
Chapter 1

WILL NETWORKS ON CHIP

CLOSE THE PRODUCTIVITY GAP?

Axel Jantsch and Hannu Tenhunen
Royal Institute of Technology, Stockholm

axel@imit.kth.se, hannu@imit.kth.se

Abstract We introduce two properties of the design process called the arbitrary

composability and the linear effort properties. We argue that a design
paradigm, which has these two properties is scalable and has the poten-
tial to keep up with the pace of technology advances. Then we discuss
some of the trends that will enforce significant changes on current de-
sign methodologies and techniques. Finally, we argue that the emerging
Network-on-Chip (NoC) paradigm promises to address these trends and
challenges and has all prerequisites to provide the arbitrary composabil-
ity and the linear effort properties. Consequently we conclude that NoC
is a likely basis for future System-on-Chip platforms and methodologies.

Keywords: Networks on chip, Productivity gap, System on chip design methodology

1. Introduction

To boost design productivity it is crucial that the effort to add new
parts to a given design does not depend on the size of the existing design
but only on the size of the new parts. In other words, the design effort
must be a linear function of the size of the new parts. If this is the
case, large parts and blocks of previous designs can be reused and the
design effort can be invested into the new parts. This is also a necessary
prerequisite to provide a solid methodology, architecture, and thus a
platform, that are sustainable over several technology generations.

The central thesis of this chapter is that a Network-on-Chip (NoC) has
the potential to provide such a sustainable platform and, if successful,
will incur such a significant change on the system-on-chip architecture

3



4 NETWORKS ON CHIP

and design process that it can be called a paradigm change. On the other
hand, if it fails to do so, NoC will be just one of several architectures
and platforms available to embedded system designers.

Arbitrary composability property: Given a set of components
and a set of combinator operators which allow to connect and in-
tegrate the components into larger component assemblages. Com-
ponents and combinators together are arbitrarily composable if a
given component assemblage A can be extended with any compo-
nent by using any of the combinators without changing the relevant
behavior of A.

Please note, that this and the following property are meant as en-
gineering heuristics, not as mathametical properties. As such they are
ideals and can be achieved at higher or lower degrees.

Note further, that this property is defined with respect to what is con-
sidered to be a relevant behavior. Thus depending on the given objectives
and definition of behavior, the same components and combinators may
or may not have the arbitrary composability property.

For instance, the standard logic gates NAND, NOR, INV, etc. have this
property with respect to their logic level I/O behavior because adding
new gates to a netlist of gates will not change the behavior of the original
netlist, unless old connections are broken. A given network of gates can
be used in any context and will exhibit identical behavior whatever the
surrounding netlist may be. New gate netlists can be added to existing
ones, using the outputs and results produced by any other part of the
circuit without changing the older parts. This is the foundation of our
ability to build designs with millions of gates and to reuse large blocks
in arbitrary environments.

It should be noted that this nice property of gates is in part due to
the implementation process which allows the scaling of transistor sizes,
insertion of buffers, and sensible placement and routing by automatic
tools.

It is enlightening to see the effects when the arbitrary composition
property is violated. Two of the most severe problems in today’s designs
stem from violations of this property. Timing closure, i.e. the problem
to get the timing of the circuit implementation right, is difficult because
small changes or addition to the gate netlist may change the timing of
the entire system by adding to the critical path or due to an unexpected
effect of placement and routing on the timing of seemingly unrelated
circuit parts. The system verification problem is so hard because at the
system level behaviors are not easily composable and tiny changes in one
part may have unexpected effects on seemingly unrelated other parts of



Will Networks on Chip Close the Productivity Gap? 5

the system. In both cases the design effort grows more than linear with
the system size.

If this property is guaranteed, the effort of adding new components to
a working system only depends on the new components but not on the
size of the reused system (figure 1.1). Thus, a corollary of the arbitrary

B

C
(new)

(new)
(reused)

A
S

Figure 1.1. With the arbitrary composability property the design effort to add new
components to an existing system depends on the integration effort and on the new
components but not on the size of A because the design effort to build A has al-
ready been spent and is reused as well: Deffort(S) = Deffort(B) + Deffort(C) +
Ieffort(3)

composability property is the following linear effort property.

