧
= begin var c • c, zC := c0, zC0 ;

do C [] X od end,

let I(c, zC) be an invariant of the system C. The con-
crete system C (trace) refines the abstract system A, denoted
A vI C, if:

1. Initialization: I(c0, zC0) ≡ true

2. Main action: A ≤I C

3. Auxiliary action: skip ≤I X

4. Continuation condition: I ∧ gA ⇒ gC ∨ gX

5. Internal convergence: I ⇒ wp(do X od , true)

2.1 Execution of Action Systems

Starting with the original paper by Back and Kurki-
Suonio [3], the sequential execution model was established
as a de facto reasoning environment for action systems de-
signs. Parallel executions are modeled by interleaving ac-
tions that have no read / write conflicts.

Thus, the execution of an action system assumes that the
system is observed by a virtual external entity - the execu-
tion controller (controller in short) - which, at any moment
knows what actions, in which action system, are enabled.
Non-deterministically, it selects one of them for execution.
The initialization places the systems in a stable, starting
state. The controller then selects any of the enabled actions
for execution, after which the system moves to a new state.
We call this operation an execution round (equivalent to the
execution of an action). After this, the controller evaluates
the new state, observes the enabled actions and starts an-
other execution round.

Synchronized environments. An additional virtual exe-
cution model has recently been added into the framework
of action systems [16], the synchronized environment. Here,
the execution of the components of the system under design
is synchronized with respect to the updates on the global
variables of the respective components. This models the
unitary reaction of a composition of AS to a given input sit-
uation. In brief, the observable execution model is changed
as follows. The controller selects one of the components for
execution, in a nondeterministic manner. After performing
all the possible execution rounds, with respect to the input
state, the controller marks the corresponding action system
as executed. However, the global variables of the action sys-
tems component are not updated at this stage; instead, the
new values are stored in local copies of the respective global
variables. Next, the controller selects another un-executed
component and performs the same operation. Due to the
updates of the copies, instead of the actual global variables,
between selections, the visible state of the composition does
not change. When all the components have been executed,
the controller runs a final round in which the appropriate
values are assigned to the global variables of the synchro-
nized composition.

A synchronized environment presents some useful char-
acteristics. The first one is an increased capability of re-
action: the input stimuli are received by all the synchro-
nized reactive components and no special attention must be
given to the order in which elements of the composition are
selected for execution. The second impact on design is re-
flected by an improved system modularity: responsibility of

upgrading the modules stands only in the hands of the mod-
ule designer, and this information is transparent to the sys-
tem level integrator, concerned only with the overall func-
tionality and the interface of the employed components. A
synchronized environment assumes certain properties of the
composing action systems: they must be proper action sys-
tems.

Definition 1 Consider the action system A:

A(z : Tz)
∧
= begin var x : Tx • Init ;

do gS → S [] gL → L od end

We say that A is a proper (“suitable”) action system if:

• gwA ⊆ wS – meaning that S is a global action of A.

• wL ⊆ lwA– meaning that L is a local action of A.

• wp(do gL → L od ,¬gL ∧ gS) ≡ true – meaning that
the execution of L, taken separately, terminates, leaving S
enabled.

A synchronized environment is realized when a certain
number of proper action systems evolve following the in-
formal execution scenario introduced above. Their compo-
sition is a higher level action system, obtained as follows.

Definition 2 Let us consider n proper action systems:

Ak(zk)
∧
= begin var xk • Initk ;

do gk

S → Sk [] gk

L → Lk od end, k = 1 . . . n

for which we also have that ∀j, k = 1 . . . n, j 6=
k.((gwAj ∩ gwAk = ∅) ∧ (

⋂
k xk = ∅)). The synchro-

nized parallel composition of the above systems is a new
action system P = A1] . . .]An, given by:

P(z)
∧

= begin

var x : Tx, sel[1..n] : Bool, run : Nat • Init;
do

ggP → (run = 0 ∧ ¬sel[1] → sel[1] := true ; run := 1
[] . . .

[] run = 0 ∧ ¬sel[n] → sel[n] := true ; run := n

[] (run = 1 ∧ g1

L
→ L1

[] run = 1 ∧ ¬g1

L
∧ g1

S
→

wS1c := wS1 ; S′

1
; run := 0

[] run = 1 ∧ ¬ggA1
→ run := 0)

[] . . .

