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Abstract. Early Warning Score (EWS) systems are utilized in hospi-
tals by health-care professionals to interpret vital signals of patients.
These scores are used to measure and predict amelioration or deteri-
oration of patients' health status to intervene in an appropriate man-
ner when needed. Based on an earlier work presenting an automated
Internet-of-Things based EWS system, we propose an architecture to
analyze and enhance data reliability and consistency. In particular, we
present a hierarchical agent-based data con�dence evaluation system to
detect erroneous or irrelevant vital signal measurements. In our extensive
experiments, we demonstrate how our system o�ers a more robust EWS
monitoring system.
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1 Introduction

Early Warning Score (EWS) systems are common practice in hospitals with the
goal of detecting and predicting patients' health deterioration. In 1997, Mor-
gen et al. proposed this system for the �rst time [1], covering vital signals such
as heart rate, respiratory rate, body temperature, blood pressure, and blood's
oxygen saturation. These signals are monitored and added up to derive the EWS.
However, not everyone whose condition is deteriorating is already in the hospital.
Therefore, portable devices and ubiquitous systems utilizing Internet-of-Things
are needed for monitoring vital signals and calculating the EWS [2].

It is of key importance to provide these systems with an acceptable level
of reliability. In other words, EWS systems always need to monitor vital sig-
nals accurately. Azimi et al. propose a system that calculates a self-aware EWS
through changing the classi�cation of the various vital signals based on the pa-
tient's activities [2]. This self-aware property is essential because the values of
vital signals change when a patient is sleeping or running. Knowledge of dif-
ferent situations and circumstances improves the decision-making ability of the
system [3]. However, they assume that the measured data is always correct and
relevant. Noisy or erroneous vital signals can lead to a wrong calculation of the
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Fig. 1. System Architecture; (a) Constituting agents (modules) of the system, and (b)
Constituting units of the agents.

EWS, which can result in false or missing alarms. Hence, EWS systems need to
be robust and aware of the reliability of input data.

In this paper, we propose a modi�ed EWS (MEWS) system by exploiting a
customized data con�dence enhancement technique. Our method is inspired by
the concept of self-awareness enabling the system to - adaptively - correct the
sensory data in case of faulty readings.

2 System Architecture

In an agent-based modular architecture (Fig. 1(a)), each sensor is connected to a
dedicated module which we call an �Agent� [4]. It processes the sensory data and
reports to a higher level agent, which is the �Body Agent�. Each agent consists
of an Abstraction-, a History-, a Con�dence Validator-, and a Binding Module.
The role of each module in an agent is as follows:

� Abstraction: To change the representation of the input data to the appropriate
format of the output. The purpose is to provide the higher level agents with
more compact and only relevant information [5].

� History : To save recent data, track changes, and establish a stable baseline
for the data when possible. This unit also smooths the data via weighted
averaging to eliminate the noise in the signal.

� Con�dence: To assess the trustability of the input data and provide the output
data with a con�dence tag, that allows the higher levels to have a better
understanding of the data and their validity. This topic is discussed in more
details in Section 3.

� Binding : To bind several input data, relate or compare them, and perform
necessary operations on them. This module is speci�cally useful when an agent
has multiple inputs, as is the case with the Body Agent. We note that this
process is more complicated than a simple mapping of the values as done in
the Abstraction module.

To enhance the functionality of our system, we have incorporated some of
the concepts of self-awareness. Self-awareness is a well-known concept which can
be traced back to 1960s in psychology [6] and late 1990s in computing [7]. It pro-
vides several advantages to the system such as the ability to cope with changing
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Fig. 2. Observe-Decide-Act (ODA) loops implemented in (a) overall system, and (b)
each module.

environments [6] or changing goals [8], and to optimize resource utilization [9]. As
the basis for our self-aware system design, we use an Observe-Decide-Act (ODA)
loop [8, 7] as illustrated in Fig. 2(a). For better modularity and simpler imple-
mentation we use a mini ODA loop inside each agent, as shown in Fig. 2(b). That
is, each agent monitors its own behavior, decides about certain actions, and acts
accordingly. Self-awareness covers a wide range of aspects in the system design
under each of the chains of the ODA loop. All of which could provide the system
with certain abilities and advantages. In this work, we speci�cally concentrate
on the role of the con�dence aspect of observation as elaborated in [5]. We then
analyze its e�ect on the overall performance of our EWS system.