Linear Effort Property: Given is a set of components and a set
of combinator operators which allow to connect and integrate the
components into larger component assemblages. A design process
which builds a system from the components and combinators has
the linear effort property if a given set of n assemblages A1, . . . , An

can be integrated into a system S by means of the combinators with
an effort dependent on n but not on the size of the assemblages:
Ieffort(n). Thus the total design effort for S is

Deffort(S) = Deffort(A1) + · · · + Deffort(An) + Ieffort(n)

Note, that this property implies that the interface complexity of an
assemblage does not depend on the size of the assemblage. Obviously,
this is not true in practice but it is equally obvious that this is a necessary
precondition to build arbitrary large systems. Thus, we must approach
this ideal as close as possible to be able to build larger and larger systems.
The fact, that we have not been sufficiently close to this ideal is the
fundamental reason for the design productivity gap.

We believe that NoC based platforms have a good potential to provide
both the arbitrary composition and the linear effort properties to a high
degree but they do not automatically guarantee them. We will keep
these properties in mind throughout this chapter, but first we review



6 NETWORKS ON CHIP

some of the underlying trends and challenges that lead to NoC and
similar architectures.

2. Trends and Challenges

IC manufacturing technology will provide us with a a few billion tran-
sistors on a single chip within a few years [1]. Assuming that these pre-
dictions hold and that the market will continue to absorb ever higher
volumes of ICs, the key questions are: how will the future chips be
organized and how will future systems, which include these chips, be
designed? There are a few trends which, if continued, will bring about
a significant change for architecture and design of integrated circuits.

Communication versus computation. Technology scaling works
better for transistors than for interconnecting wires. This leads grad-
ually to a domination of performance figures, power consumption and
area by wires and make transistors of secondary importance. At the
system level it has a profound effect by changing the focus from num-
ber crunching and computation to data transport and communication
[2, 3, 4]. Communication becomes often the bottleneck because it seems
much harder to design and get right.

Deep submicron effects. Cross-coupling, noise and transient
errors are only some of the unpleasant side-effects of technology scal-
ing [5, 6]. It requires significant skills, experience, knowledge and time
to keep them under control while exploiting the limits of a technology.
A digital or system designer with an expected design productivity of
millions of transistors per day is not able to deal with these effects prop-
erly. Therefore, designers reuse blocks which are carefully designed by
experts with the proper skills. However, it is of critical importance that
the deep submicron effects don’t pop up again when predesigned blocks
are combined in arbitrary ways. Consequently, at the physical design
level the property of arbitrary composability means that the electrical
and physical properties of blocks are not affected when combining them.

Global synchrony. Physical effects of deep sub-micron technology
make it increasingly difficult to maintain global synchrony among all
parts of the chip [7]. The clock signal will soon need several clock cycles
to traverse the chip, clock skew becomes unmanageable, and the clock
distribution tree is already today a major source of power consumption
and cost. The trends of scaling to smaller geometric dimension and
higher clock frequency make these problems more significant every year.



Will Networks on Chip Close the Productivity Gap? 7

Thus, it is unlikely that large chips will be synchronous designs with
only one clock domain.

Design productivity gap. Synthesis and compiler technology
development do not keep pace with IC manufacturing technology de-
velopment [1]. As a consequence we need either exponentially growing
design teams or design time to design and implement systems which fit
onto a single IC. Since both alternatives are unrealistic we have in the
past escaped from the problem by using ever more complex components
as primitive design units. These primitive design units have evolved
from individual transistors to logic gates to entire ALUs, multipliers,
finite state machines and processor cores. In fact reuse of ever more
complex design elements has been the main device to increase produc-
tivity and will likely remain so in the years to come. It has also kept
us close enough to the ideal of the linear effort property to manage the
increasing number of transistors.

Heterogeneity of functions. Obviously, systems that can be
implemented on a single chip become increasingly more complex. As a
result different functions and features with vastly different characteris-
tics and history reside on the same chip. Signal processing algorithms,
that recover and generate radio signals, will coexist with global control,
maintenance and accounting functions as well as with natural language
comprehension and generation functions. These functions are developed
in different contexts, by different teams, with different design languages
and tools. However, they need to be integrated into a single chip.