[] (run = n ∧ gn
L
→ Ln

[] run = n ∧ ¬gn
L
∧ gn

S
→

wSnc := wSn ; S′

n ; run := 0
[] run = n ∧ ¬ggAn

→ run := 0))
[] sel ∧ run = 0 → Update ; sel := false

od

end

The operator ‘]’ (‘sharp’) is called the synchronization
operator.

The system P introduced above represents the “flattened”
model of the synchronized composition of A1, . . . ,An. The
guard ggP is the disjunction of all the module guards:
ggP

∧

= ggA1
∨ . . . ∨ ggAn

. We also consider sel =
sel[1] ∧ . . . ∧ sel[n], while the assignment sel := false
sets all the vector components sel[1], . . . , sel[n] to false.
The action Update represents the integrator’s choice of de-
ciding how the actual updates of the global variables are
performed. In an initial set-up, Update is specified as an
atomic sequence:

Update
∧
= wS1 := wS1c ; . . . ; wSn := wSnc

However, in order to either accommodate concurrent up-
dates on the same variables, or in order to allow different
communication situations, the content of this action can be
changed by the top-level designer.

In the following, we analyze the interaction between the
two presented models of execution. From the synchronized
point of view, this will imply a change of the Update action.

3 Design Example

In this section, we introduce the reader to a case study
that combines the two styles of design presented in the pre-
vious section. We build on the digital filter example pre-
sented in [16].

3.1 The Filter

Briefly, a digital filter [11] is a device that takes as in-
put a sequence of samples, performs certain operations on
it and delivers as output a corresponding sequence of sam-
ples. The incoming sequence is described as x(n), where x
is the name of the input signal and n identifies the sample
position; a similar notation applies to the output signal y, for
which we have the samples y(n). The relation between the
input and output is given by y(n) =

∑N−1

k=0
h(k)×x(n−k),

where the vector h[0..N −1] contains the filter coefficients.
Hence, apart from the incoming current sample of x, N − 1
previous samples are stored in a buffer and can be accessed
by the filter. In the end, a filter may have either a software
or a hardware implementation.

From the above short description of the filter one can
identify two sub modules of such a device: the storage
FIFO–like buffer, and the actual implementation of the fil-
ter. In the following, we model the signal source by system
S, the buffer by system B and system F performs the filter-
ing, as illustrated in Fig. 1 a).

Figure 1. Simple filter representation.

For reasons given in [16], such as modularity, simplifica-
tion of communication protocols, etc., a “good” (in terms of
reaction and modularity) modeling of the filter device and
environment is achieved when the participating modules are
organized in a synchronized cooperation. The action sys-
tems descriptions of these modules are given as:

S(X : T)
∧
= begin •

X := x0;
do X := X ′.(X ′ ∈ T) od

end,

B(X, Z[0..N − 2] : T)
∧
= begin •

X, Z[0..N − 2] := x0, z0;
do Z[0], . . . , Z[N − 2] := X, . . . , Z[N − 3] od

end,

F(X, Z[0..N − 2], Y : T)
∧
= begin •

X, Z[0..N − 2], h[0..N − 1], Y := x0, z0, h0, y0;

do Y :=
∑

N−1

k=1
h(k) × Z(k − 1) + h(0) × X od

end : h[0..N − 1],

where h[0..N − 1] are the filter coefficients that do not
change during the execution of the system.

A very common utilization of filters can be observed for
instance in modern day audio applications. Tasks such as
channel separation, equalizers, etc are implemented using
various kinds of (digital) filters. The setup for a two-channel
audio system, where the user has the possibility of selecting
the desired volume for either of the channels is introduced
in Figure 1 b). The modules R and L are instantiations of
the F system, whereas the modules VR and VL perform the
desired amplification, and they are instances of the action
system V , given as

V (V ol : integer 0..10;, in, out : TD)

begin •

V ol := 0 ; in, out := in0, out0 ;

do out := V ol × in od

end

One of the requirements of the audio system of Fig. 1
b) is that the changes that affect both outputs YR and YL

must be observed at the same moment. Therefore, the audio
device is modeled by the action system A, a synchronized
cooperation of its modules: A =̂ S] B] R] L] VR] VL.

