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ABSTRACT 

This paper studies realization of relaxed memory consistency 

models in the network-on-chip based distributed shared memory 

(DSM) multi-core systems. Within DSM systems, memory 

consistency is a critical issue since it affects not only the 

performance but also the correctness of programs. We investigate 

the scalability of the relaxed consistency models (weak, release 

consistency) implemented by using transaction counters. Our 

experimental results compare the average and maximum code, 

synchronization and data latencies of the two consistency models 

for various network sizes with regular mesh topologies. The 

observed latencies rise for both the consistency models as the 

network size grows. However, the scaling behaviors are different. 

With the release consistency model these latencies grow 

significantly slower than with the weak consistency due to better 

optimization potential by means of overlapping, reordering and 

program order relaxations. The release consistency improves the 

performance by 15.6% and 26.5% on average in the code and 

consistency latencies over the weak consistency model for the 

specific application, as the system grows from single core to 64 

cores. The latency of data transactions grows 2.2 times faster on 

the average with a weak consistency model than with a release 

consistency model when the system scales from single core to 64 

cores. 

Categories and Subject Descriptors 

C.1.4 [Parallel Architectures]: Distributed architectures; 

B.3 [Memory Structures]: Shared Memory; 

General Terms 

Performance, Design 

Keywords 

Synchronization, Scalability, Memory consistency, Distributed 

shared memory. 

1. INTRODUCTION 
As a general trend, processor development has been shifted from 

single sequential processor to parallel multi-core systems.  Most 

computer companies for example, AMD, Intel, Sun, ARM and 

IBM have shifted their next generation designs to be based on 

multi-core systems [1, 2, 3, 4]. NoC based multi-core (McNoC) 

systems are promising solutions to the modern and future processor 

design challenges [5, 6]. In order to reuse the huge amount of 

legacy code and facilitate programming, distributed memories are 

preferable to be shared. Multi-threaded applications running on 

multi-core, shared memory platforms suffer from memory 

consistency problem. Various memory consistency models have 

been proposed as alternative solutions [7, 8, 9, 10]. The sequential 

consistency model does not allow performance optimizations due 

to the strictness in the program order. The strict ordering on 

memory operations is prohibitively expensive in distributed 

shared memory (DSM) systems. Consequently, a large number of 

relaxed ordering (weak ordering, release consistency) [11, 12, 13, 

14] have been developed to allow for compiler and hardware 

optimizations. The relaxed models enhance the system 

performance significantly at reasonable cost. The weak 

consistency model distinguishes shared memory operations as 

synchronization and data operations. Atomic synchronization 

operations on reserved shared variables (locks) protect shared data 

operations (critical section). The data operations can be reordered 

and overlapped in the weak consistency model. The release 

consistency model further differentiates synchronization operations 

as acquire and release operations. It permits additional reordering 

in the data operations of critical and non-critical sections as 

compared to the weak consistency model.  

We investigated scalability of the transaction counter based 

relaxed consistency models in the NoC based system. Both the 

consistency models used locks in the shared address space for the 

synchronization. We explored and compared code, 

synchronization and data latencies for the mesh networks with 

various sizes in the tests. The code latency comprises of 

synchronization and data latencies. The differences in the code and 

data latencies for both the consistency models are significant in 

large networks. It is due to the allowed additional reordering in the 

release consistency model. The synchronization latency increases 

exponentially with the network growth. It is due to waiting for 

acquiring dependent locks. The system performance is greatly 

suffered from synchronization latency in the large networks. 

Average and maximum code, synchronization and data latencies 

increase for both the consistency models in the larger networks. 

These latencies are reduced by the release consistency in 

comparison to the weak consistency model as a result of further 

relaxation in the program order. 

The rest of the paper is organized as follows. In the next section, 

we describe related work to the scalability analysis of 

synchronization in multi-core systems. In section 3, DSM based 

McNoC platform is discussed. In section 4, transaction counter 

based realization of weak consistency model while in section 5, 

transaction counter based realization of release consistency model 

has been focused. In section 6, simulation results and scalability 

analysis of both the consistency models in the NoC based system 

is described. Section 7 summarizes our contribution and future 

plan. 