3 Data Con�dence Concepts

Data Con�dence is meta-data and builds on Data Reliability (which consists of
accuracy and precision of sensory data [5]). It provides another level of under-
standing regarding the validity of the data which is beyond that of the sensors.
For example, in the context of the EWS, if the sensor is not attached to the
body of the subject, the temperature data provided by the sensor may still be
accurate and precise. However, it is not valid in the context of the application.
Therefore, although the data is reliable, the system should not consider such a
value. Assessing Data Con�dence based on the context and the application can
be very challenging [5]. Among the identi�ed potential solutions are consistency
and plausibility control as well as redundant veri�cation [5]. Since the latter
requires redundant hardware and implies additional costs and our objectives in-
clude cost as well as energy e�ciency, in this work we focus on the two former
aspects: consistency and plausibility.

Consistency: Anomalies are - at some level of analysis - inconsistent with the
normal trend of data, which could indicate a problem1. Hence, Consistency is
an aspect that can provide insight into how con�dent the system can be about
its observation. In the context of our EWS system, we consider temperature
continuity as an indicator for data consistency. Body temperature has very small
and slow changes; a change of 0.16◦C during one minute can be normal. However,

1 We note that the consequence of an anomaly detection should be/is decided by higher
levels of the system. Regardless, the observation unit needs to alert the higher levels.
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Table 1. Score classi�cation table of a set of vital signals

Vital Signal Score 3 2 1 0 1 2 3

Heart rate (beats/min) <40 40-51 51-60 60-100 100-110 110-129 >129
Systolic blood pressure (mmHg) <70 70-81 81-101 101-149 149-169 169-179 >179
Respiratory rate (breaths/min) <9 9-14 14-20 20-29 >29
Oxygen saturation (%) <85 85-90 90-95 >95
Body temperature (◦C) <28 28-32 32-35 35-38 38-39.5 >39.5

a change of several degrees per minute is inconsistent with the nature of the
subject of measurements (body temperature) [10]. This may be caused by a
sensor failure or a detachment of the sensor from the body. Regardless of the
reason, this should not a�ect the warning score. After performing consistency
analysis and �nding an inconsistent behavior, by reducing the con�dence tag of
the incoming data, the EWS system knows that it should not take this number
into consideration. We note that in some other parameters, such as respiratory
rate, for example, some discontinuities might be acceptable and should not be
marked as an inconsistency or decrease the con�dence of the system in the
incoming data. Hence comes forward the next aspect of con�dence, which is the
plausibility.

Plausibility: One aspect of plausibility which goes hand in hand with consis-
tency is the plausibility of changes in the data, e.g. body temperature change.
Another aspect is the plausibility of the absolute value. For example, a body
temperature of 85 or 95◦C is not plausible and regardless of the cause, it should
not be considered for score evaluation of the EWS. The same goes for negative
temperatures of this magnitude, or in the case of oxygen saturation, for values
outside 0 to 100.

Another aspect of plausibility is the cross-validity or co-existence plausibility.
That is, whether certain data could plausibly be valid given some other (compli-
mentary) data and given certain conditions. For example, a body temperature
of few degrees is valid only if the subject does not have any other vital signals
(and is practically deceased), otherwise, it shows a discrepancy and the data
cannot be trusted. Therefore, by adding such logical information regarding the
co-existing situations and signals, the system can perform a cross-validity check
and obtain another level of holistic awareness regarding the con�dence it can
invest in the observed data.

4 Impact Evaluation

In this section, we explain how we have taken advantage of the concepts discussed
in previous sections to enhance the reliability of our EWS. The details of our
experimental set-up and acquired results are as follows.

4.1 Experiments Set-up

EWS Table: Because human body functions have some variance from person to
person, there exist several di�erent EWS classi�cation tables from various studies
[2, 11, 12]. In this work, as shown in Table 1, we mainly use a similar table as
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Fig. 3. Calculation of the MEWS and EWS with the same data set. Body temperature
is manually set to 100◦C which is out of the absolute bounds. CCVU deactivated for
showing the di�erence.

in [2]. Whereas the original table showed only one possible score (= 2) for the
hypothermia, Brown et al. introduced in their work [13] four di�erent stages of
an accidental hypothermia (called HT I to HT IV). Following that approach, we
combined HT III and IV because HT III shows symptoms of weak- and HT IV
of no vital signals.

Patients' Data: The vital signal data were obtained from the experiments car-
ried out by Azimi et al. [2]. This dataset contained records of heart rate, systolic
blood pressure, respiratory rate, and oxygen saturation of a 35 years old healthy
male subject [2]. To evaluate the behavior of the system during a malfunction,
instead of the measured temperature, we introduced faulty temperature data.

Analysis Environment: For the analysis of the EWS, we used our hierarchi-
cal agent-based model toolbox. It is developed in C++, and its agents can be
con�gured in di�erent ways based on the requirements.