In order to lead a concrete discussion we describe next a typical NoC
architecture and in section 4 we investigate how a NoC approach could
address the listed problems. To paint a fair picture section 5 illuminates
the price to pay when adopting a NoC based approach. Finally, in
section 6 we speculate how the design process will change.

3. Network on Chip

The Network-on-Chip (NcC) architecture, as outlined in figure 1.2,
provides the communication infrastructure for the resources. In this
way it is possible to develop the hardware of resources independently
as stand-alone blocks and create the NoC by connecting the blocks as
elements in the network. Moreover, the scalable and configurable net-
work is a flexible platform that can be adapted to the needs of different
workloads, while maintaining the generality of application development
methods and practices.



8 NETWORKS ON CHIP

Resource Switch

Figure 1.2. Each node in the mesh contains a switch and a resource.

A two dimensional mesh interconnection topology is simplest from
a layout perspective and the local interconnections between resources
and switches are independent of the size of the network. Moreover,
routing in a two-dimensional mesh is easy resulting in potentially small
switches, high bandwidth, short clock cycle, and overall scalability. A
NoC consists of resources and switches that are directly connected such,
that resources are able to communicate with each other by sending mes-
sages. A resource is a computation or storage unit. Switches route
and buffer messages between resources. Each switch is connected to
four other neighboring switches through input and output channels. A
channel consists of two one-directional point-to-point buses between two
switches or a resource and a switch. Switches may have internal queues
to handle congestion. We expect that the area of a resource is either
the maximal synchronous region in a given technology or a cluster of
computing elements and memory connected via a bus. We expect the
size of a resource to shrink with every new technology generation. Con-
sequently the number of resources will grow, the switch-to-switch and
the switch-to-resource bandwidth will grow, but the network wide com-
munication protocols will be unaffected.



Will Networks on Chip Close the Productivity Gap? 9

Note, that this is one, fairly simple NoC variant described here only
to substantiate the following discussion. Many other more sophisticated
architectures have been proposed [8, 9, 10, 11, 12, 13, 14].

4. How does NoC address the problems

Although there are numerous factors and facets to investigate, we
focus on two mechanisms that work in favor of a NoC based approach:
Reuse and Predictability. We believe these are by far the most important
factors overshadowing other secondary effects.

4.1 Reuse

As mentioned above, reuse has always been the primary means to
bridge the technology gap [15, 16, 17]. More and more complex com-
ponents, from transistors to gates to functional blocks, such as ALUs
and multipliers, to microprocessors and DSP cores, have become the
primitive building blocks. In this way, the designers could move up
the abstraction levels and describe the system’s functionality in more
and more abstract terms relying on more and more powerful “primitive”
components. Curiously, synthesis technology has mostly been used to
bridge one, relatively shallow, level of abstraction. This can be observed
in both the hardware and the software domain. Technology mapping,
logic and RTL synthesis are in principle straight forward steps with a well
characterized optimization space. Synthesis techniques that attempted
to bridge more abstraction levels and to make more profound design de-
cisions have typically failed. Examples are high level and architectural
synthesis. In software the mapping from C to microprocessor instruction
sets is more or less direct and the corresponding compiler technology is
tremendously successful. In contrast, compilation from functional, logic
and other higher level languages lacks efficiency and has never become
mainstream. Thus, we believe that reuse by providing more complex
components will continue to be the main mechanism to exploit the po-
tential of technology. Synthesis and compilation techniques will provide
the surface mapping from more convenient descriptions onto the primi-
tive components.

However, as a difference to the past, communication “components”,
or better, communication structures and services have also to become
primitive design elements. And this is precisely what a NoC based ap-
proach is all about: The reuse of communication services.

Let us briefly review what can be reused in a NoC based approach.



10 NETWORKS ON CHIP

Components and resources. Arbitrary computation elements
can be connected to the communication network. In fact we expect that
typical NoC based systems may contain processor cores, DSP cores,
memory banks, specialized I/O blocks such as Ethernet or Bluetooth
protocol stack implementations, graphics processors, FPGA blocks, etc.
The size of a resource can range from a bare processor core to a local
cluster of several processors and memory connected via a local bus. Re-
sources have to comply to the interfaces of the communication network
in order to connect to it and use its services.