2. RELATED WORK 
The NoC work has so far mainly focused on the architectural and 

modeling aspects [15, 16]. Very few researchers have worked on 

the scalability analysis of synchronization among cores in the NoC 

based multi-processor systems. Oreste Villa et al. [17] performed 
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quantitative analysis to understand how different topologies behave 

when dealing with different SW/HW barriers implementations in 

the NoC systems. Four different barriers were implemented and 

evaluated for a number of cores (from 4 to 128) and five different 

network topologies. Simple network topologies proved to be more 

efficient than the complex topologies. However, their work 

focused on off-chip main memory rather than on-chip DSM based 

systems. Petrini et al. [18] analyzed the scalability of HW and SW 

based barriers designed and implemented in a programmable 

network interface card for the quadrics interconnection networks. 

This work evaluated that the HW approach is more efficient than 

the SW approach in the presence of network contention. Without 

the network contention both algorithms can be used 

interchangeably on a flat-tree topology for systems of 64 to128 

nodes. Although this work is not related to the on-chip scalability 

analysis. Sarita V et al. [11] discussed memory consistency issues 

with an emphasis on the system optimizations they allow. They 

proposed to use a counter to realize weak memory consistency. 

The proposed counter keeps track of the outstanding data 

operations between two synchronization operations. The data 

operations may still be reordered and overlapped with respect to 

one another. Petro et al. [19] explored the reordering of 

synchronization and data operations due to diverse paths, routing 

scheme and physical location of the target in the network.  

3. DISTRIBUTED SHARED MEMORY 

BASED MULTI-CORE NOC PLATFORM 

3.1 McNoC platform   

Figure 1a shows a homogenous NoC based multi-core system 

having one type of nodes. The system is composed of 16 nodes 

interconnected via a packet-switched network.   
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Figure 1.   a) Homogeneous McNoC      b) PM node 

All the nodes are connected in a 2D mesh topology. Each node 

represents a typical processor-memory (PM) node in the platform.  

The structure of a PM node is given in Figure 1b. Each PM node 

consists of a processor, synchronization handler, network 

interface and local memory. The network interface performs 

packetization, de-packetization, arbitration, queuing and connects 

a PM node to the NoC. Routers use X-Y deterministic routing 

algorithm to rout the packets to proper destinations. 

3.2 Distributed shared memory (DSM) 

The platform uses distributed shared memories which are 

integrated with processors in the nodes. The local memory is 

partitioned into private and shared parts. The private memory can 

only be accessed by the local processor and it is physical. All of 

shared memories are visible to every node in the network and 

known as virtual memory. The virtual memory is organized as a 

distributed shared memory. All shared parts of local memories can 

logically form a single global memory address space. Two 

addressing schemes physical and logical (virtual) are adopted. 

Software developers can access DSM in a single virtual address 

space. 

The traditional centralized memory system has the performance, 

power and area bottleneck in on-chip systems [20]. The 

centralized UMA architecture not only limits the scalability but 

also become the hot spot on the chip. The DSM architecture is 

much preferred to single centralized memory. As the number of 

processor grows on the chip their memory requirements also 

grow. There is already a lot of memory on logic chip and there 

will be even more. Recent Tilera's 100 cores processor TILE-

Gx100 has 32MB of on-chip distributed caches. The distributed 

shared memory can be used for several purposes. One way is to 

use it for caches another way is to use most of it as a shared 

memory for sharing data among different cores. That may allow 

for a more efficient memory handling and management in the 

applications where memory needs are well known (e.g. 

multimedia). The DSM architecture will also assist the 3D 

integration process in the chip design where logic die with one or 

more DRAM memory dies stacked on top of it. The expected 

gains in the 3D integration process can be in terms of memory 

bandwidth, latency and power [21]. The 3D integration can reduce 

individual die size, improve chip yield, ease packaging and reduce 

power for main memory [22]. Such 3D memory stacks are 

critically dependent on the through-silicon-via (TSV) diameters 

and overhead. 

3.3 Synchronization handler 

Each PM node in the platform has a synchronization handler 

which maintains a set of synchronization variables and queues. It 

provides efficient synchronization support and mutual exclusion 

for synchronization operations. The synchronization handler is 

connected to the processor and network interface. It serves the 

synchronization requests from the local processor within the node 

and remote processors via the network. 