3.2 Modeling the User

As listeners to our stereo audio device, we expect to be
able to change the audio characteristics, by raising or lower-
ing the volume of either the “left” or “right” channel. Such
behavior is captured by the system

User(VL, VR : integer 0..V olMax ; in, out : TD)

begin

var ∆V : integer •

VL, VR := V olMax/2 ; ∆V := 1 ;

do

VL := V ′

L.QL

[] VR := V ′

R.QR

od

end

QL ≡ V ′

L = VL ∨ (V ′

L = VL + ∆V ∧ 0 < V ′

L ≤ V olMax)

∨(V ′

L = VL − ∆V ∧ 0 ≤ V ′

L < V olMax)

QR ≡ V ′

R = Vr ∨ (V ′

R = VR + ∆V ∧ 0 < V ′

R ≤ V olMax)

∨(V ′

R = VR − ∆V ∧ 0 ≤ V ′

R < V olMax)

4 System Interaction

When analyzing the interaction between the systems
User and A, one should notice that the user actions are in-
dependent of the activity of the audio system. Therefore,
even though this would considerably simplify the model-
ing of the communication between these two entities, one
should not consider a synchronized composition of the two
action systems. Instead, the whole system is modeled as a
parallel composition of the two models: User ‖ A.

In the following, we study how the above composition
satisfies the requirement that once the volume level has been
changed by the user, the audio system appropriately reacts
to this new situation. Informally, this means that if the cur-
rent execution session of the audio system is not finished,
one must consider the new values of the volume lines, for
the current input sample. Therefore, part of the processing
may be required to be re-executed. Hence, the actions of the
user act as interrupt generators for the digital device, and the
latter has to respond to such events.

4.1 Modeling the audio system

In order to study the actual realization of the above sce-
nario, we analyze in more detail the system A, given below
in its flattened initial representation:

A(VR, VL : integer 0..V olMax ; YR, YL : TD)
begin

var X, Xc, Z[0..N − 2], Zc[0..N − 2], YRc, YLc,
inR, inL, inRc, inLc : TD ; sel[1..6] : Bool;
run : integer 0..6 •

VR, VL := V olMax/2;
inR, inL, inRc, inLc := in0;
X, Xc := X0 ; Z, Zc := Z0;
YR, YL, YRc, YLc := Y0 ; run := 0 ; sel := false;

do

Selection
[] run = 1 → YRc := VR × inR ; run := 0
[] run = 2 → YLc := VL × inL ; run := 0
[] run = 3 → Xc := X ′.(X ′ ∈ T) ; run := 0
[] run = 4 →

Zc[0], . . . , Zc[N − 2] := X, . . . , Z[N − 3];
run := 0

[] run = 5 → inRc :=
∑

N−1

k=1
hR(k) × Z(k − 1)+

h(0) × X ; run := 0

[] run = 6 → inLc :=
∑

N−1

k=1
hL(k) × Z(k − 1)+

h(0) × X ; run := 0
[] sel ∧ run = 0 → Update ; sel := false

od

end,
Selection = run = 0 ∧ ¬sel[1] →

run := 1 ; sel[1] := true
[] . . .
[] run = 0 ∧ ¬sel[6] →

run := 6 ; sel[6] := true
Update = X := Xc ; Z := Zc ; . . .

System execution. Let us analyze a possible scenario re-
garding the execution of the composition User ‖ A. Sup-
pose that the Selection action performs run := 2, thus en-
abling the action run = 2 → YLc := VL × inL ; run := 0,
in A. After the latter is executed, the controller may choose
to select now one action of the system User, and, for in-
stance, lowers the volume on the left channel: VL :=
V ′

L.QL. However, this option cannot be followed by a reac-
tion of A, in this execution cycle, as the intermediate update
on YLc has already been executed. Hence, the immediate
next time when the user observes a change in the output of
the system A, he / she will not observe the modification of
the volume on the left channel, as selected.

One possible illustration of the above described scenario
is described in statecharts-like representation of Figure 2,
where the execution controller is identified as the choice
operator. The actions of the audio system A are to be iden-
tified by the corresponding value of the transition guard.
After their execution, the system ends in one of the states

S1, . . . , S6, and then it returns (the dotted lines) for another
controller decision. One possible order for executing these
actions, based on the non-deterministic results provided by
the Selection, is illustrated by the circled numbers 1. . .6.
Notice that the modification of the left volume is the first
one to be executed. The user intervention that changes
VL appears at any later moment, but before the termina-
tion of the current execution cycle. After all the transitions
[run = 1], . . . , [run = 6] have been taken, the system goes
into the Updated state, and a new execution cycle may be-
gin.