The reuse of processor cores has been developed during the last ten
years by defining bus interfaces. By defining network interfaces, NoC
takes this concept further because it allows to integrate an arbitrary
number of resources into a network. In a bus-based system, adding
a new resource has a profound impact on the performance of the rest
of the system because the same communication resource is now shared
among more resources. In a NoC adding new resources also means to
add new communication capacity by adding new switches and inter-
connects. This scalability property is a necessary precondition for the
arbitrary composability property but it is not sufficient to guarantee it.
The communication network must further be able to guarantee allocated
bandwidth and to enforce a decent behaviour of the resources to avoid,
for instance the monopolization of the entire communication bandwidth
by a single resource.

However, it is important to acknowledge, that a NoC based approach
has the potential to provide the arbitrary composability property with
tremendous benefits for the design productivity.

Communication infrastructure. The main immediate benefit
from a NoC based approach is clearly due to the possibility to reuse
the communication network. The switches, the interconnects and the
lower level communication protocols can be design, optimized, verified
and implemented once and reused in a large number of products. If
requirements on performance, reliability and cost differ too much in
different application domains, domain specific communication networks
can be reused at least for all products in the same domain. For instance,
it is likely that mobile, hand-held devices have so different demands
on power consumption and performance than infra-structure equipment
that different NoC platforms for these two domains are well justified.

Apart from the hardwired communication infra-structure, higher level
network services can as well be reused. There is in fact a long list of
services that would benefit many applications but can impossibly be
developed from scratch for each new product. Examples are



Will Networks on Chip Close the Productivity Gap? 11

the detection, monitoring and management of faults in the net-
work;

the allocation and management of network resources and possibly
task migration for load balancing and power optimization;

the management of global and shared memory;

the provision of sophisticated communication services such as chan-
nels with guaranteed bandwidth and quality of service, multi-cast
and broadcast communication, etc.

Most of these tasks are typically provided by the operating system
in today’s uniprocessor applications. Similarly, a NoC operating system
will be very generic and can be reused for many products. Due to the
increased complexity of future systems as compared to today’s systems,
the operating system will be much more sophisticated and complex, thus
making the case for reuse even stronger.

Application parts and feature reuse. Reuse will not stop with
components and generic services. New products can be composed of ex-
isting, complete features. Peeking into the future we can envision a tra-
ditional mobile phone which is enhanced by speech analysis subsystem,
a speech synthesizer and a language analysis and processing sub-system
to provide a spoken language interface to the phone. The same modules
or features are apparently useful in a wide range of products and should
therefore be reused as much as possible. Obviously, the main challenge
will be to define and standardize the high level interfaces between these
features to allow for an efficient communication and sharing of informa-
tion. However, we can observe that a NoC provides an excellent ground
for this kind of feature reuse. For optimized implementation a feature
may come fully implemented either in software or partially as a dedi-
cated hardware block. Either way, the feature can be plugged into one
or several resource slots and the NoC provides at least the low level
communication and network services for free for the interaction between
the feature and the rest of the system.

Design, simulation and prototype environment. A significant
part of system development costs are typically spent in setting up simu-
lation environments and building prototypes. Since many products are
based on the same NoC platform much of this investment can be shared
by many products. Furthermore, even if different domain specific NoC
platforms vary in their performance and power characteristics, they are



12 NETWORKS ON CHIP

sufficiently similar to allow the reuse of much of the design and verifica-
tion environment across very different application domains. In contrast,
application specific platforms which are not derived from the same prin-
ciple concepts but are developed in an ad-hoc way to suit a particular
application domain, will not provide as much potential for cross-domain
reuse.