3.3.1 Structure 
The synchronization handler is mainly composed of a 

synchronization variable pool, scheduling logic, two physical 

channels and a crossroad as given in Figure 2. The 

synchronization variable pool has N locks one bit each. These 

locks have special reserved addresses in the shared address space 

known to the software developers. Programmers can use it 

through relevant programming language constructs. There are two 

access ports for these locks, one from the local processor and 

other from the network. Two physical channels can receive and 

respond simultaneously to two synchronization requests from the 

local processor and the network. Each physical channel owns a 

buffer queue of depth Q. The crossroad dispatches the 

synchronization requests to the proper physical channels. The 

scheduling logic controls the crossroad to determine directions of 

synchronization requests. It organizes the two physical channels 

in to N virtual channels logically. It also monitors lock„s status, 

maintains the virtual channels and performs correct actions on the 

coming synchronization requests. It handles the lock requests in 

an efficient way to reduce the contention, overhead and improve 
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the response time. To access a shared lock in a sequential order, 

the synchronization handler architecture uses logical virtual 

channels per lock to maintain synchronization requests over the 

same lock. 
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Figure 2.  Structure of Synchronization handler  

 

3.3.2 Operation mechanism 

The synchronization requests come from the local processor and 

the network, go through the virtual channels and finally enter the 

synchronization variable pool. The synchronization request may 

be either lock acquire or release operation. The lock release 

request always goes along the bypass path, while the lock acquire 

request may go along the bypass path only when the related 

virtual channel is empty. The lock acquires request changes lock 

status from unlocked to locked and the lock release request 

changes the status from locked to unlocked. The scheduling logic 

monitors the status of all the locks and performs actions 

accordingly. The synchronization message size is 80 bits and has 

six fields, i.e., message type, source node number, destination 

node number, transfer type (reserved bit), address and data. The 

synchronization request may be dependent (to the same lock) or 

independent (to different locks). We consider two situations 

accordingly. 

3.3.2.1 Two simultaneous independent requests  

If the requested lock's status is unlocked then the lock acquire 

request goes along the bypass path to access the synchronization 

variable pool directly. The status of the lock is changed to locked. 

The lock acquire acknowledgement with the success status is sent 

back to the source node. If the requested lock is in the locked 

status, and the buffer queues in the physical channels are full, then 

the lock acquire acknowledgement with fail status is sent back to 

the source node. If the buffer queues are not full, the request is 

buffered in the related virtual channel until the lock is released. 

When a lock release request comes and there are one or more lock 

acquire requests buffered in the virtual channel which is related to 

the lock to-be-released. The lock release request does not need to 

access the synchronization variable pool but the first lock acquire 

request in the virtual channel is forwarded into the 

synchronization variable pool. The related lock acquire 

acknowledgement with the success status is sent back. The lock's 

status is still locked.  If the related virtual channel is empty the 

lock release request goes along the bypass path to access the 

synchronization variable pool and changes the lock's status to be 

unlocked. 

3.3.2.2 Two simultaneous dependent requests   
If the requested lock status is unlocked and one of the two 

dependent lock acquire requests is selected to access the 

synchronization variable pool through the bypass path directly. 

The lock acquire acknowledgement with the success status is sent 

back to the relevant node. If the buffer queues are full, the lock 

acquire acknowledgement with the fail status is sent back to 

which node the other request is from. If not, the other is buffered 

in the related virtual channel. Meanwhile, the lock's status is 

changed into locked. If the requested lock is on its locked status, 

and the buffer queues are full, two lock acquire acknowledgement 

with fail status are sent back to the requesting nodes. If there is 

only one empty item in the buffer queues, one request is buffered 

in it and a lock acquire acknowledgement with fail status is sent 

back to the other node. If there are at least two empty items in the 

buffer queues, the two requests are buffered in the related virtual 

channel. When the dependent lock acquire request and lock 

release request come simultaneously, and there is one or more 

lock acquire requests buffered in the related virtual channel, then 

the lock release request does not access the synchronization 

variable pool. The first lock acquire request in the virtual channel 

is forwarded into the synchronization variable pool and the related 

lock acquire acknowledgement with the success status is sent 

back. While the coming lock acquire request goes into the virtual 

channel. Therefore, the lock's status is still locked. If the related 

virtual channel is empty and two requests comes, the lock release 

request does not need to access the synchronization variable pool 

while the lock acquire request goes along the bypass path to 

access the synchronization variable pool. The lock's status is still 

locked. 