Figure 2. Execution of the system A.

In addition to the above scenario, suppose that the user
does not only modify the left channel value, during the same
execution cycle, but he also changes the volume on the right
channel. Before the controller selects the action YRc :=
VR × inR ; run := 0, the module User is chosen, and
action VR := V ′

R.QR is executed. Due to the fact that this
change occurs prior to the update in system A, its effect on
the final result will be visible. Hence, the user performs two
modifications, but the effect of a single one can be observed.

This problem is caused by the fact that there are two exe-
cution models, the interleaved and the synchronized, which
is a grouping of interleaved executions. Necessarily, we
have to devise a manner in which the cooperation between
these two models can coexist.

4.2 Watched Variables

In order to solve the problem described above, we first
introduce the concept of watched variable. From the point

of view of a synchronized composition, such a variable is
a global connection with the environment. Its value may
change during any execution round, and the latest value
must be taken into consideration when the final updates are
presented as the output of the composition.

The mechanism that we propose for modeling this kind
of behavior affects two of the generic actions present in the
flattened representation of a synchronized composition. Ob-
serve that the first action to be executed in an execution cy-
cle is the selection action, identified as Selection. This is
the place where we specify the watched variables and as-
sign their initial values. In the audio system modeled in our
example, a new selection action can be specified as follows.

Selection1

= run = 0 ∧ ¬sel[1] → sel[1] := true ; run := 1

[] . . .

[] run = 0 ∧ ¬sel[6] → sel[6] := true ; run := 6

[] proc → V start

L := VL ; V start

R := VR ; proc := false

The new selection action stores the values of the watched
variables VL and VR into the local variables V start

L and
V start

R .
The new local variable, proc (processed), is intended to

identify the starting of a new execution cycle, whenever this
variable becomes false. Notice that in the above descrip-
tion of Selection1, this is not implemented. The choice
composition may allow the update on proc to be executed
after several of the other actions of Selection1 have been
processed. This problem can be solved by assigning to the
last action of Selection1 a higher priority than the other
components of Selection1, as a refinement step [18]. Thus,
we obtain the action Selection2:

Selection2

= proc → V start

L := VL ; V start

R := VR ; proc := false

// (run = 0 ∧ ¬sel[1] → sel[1] := true ; run := 1

[] . . .

[] run = 0 ∧ ¬sel[6] → sel[6] := true ; run := 6)

It is easy to check that the above described refinement steps
lead to a trace refinement of the original system, as specified
by Lemma 1:
(1) we do not consider any specific invariant, hence the ini-
tialization state is not affected;
(2) there are no changes of the existent actions;
(3) the new action refines (behaves like) skip (no updates
of the global variables);
(4) enabledness of the system is not affected;
(5) the added action disables itself, thus, it terminates.
Consequently, we have proved the trace refinement A v
A1. The system A1 is obtained from the original system A,
by introducing the new local variable proc, and replacing

the action Selection with Selection2.

A1(VR, VL : integer 0..V olMax ; YR, YL : TD)
begin

var X, Xc, Z[0..N − 2], Zc[0..N − 2], YRc, YLc,
inR, inL, inRc, inLc : TD ; proc, sel[1..6] : Bool;
run : integer 0..6 •

VR, VL := V olMax/2;
inR, inL, inRc, inLc := in0;
X, Xc := X0 ; Z, Zc := Z0;
YR, YL, YRc, YLc := Y0;
run := 0 ; proc, sel := false;

do

Selection2

[] run = 1 → YRc := VR × inR ; run := 0
[] . . .
[] sel ∧ run = 0 → Update ; sel := false

od

end

4.3 Catching and Processing Events

Storing the initial values of watched variables at the be-
ginning of an execution cycle is just the first step towards
observing and processing events that may appear during the
execution of a synchronized environment. The next step is
the notification of the event and its consequent processing.