Verification effort. The system verification effort is frequently as
high as the design effort itself. Hence, by reusing predesigned and prever-
ified parts and services, verification time can be as drastically reduced
as design time. But reuse is even more important for the verification
than for the design activity because the uncertainty about the required
verification time is much higher and more difficult to plan. Moreover,
the uncertainty about the resulting product quality is high and the po-
tential cost of undetected errors in the final product can be enormous.
Since risk and uncertainties around verification and verification effects
are much higher, verification benefits more from reuse than the design
activities. Reused components are typically much better verified, be-
cause they have already been used in other products. Moreover, system
verification can be done much more effectively when correctness and re-
liability of the components can be assumed, because errors are identified
faster.

In summary, the usage of a NoC based platform boosts the potential
for reuse in many ways.

4.2 Predictability

The second main aspect of our focus is predictability and it is in fact
closely related to reuse.

Communication performance. Due to its regular geometry and
communication network, communication performance becomes poten-
tially much more predictable. “Potentially” and not “necessarily” be-
cause the regular communication hardware will significantly help to an-
alyze and assess performance but measures at higher protocol levels and
network services have to realize this potential. Since the communication
hardware is shared by many resources, the activity of one resource can
delay the communication of other resources. One mis-behaving resource
can monopolize part of the communication hardware and indefinitely
block other resources from accessing it. Therefore, the network has not
only to provide the raw bandwidth but also a policy for bandwidth al-
location. There are many ways to do this with different advantages
and disadvantages. One possibility is to allocate channels with a maxi-



Will Networks on Chip Close the Productivity Gap? 13

mum bandwidth and fixed latency to two communicating resources. By
properly allocating and managing these channels many communication
activities can coexist peacefully and all of them know exactly the avail-
able bandwidth and what latency each data packet will exhibit. This
makes systemwide performance analysis feasible and accurate.

As indicated above, a reliable communication resource allocation pol-
icy resulting in predictable communication performance for all tasks and
applications in the NoC is a central part for establishing the property of
arbitrary composability. If a task or a feature can request, obtain and
use communication bandwidth independent of all other tasks and fea-
tures in the NoC, then the cost of reusing, mixing and matching existing
tasks and features is relatively small, since they have not to be modified
internally.

Electrical properties. Due to the regularity of the layout the
electrical and physical properties of the network are well known. The
switch-to-switch wires, most likely the longest on the chip except for
clock, power and ground wires, have all exactly the same well defined
length. Potential uncertainties and irregularities are confined to the re-
source slots and have most likely no global impact. Thus, the regular
and known geometry leads to the accurate analysis of electrical proper-
ties. Furthermore, since the NoC platform is reused in many products,
elaborate electrical and power models can be developed e.g. to model the
dynamic power consumption caused by the communication in the net-
work. High level traffic pattern models can be combined with electrical
models for the better assessment of noise and power consumption.

Design and verification time. As already elaborated above,
reuse will decrease uncertainties and risk in particular for the verifi-
cation tasks. This naturally makes design and verification time more
predictable. Another reason for increased predictability of the design
process is reduced design freedom. Since the network structure and ba-
sic services are fixed as well as the size of resource slots, the design space
is significantly reduces and the remaining tasks are well separated result-
ing in more smaller and independent tasks. The remaining system level
architectural decisions are the selection of the platform, the network
size and the resource allocation. Then all the resources can be designed
and implemented separately. Hence, the main challenge is the develop-
ment of the overall system functionality, its partitioning into processes
and their mapping onto resources. However, due to the relatively fixed
architecture and the predictable performance and electrical properties
(see above) the behavioural design is to a large extent independent from



14 NETWORKS ON CHIP

the implementation phase. This increased modularization of the design
tasks makes the overall process more predictable.

5. Disadvantages

Obviously, all these nice properties, outlined above, do not come for
free. Essentially we pay for each of them by loosing optimality. Reusing
components always means that we use something more general, thus
less optimal, than necessary for a particular task. Adopting a fixed
and relatively inflexible network topology means that we exclude all the
other topologies that may be more suitable for the problem at hand.
A particular protocol stack with associated services will not be ideal
for all embedded systems and any NoC operating system will often be
too general with unnecessary overhead and lacking important services
at the same time. Only time will tell if it is possible to find a sensible
balance between generality and efficiency which fits sufficiently many
applications.