4.2 Con�dence Assessment and Results

Experiment 1: Absolute Bounds

The �rst validation step is to check if a measured value is in a plausible range.
For temperature for example, according to Omics International2, the tempera-
ture extremes in Europe are about −58◦C and 48◦C. Therefore, these values
can be used to de�ne the extreme lower and upper bounds of the temperature.
The measured value will be classi�ed as valid if it is in this range. Although this
boundary allows us to evaluate the behavior of system regarding this parameter,
we note that more accurate values will have to be chosen when the system is
used to monitor a patient's condition in real life.

Figure 3 shows the results of the con�dence validation's regarding the abso-
lute bounds. The body temperature was manually set to 100◦C which is out of
the absolute bounds. Therefore, the score of the temperature is 3 for the whole
time if it is not checked regarding its con�dence and 0 if it is checked.

Experiment 2: Change Rate

Here, we concentrate on the consistency of the data based on the maximum
plausible rates of change of an input signal. Regarding the body temperature, the

2 http://research.omicsgroup.org/index.php/List_of_weather_records, accessed on
July 2016
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Fig. 4. Calculation of the MEWS and EWS with the same data set. Body temperature
is manually set to 36◦C (score 0) and then decreased faster as the maximum allowed
rates of change is set. CCVU deactivated for showing the di�erence.

highest cooling rates obtained from persons that got completely buried under an
avalanche are between 6◦C/h to 9.4◦C/h [10, 14, 15]. Assuming that temperature
of a human body cannot increase faster than it can decrease, we set the maximum
possible rate of change to 10◦C/h (= 0.17◦C/min = 0.003◦C/s). The body
temperature will be considered as uncon�dent if the rate of change is higher
than the maximum allowed limit set. The input signal has to have approximately
the same value (previous value ± allowed rates of change) it had before it was
uncon�dent to get the con�dent status back3.

Figure 4 shows the results of the con�dence validation's regarding the change
rate. The body temperature was manually set to 36◦C which is equivalent to
score 0. After a short period, the temperature was decreased faster as the max-
imum allowed rate of change. We can see that in the absence of Con�dence
Validation Unit (CVU), we have false alarms which we do not observe in the en-
hanced system. If the CVU is deactivated, the body temperature score is unequal
to zero when the associated input gets lower than 35◦C. On the other hand, the
input signal is being considered as uncon�dent if the CVU is activated. Now to
get the new data tagged as con�dent again, regardless of its change, its absolute
value needs to go back to latest value tagged as con�dent ± allowed change.
For example, we set the temperature signal to an unchanging value between the
seconds 12 and 14 and although the input signal's rate of change is equal to zero,
it is still classi�ed as uncon�dent.

Experiment 3: Cross Con�dence Validation

Humans' vital signals such as heart rate, blood pressure, and respiratory rate
change with a body temperature when it is too high or too low [13, 16]. A mild
hypothermia can come along with symptoms such as tachycardia and tachyp-
nea, a medium hypothermia already shows signals of hypotonia and bradycardia.
Henceforth, the lower the body temperature the weaker the vital signals get; un-
til they �nally stop [17]. Regarding hyperthermia, the changes of vital signals
are not completely identical, but show a similar behavior; that is, general de-
terioration [16]. By implication, this means that body temperature cannot be
injurious if all the other vital signals have a good value.

3 We remark that to ascertain a signal's rate of change, a history is needed. As a
preparatory work, history has to get smoothed before calculating the rates of change,
otherwise, noise could a�ect this measurement.
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Fig. 5. Calculation of the MEWS and EWS with the same data set. Body temperature
is manually set to 32◦C (score 1) and the other input signals are time-displaced (one
after the other) to values where there are no score 0 present.

In contrast to the two steps before, the Cross Con�dence Validation Unit
(CCVU) needs already abstracted knowledge from di�erent sources. Therefore,
this validation is only possible at a higher hierarchical level. In our case, that is
the body agent which gets the abstracted data from the di�erent agents. The
CCVU was con�gured to consider the measured temperature as valid if more
than 50% of the vital signals (body temperature excluded) have a non-zero score
in accordance to that of the temperature.

Figure 5 shows results of the con�dence validation test. The body temper-
ature was manually set to 32◦C (score 1). The other input signals are time-
displaced to set their values to non-zero scores, one input after the other. It can
be seen that at 17s the MEWS is changing when more than 50% (3 out of 4) of
the input variables reach a non-zero score. We can see that if the temperature
sensor is included in the EWS calculation - when the CCVU is deactivated - we
have a higher EWS. Such a case, nonetheless, is physiologically not possible and
hence, the EWS should not be a�ected.

5 Conclusion

It is vital that the Early Warning Score is computed correctly at all times,
in spite of potential complications in the input data stream. Otherwise, there
could be false or missed alarms. In this paper, we show that it is possible to
check the con�dence of the input data with our modular solution based on self-
awareness. Using this concept, the reliability of EWS improved in all three cases
we experimented with. Thus, we demonstrated that using the data con�dence
validation system, the quality, and robustness of the EWS assessment can be
improved.