The execution of the Update action comes at the end of
an execution cycle. This is the moment when we should
check if, in parallel with the previous execution rounds,
anything worth of system’s attention occurred at the inter-
face with the environment. In our example, we are inter-
ested in observing any possible change in the values of the
volume variables. Hence, we remodel the Update action as
follows:

Update1 = sel ∧ run = 0 →

(V start

R 6= VR → sel[1] := false

[] V start

L 6= VL → sel[2] := false)

// Update ; proc := true ; sel := false

Before acting on the global variables of the synchronized
system A1, as specified by the initial action Update, the
new version, Update1 starts by checking if there are any
changes in the values of the watched variables VL or VR.
We have assigned a higher priority to this activity, by using
the prioritized composition. The new specification triggers
a re-execution of the actions YRc := VR × inR ; run := 0
or (and) YLc := VL × inL ; run := 0, as necessary.

Similar to the case of action Selection, at the system
level, the specification of Update1 leads to a trace refine-
ment, in the sense of Lemma 1.

Providing a new form for the initial Selection and Up-
date actions is consistent with our view on system design,
expressing that the system-level integrator is responsible for
the set-up of the necessary modules and the communication
inside and outside the synchronized system.

The flattened new version of the audio system is given
by

A2(VR, VL : integer 0..V olMax ; YR, YL : TD)
begin

var X, Xc, Z[0..N − 2], Zc[0..N − 2], YRc, YLc,
inR, inL, inRc, inLc : TD ; proc, sel[1..6] : Bool;
run : integer 0..6 ; V start

R , V start

L : integer 0..V olMax •

inR, inL, inRc, inLc := in0;
VR, VL, V start

R , V start

L := V olMax/2;
X, Xc := X0 ; Z, Zc := Z0 ; YR, YL, YRc, YLc := Y0;
run := 0 ; proc, sel := false;

do

Selection2

[] run = 1 → YRc := VR × inR ; run := 0
[] run = 2 → YLc := VL × inL ; run := 0
[] run = 3 → Xc := X ′.(X ′ ∈ T) ; run := 0
[] run = 4 → Zc[0], . . . , Zc[N − 2] := X, . . . , Z[N − 3];

run := 0

[] run = 5 → inRc :=
∑

N−1

k=1
hR(k) × Z(k − 1)+

h(0) × X ; run := 0

[] run = 6 → inLc :=
∑

N−1

k=1
hL(k) × Z(k − 1)+

h(0) × X ; run := 0
[] sel ∧ run = 0 →

((V start

R 6= VR → sel[1] := false
[] V start

L 6= VL → sel[2] := false)
// Update ; proc := true ; sel := false)

od

end

We recall now the execution scenario described at the
beginning of section 3.2. Running now the composition
User ‖ A2 (Figure 3), observe the additional execution of
the left-channel update run = 2 → YLc := VL × inL ;
run := 0 (at number 7).

4.4 Model Analysis and Comparisons

We may now claim that we have a reliable overall sys-
tem description, given as User ‖ A2, as far as system
reactiveness to user commands is concerned.

This can be checked by assessing the invariance of the
predicate

I =̂ proc ∧ (V start

L = VL) ∧ (V start

R = VR)
⇒ (YL = VL × inL) ∧ (YR = VR × inR)

(2)

over the actions of A2. This is a simple task, as the invari-
ance must only be checked in case of the action Update1,
following the updates on the global variables. The predicate
I holds trivially for Selection2 and the other actions do not
write variables accessed by I .

Figure 3. Execution of the system A2.

Moreover, the benefit of the approach is reflected by
the correct-by-construction result, as we have A v A1 v
A2. This is easily derived by checking the requirements
of Lemma 1, and is consistent with the separation of con-
cerns from a module-designer / system-integrator perspec-
tive. The selection of watched variables and the reaction
to new values updated while the synchronized composition
is executing fall in the responsibility of the system–level
integrator, therefore they do not characterize the imported
modules. Furthermore, as the performed refinement steps
are not performed under a specific invariant, also the global
system User ‖ A2 is a refinement of the initial represen-
tation, User ‖ A (we only add local variables and the
corresponding actions that update them). Notice, though,
that I (relation (2)) is only an invariant of the system A2. It
is not an invariant of the composition User ‖ A2, and the
mentioned refinement is not done under I .