One way to alleviate the problem may be offered by a layered protocol
stack and a layered set of services. An application may select a NoC
platform only up to a particular level of the stack, thus avoiding the
overhead of the upper layers. This flexibility however comes at a price. A
strict layering of protocols and services may not be the optimal solution.
An integrated implementation of several layers may result in a more
efficient design at the expense of the possibility to have direct access to
the lower layers.

6. Effect of NoC on the design process

Let us briefly review a design process based on a NoC platform. The
main activities are:

Configuring the platform. Depending on the available configura-
tion options this phase may be extensive or insignificant. A more general
platform suitable for a wider range of applications will have more con-
figuration options.

Every platform will allow to select the size and most likely offer a
selection of communication services that can be included. Every design
will need the core service for transporting raw data from sending to
receiving resources. This core service may be packet oriented or based on
virtual channels. More sophisticated communication means with varying
levels of fault tolerance, bandwidth and latency control can be optional.
Still higher level services could support transparent task migration from
one resource to another or a virtual global shared memory.



Will Networks on Chip Close the Productivity Gap? 15

Selecting resources. Since every resource slot can receive an arbi-
trary resource, all the resources have to be chosen by the designer. There
may be some constraints because network services like a NoC operating
system have to be implemented also. Part of the resource selection task
is the design of the memory architecture and I/O architecture, which
require specific resources distributed in a particular way.

Reuse of features. The selection of resources is of course intimately
connected to the reuse of features. In our terminology a feature is a
particular functionality together with its implementation. E.g. a speech
analysis feature can be modeled as a task graph and implemented on one
or several DSP processors or custom hardware blocks. Thus, a feature
can occupy several resource slots but it can also share a resource, e.g.
a DSP, with other features. Resource sharing of features has to be
considered carefully because it will most likely compromise the property
of arbitrary composability unless precautions are taken.

Evaluation and integration. The integration of all features and
resources into the final system, the evaluation of performance and the
verification of functionality is the final and perhaps most challenging
task. An efficient and elaborate simulation and prototyping environ-
ment, that can be shared by many design projects, will significantly aid
the successful system integration. But above all, the simplicity and pre-
dictability of the interfaces of resources, the communication network and
features at all levels of the protocol stack will determine how well the
property of linear effort can be approximated.

7. Conclusion

Developing a system with several dozens or hundreds of processor
like resources is a formidable task. It can only be accomplished if fea-
tures and components are aggressively reused and if they are arbitrarily
composable at the physical level, at the architectural and structural level
and at the application level (figure 1.3). Or, in other words, the protocol
stack from the physical layer to the network and transport layer to the
application layer must be well defined such that arbitrary components
and features can be connected to the NoC backbone via the protocol
stack without affecting the rest of the system.

We have focused on two issues which are particularly crucial for pro-
viding the properties of arbitrary composition and linear effort. Reuse
from blocks to services and features allows designers to productively
combine existing parts to new configurations and innovative products.
Predictability makes reuse efficient because adding new components and



16 NETWORKS ON CHIP

Physical 

of resoucres

Large number

processes

Concurrent

issues

Feature A

Figure 1.3. Features and components must be arbitrarily composable at the physical,
the architectural and the application level to facilitate seamless feature integration.

features does not require redesigning and reverifying the existing parts,
thus avoiding a more than linear growth of the design effort.

If NoC based platforms are able to provide the arbitrary composabil-
ity and the linear effort properties while still allowing for sufficiently
efficient product implementations, the design of systems-on-chip will be
revolutionized, eventually leading to a “design by feature combination”.
The NoC paradigm is highly suited to provide SoC platforms scalable
and adaptable over several technology generations because it opens the
opportunity to define and standardize a communication service infra-
structure and a protocol stack from the physical to the application layer.
If these are well defined and facilitate the arbitrary composability and
the linear effort properties, it will allow the efficient reuse of large re-
sources, communication and network services, and application features.
The TCP/IP protocol stack and the Internet, which also revolutionized
the use of computers, can be an inspiring example. Indeed, due to their
inherent scalability NoC platforms may allow the design productivity
to grow as fast as technology capabilities and may eventually close the
design productivity gap.