We used a hierarchical agent-based system which allows processing both the
data and their meta-data, such as the con�dence assessment. Due to its modular-
ity and a good match of the data processing �ow from lower to higher abstraction
levels, it is a promising architecture for EWS or similar systems.

In the future, we will extend our framework and add various features such
as the ability of learning. We assume that a learning unit could help choosing
better boundaries and values, based on the personalized behavior of the subject,
for con�dence evaluation and consequently the score calculation.



8 Maximilian Götzinger et al.

References

1. R. Morgan, F. Williams, and M. Wright, �An early warning scoring system for
detecting developing critical illness,� Clin Intensive Care, vol. 8, no. 2, p. 100,
1997.

2. I. Azimi, A. Anzanpour, A. M. Rahmani, P. Liljeberg, and H. Tenhunen, �Self-aware
early warning score system for iot-based personalized healthcare,� in Proceedings
of international conference on IoT and big data technologies for healthCare, 2016.

3. A. Jantsch and K. Tammemäe, �A framework of awareness for arti�cial subjects,�
in Hardware/Software Codesign and System Synthesis (CODES+ ISSS), 2014 In-
ternational Conference on. IEEE, 2014, pp. 1�3.

4. M. Götzinger, A. Rahmani, M. Pongratz, P. Liljeberg, A. Jantsch, and H. Ten-
hunen, �The role of self-awareness and hierarchical agents in resource management
for many-core systems,� in Many-core Systems-on-Chip (MCSoC), 2016.

5. N. TaheriNejad, A. Jantsch, and D. Pollreisz, �Comprehensive observation and its
role in self-awareness; an emotion recognition system example,� in the Federated
Conference on Computer Science and Information Systems (FedCSIS), Sep. 2016.

6. B. Rinner, L. Esterle, J. Simonjan, G. Nebehay, R. P�ugfelder, G. Fernan-
dez Dominguez, and P. R. Lewis, �Self-aware and self-expressive camera networks,�
Computer, vol. 48, no. 7, pp. 21�28, July 2015.

7. N. Dutt, A. Jantsch, and S. Sarma, �Toward smart embedded systems: A self-aware
system-on-chip (SoC) perspective,� ACM Transactions on Embedded Computing
Systems (TECS), vol. 15, no. 2, p. 22, 2016.

8. H. Ho�mann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal, �SEEC:
A framework for self-aware computing,� MIT, Tech. Rep. MIT-CSAIL-TR-2010-
049, October 2010.

9. J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schröder-
Preikschat, and G. Snelting, �Invasive computing: An overview,� in Multiprocessor
System-on-Chip. Springer, 2011, pp. 241�268.

10. M. Pasquier, P.-A. Moix, D. Delay, and O. Hugli, �Cooling rate of 9.4 ◦C in an
hour in an avalanche victim ,� Resuscitation, vol. 93, pp. e17 � e18, 2015.

11. R. W. Urban, M. Mumba, S. D. Martin, J. Glowicz, and D. J. Cipher, �Modi�ed
early warning system as a predictor for hospital admissions and previous visits in
emergency departments,� Advanced emergency nursing journal, vol. 37, no. 4, pp.
281�289, 2015.

12. J. Groarke, J. Gallagher, J. Stack, A. Aftab, C. Dwyer, R. McGovern, and
G. Courtney, �Use of an admission early warning score to predict patient morbid-
ity and mortality and treatment success,� Emergency Medicine Journal, vol. 25,
no. 12, pp. 803�806, 2008.

13. D. J. Brown, H. Brugger, J. Boyd, and P. Paal, �Accidental hypothermia,� New
England Journal of Medicine, vol. 367, no. 20, pp. 1930�1938, 2012.

14. G. Putzer, S. Schmid, P. Braun, H. Brugger, and P. Paal, �Cooling of six centigrades
in an hour during avalanche burial,� Resuscitation, vol. 81, pp. 1043 � 1044, 2010.

15. R. Oberhammer, W. Beikircher, C. Hörmann, I. Lorenz, R. Pycha, L. Adler-
Kastner, and H. Brugger, �Full recovery of an avalanche victim with profound
hypothermia and prolonged cardiac arrest treated by extracorporeal re-warming,�
Resuscitation, vol. 76, no. 3, pp. 474 � 480, 2008.

16. A. S. Fauci et al., Harrison's principles of internal medicine. McGraw-Hill, Medical
Publishing Division, 2008, vol. 2.

17. L. McCullough and S. Arora, �Diagnosis and treatment of hypothermia.� American
family physician, vol. 70, no. 12, pp. 2325�2332, 2004.