We could have employed, with apparently same results, a
prioritized composition between the participating systems:
User // A. The disadvantage of this model is twofold. First,
the User is an always enabled system, as both of its actions
are. Therefore, no action of A could ever get executed. The
solution would be to model a self-disabling mechanism for
the User, such that, when it is disabled, A has the chance
of updating, in its turn, the composition variables. This
approach would resemble those that adopt blocking proce-
dures, as presented, for instance, in [13, 14]. However, we
do not want to apply such restrictions to a naturally inde-
pendent system, as the one modeled by User. This takes us
further to the second reason that prevents us from using a

prioritized composition: reusability. Even though this is not
within the scope of the present study, we may mention that
such a solution will only fit the current design and would
not allow the same system to be reused in a slightly differ-
ent situation [16].

In [10], the authors resorted to a similar safe point check,
to establish if (certain) permissions, to run code in loops,
are revoked. Still, even though the concept is very simi-
lar, these check-ups are performed at the beginning, rather
than at the end of one loop execution. In our case, we do
not know “when” the User system will modify the volume.
Hence, we have to give to the audio system a chance to
execute. This motivates our “last line” evaluation of the
watched variables.

Our refinement-based approach to communication
comes quite close to the principles described in [8], regard-
ing the watched statements (variables in our case). How-
ever, we may not call our methods interrupts. This is be-
cause the classical execution method for interrupts assumes
storing the current system status, executing an interrupt han-
dling procedure and then restoring the saved environment
and resuming the interrupted activity. At least the last two
steps are not subsumed by our development process.

A digital filter, as the one that we have used in our exam-
ple, may be implemented either as a software or as a hard-
ware unit. We may compare our model, from the hardware
point of view, with a VHDL [1] specification. In VHDL, we
also witness a two-level execution perspective. Firstly, in-
side the processes, the execution follows a sequential path.
Secondly, processes, viewed as parallel running entities, are
selected in a non-deterministic manner. Distinctly from our
approach, the “global variables” - signals in VHDL, are
properly updated after the execution of the respective pro-
cess. Hence, in a VHDL simulation cycle, it is often the
case that processes that have already executed, become re-
activated, and therefore re-executed. This is due to the fact
that other processes may change the values of the read val-
ues of the already executed ones, therefore scheduling these
for a re-execution. This activity settles down, eventually, as,
in an implementable description, the system has to stabilize.
Notice that the same symptoms characterize our synchro-
nized environment, too. However, we may not assume any
stabilization moment; therefore, the synchronized updates
happen once, at the end of the execution cycle.

Deterministic synchronous models do not experience
similar problems for two reasons. First, they have the notion
of clock cycles that represent a global time. Clock cycles
are totally ordered on the time axis. Two events occurring
in different clock cycles, occur unambiguously at different
time instances, one earlier than the other. Events occurring
in the same clock cycle occur indistinguishable at the same
time instance. Second, these models are fully deterministic
and no particular execution order of processes will lead to

an overall different system behavior. Esterel and ForSyDe
are two examples following that paradigm.

In Esterel [7], a fully synchronous language, exceptions
are modeled by traps. Checking for trap conditions is done
in parallel with the execution of other functional blocks.
These conditions correspond to the comparison of start-of–
cycle and end-of–cycle values of the watched variables, in
our approach. Global variables are updated only at the end
of an execution cycle, therefore we can allow the detection
of new events on the watched variables to be detected at the
end of the cycle.

In ForSyDe [15] and in the synchronous model of com-
putation described in [12] all input and output events are
deterministically synchronized. All user inputs received in
the same evaluation cycle (or clock cycle) are processed and
the corresponding outputs are generated during that cycle.
Since the clock cycles are globally ordered and synchro-
nized between all signals in the system, two user events
(controlling the left and right volume, respectively) either
occur in the same cycle or one event occurs in an earlier
cycle than the other. In both cases the filter process will
properly react to the inputs received in a particular cycle.

Our study demonstrates a technique to obtain synchro-
nized reactive behavior similar to perfectly synchronous
models such as Esterel and ForSyDe in the general frame-
work of action systems. Thus one is allowed to mix non-
deterministic, non-synchronized modules with synchro-
nized, reactive modules.