Will Networks on Chip Close the Productivity Gap? 17

References

[1] Semiconductor Industry Association. Interbational technology
roadmap for semiconductors. Technical report, World Semiconduc-
tor Council, 1999. Edition 1999.

[2] James A. Rowson and Alberto Sangiovanni-Vincentelli. Interface-
based design. In Proc. of the 34th Design Automation Conference,
1997.

[3] Kurt Keutzer, Sharad Malik, Richard Newton, Jan Rabaey, and
Alberto Sangiovanni-Vincentelli. System-level design: Orthogonal-
ization of concerns and platform-based design. IEEE Trasnac-
tions on Computer-Aided Design of Integrated Circuits and Sys-
tems, 19(12):1523–1543, Decmber 2000.

[4] Marco Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey,
and A. Sangiovanni-Vincentelli. Addressing the system-on-a-chip
interconnect woes through communication-based design. In Pro-
ceedings of the 38th Design Automation Conference, June 2001.

[5] Dennis Sylvester and Kurt Keutzer. Getting to the bottom of deep
submicron. In Proceedings of the 1998 IEEE/ACM international
conference on Computer-aided design, pages 203–211, 1998.

[6] Dennis Sylvester and Kurt Keutzer. Getting to the bottom of deep
submicron ii: a global wiring paradigm. In Proceedings of the 1999
International Symposium on Physical Design, pages 193–200, 1999.

[7] Thomas Meincke, Ahmed Hemani, S. Kumar, P. Ellervee, J. Öberg,
T. Olsson, P. Nilsson, D. Lindqvist, and H. Tenhunen. Globally
asynchronous locally synchronous architecture for large high per-
formance ASICs . In Proc. of IEEE Int. Symp. on Circuits and
Systems (ISCAS), volume II, pages 512–515, Orlando, USA, May
1999.

[8] Pierre Guerrier and Alain Greiner. A generic architecture for on-
chip packet-switched interconnections. In Proceedings of Design,
Automation and test in Europe, pages 250–256, 2000.

[9] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen, Martti Forsell,
Mikael Millberg, Johnny Öberg, Kari Tiensyrjä, and Ahmed He-
mani. A network on chip architecture and design methodology.
In Proceedings of IEEE Computer Society Annual Symposium on
VLSI, April 2002.

[10] William J. Dally and Brian Towles. Route packets, not wires: On-
chip interconnection networks. In Proceedings of the 38th Design
Automation Conference, June 2001.



18 NETWORKS ON CHIP

[11] Edwin Rijpkema, Kees Goossens, , and Paul Wielage. A router
architecture for networks on silicon. In Proceedings of Progress 2001,
2nd Workshop on Embedded Systems, October 2001.

[12] Drew Wingard. MicroNetwork-based integration of SOCs. In Pro-
ceedings of the 38th Design Automation Conference, June 2001.

[13] K. Goossens, J. van Meerbergen, A. Peeters, and P. Wielage. Net-
works on silicon: Combining best-effort and guaranteed services. In
Proceedings of the Design Automation and Test Conference, March
2002.

[14] Michael Bedford Taylor, Jason Kim, Jason Miller, David Wentzlaff,
Fae Ghodrat, Ben Greenwald, Paul Johnson Henry Hoffman, Jae-
Wook Lee, Walter Lee, Albert Ma, Arvind Saraf, Mark Seneski,
Nathan Shnidman, Matt Frank Volker Strumpen, Saman Amaras-
inghe, and Anant Agarwal. The Raw microprocessor: A compu-
tational fabric for software circuits and general-purpose programs.
IEEE Micro, 22(2):25–35, March/April 2002.

[15] Michael Keating and Pierre Bricaud. Reuse Methodology Manual
for System-on-Chip Designs. Kluwer Academaic Publishers, 1998.

[16] Terry Thomas. Technology for ip reuse and portability. IEEE De-
sign & Test of Computers, 16(4):6–15, October 1999.

[17] Henry Chang, Larry Cooke, Merrill Hunt, Grant Martin, Andrew
McNelly, and Lee Todd. Surviving the SOC Revolution - A Guide
to Platform-Based Design. Kluwer Academic Publishers, 1999.