Observe that, at the same time, the improved modularity
property offered by the utilization of the synchronized com-
position is preserved after the changes performed on the se-
lection and update actions. Hence, a more performant, or
a more accurate filter may replace the current system de-
scription, without the higher level, that is, the synchronized
composition, to be affected. These improvements stay at
the level of the module designer, while the system integra-
tor may only select the appropriate solution.

5 Conclusions

In this study, we addressed the problem of devising a cor-
rect communication procedure between non-deterministic
environments and synchronized reactive modules. The re-
spective procedures emerge as (successive) refinements of
the initial synchronized composition, thus offering correct-
by-construction results. The final system model preserves
the behavioral characteristics of the initial one, while allow-
ing un-synchronized, but important events to be intercepted
and processed. The selection of these events is done by
the system integrator, leaving the module designer the free-
dom to concentrate only on the functionality of the modules,
rather than on the communication schemes.
Acknowledgements. The authors wish to thank Cristina

Cerschi Seceleanu for improve the paper content, through
helpful comments. The remarks of the anonymous review-
ers are also gratefully acknowledged.

References

[1] P. Ashenden. The Designers Guide to VHDL - Second
Edition. Morgan Kaufmann Publishers, 2002.

[2] R. J. R. Back. Refinement Calculus, part II: Paral-
lel and reactive programs. J. W. de Bakker, W.-P.
de Roever, and G. Rozenberg. Stepwise Refinement
of Distributed Systems: Models, Formalisms, Cor-
rectness. LNCS vol. 430. Springer-Verlag, pp. 67-93,
1990.

[3] R. J. R. Back, R. Kurki-Suonio. Distributed Coop-
eration with Action Systems. ACM Transactions on
Programming Languages and Systems, Vol. 10, No.
4.1988, pp. 513-554.

[4] R.J.R. Back, K. Sere. Action Systems with Syn-
chronous Communication. Programming Concepts,
Methods and Calculi. In E.-R. Olderog. IFIP Trans.
A-56, pp. 107-126, 1994.

[5] R. J. R. Back, J. von Wright. Trace refinement of ac-
tion systems. Proceedings of CONCUR-94, Springer–
Verlag, 1994.

[6] R. J. R. Back, J. von Wright. Refinement Calculus: A
Systematic Introduction. Springer–Verlag, 1998.

[7] G. Berry. The Foundations of Esterel. Proof, Lan-
guage and Interaction: Essays in Honour of Robin
Milner, G. Plotkin, C. Stirling and M. Tofte, eds., MIT
Press, 1998.

[8] J. Borkowski. Interrupt and Cancellation as Syn-
chronization Methods. R. Wyrzykowski et al. (Eds.):
PPAM 2001, LNCS 2328, pp. 3-9.

[9] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall International, 1976.

[10] C. Hawblitzel, T. von Eicken. Luna: a Flexible Java
Protection System. USENIX Association: Proceed-
ings of the 5th Symposium on Operating Systems De-
sign and Implementation, 2002.

[11] E.C.Ifeachor, B.W.Jervis Digital Signal Processing
Practical Approach. Addison Wesley Publishing Com-
pany, 1997.

[12] A. Jantsch. Modeling Embedded Systems and SoCs
- Concurrency and Time in Models of Computation.
Systems on Silicon. Morgan Kaufmann Publishers,
June 2003.

[13] S. Marlow at al. Asynchronous Exceptions in Haskell.
Proceedings of the ACM SIGPLAN 2001 conference
on Programming language design and implementa-
tion, 2001, pp. 274-285.

[14] A. Rudys, D. S. Wallach. Termination in Language-
Based Systems. ACM Transactions on Information
and System Security Vol. 5, Issue 2, 2002, pp. 138-
168.

[15] I. Sander and A. Jantsch. System modeling and trans-
formational design refinement in ForSyDe. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 23(1):17–32, January 2004.

[16] C. Cerschi Seceleanu, T. Seceleanu. Synchronization
Can Improve Reactive Systems Control and Modular-
ity. Journal of Universal Computer Science (J.UCS),
Vol. 10, Nr. 10, 2004, pp. 1429 - 1468.

[17] T. Seceleanu, D. Garlan. Developing Adaptive Sys-
tems with Synchronized Architectures. To appear.
Journal of Software and Systems, 2006.

[18] E. Sekerinski, K. Sere. A Theory of Prioritized Com-
position. The Computer Journal, VOL. 39, No 8, pp.
701–712. University Press.