4. TRANSACTION COUNTER BASED 

WEAK CONSISTENCY  

4.1 McNoC platform for weak consistency 

Figure 3 shows our McNoC platform for the weak consistency 

model. It is identical to the platform discussed earlier except for 

the transaction counter which is used to realize the weak 

consistency model. 
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Figure 3.  NoC platform for weak memory consistency 
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4.2 Weak memory consistency 

The sequential consistency requires strict program order for 

individual processor and sequential order among multi-processor  

in the parallel system. It enforces the global order on each 

individual shared memory operation pair according to the program 

order. It does not allow performance optimizations in the hardware 

(cache, interconnection network) and software (compiler 

reordering, register allocation) in multi-processor systems [7]. 

Relaxed memory consistency models (weak consistency, release 

consistency) permit such optimizations. They relax the program 

order and enhance the system performance as compared to the 

sequential consistency model. The weak consistency model 

classifies shared memory operations as synchronization and data 

operations. It enforces the following global orders on shared 

memory operations: 

 Synchronization to data 

 Data to synchronization 

 Synchronization to synchronization 

 

The data operations (1, 3, 2) before, after and between the 

synchronization operations can be reordered as shown in Figure 4a. 

All previous data operations must be completed before the issuance 

of synchronization operation and vice versa. The global orders 

need to be enforced for the weak consistency model is given in 

Figure 4b. We illustrate the transaction counter based technique for 

the enforcement of the global orders in the upcoming section. 
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Figure 4.  a) Weak Ordering    b) Global orders to enforce 

4.3 Realization of weak memory consistency 

We adopted the transaction counter based approach [7] to realize 

the weak memory consistency model in the McNoC system. 

Transaction counter in each node keeps track of outstanding data 

operations. The counter is incremented and decremented by the 

issuance and completion of data operations correspondingly. It is 

not affected by the synchronization operations. The counter zero 

value indicates completion of all previously issued data operations. 

Synchronization operations are not issued until the transaction 

counter becomes zero. Figure 5 illustrates shared memory 

operations initiated by the processor in each node. After virtual to 

physical address translation shared memory operation is checked 

whether it is in the local or remote node. Local shared memory 

operations are accomplished within the node. Messages are sent to 

the remote node for the remote shared memory accesses. Shared 

memory operations are classified into synchronization and data 

operations. Local data operations in the critical section of code are 

issued to the shared locations (1) in the same node. A data 

operation may be memory read (load) or write (store) operation 

and is completed by either local data return or write 

acknowledgment respectively (5-1). Local data operations issued 

to the shared locations (2) in the non-critical section of code are 

also completed locally within the node either by local data returns 

or write acknowledgments (5-2). Local synchronization operations 

are issued (3) to the local memory mapped synchronization handler 

and are completed by synchronization acknowledgments (5-3). For 

remote memory operations (data, synchronization) message 

passing (4) is carried out to the remote node in the network. 

Remote shared data operations in the critical section are issued to 

the remote shared locations (6). Remote data operations are 

completed either by the remote data returns or write 

acknowledgments (9-6). Similarly, (7) and (9-7) are for the remote 

data operations in the non-critical section of code. Remote 

synchronization operations (8, 9-8) are issued to the remote 

memory mapped synchronization handler. 
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Figure 5. Transaction counter based weak consistency  

Overall, transaction counter in each node is incremented with the 

issuance of local data operations (1, 2) and remote data operations 

(6, 7). It is decremented by the completion of previously issued 

local data operations (5-1, 5-2) and remote data operations (9-6, 9-

7). It is not affected by the local synchronization operations (3, 5-

3) and remote synchronization operations (8, 9-8). 

5. TRANSACTION COUNTER BASED 

RELEASE CONSISTENCY  

5.1 McNoC platform for release consistency  

The NoC based multi-core platform for the release consistency 

model is similar to the weak consistency platform except for the 

number of transaction counters, requesting messages, response 

messages and the number of commands. Two transaction counters 

are used to realize the release consistency model in the McNoC 

platform. 

5.2 Release memory consistency 

The release consistency is a refinement of the weak ordering. It 

allows further overlapping, reordering and relaxation in the 
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program order. It further distinguishes synchronization operations 

as acquire and release operations. An acquire operation must be 

performed before the issuance of any data operation in the critical 

section (CS) and in the non-critical section (NCS) after it. All the 

data operations in the critical section and non-critical section prior 

to the release operation must be completed before the issuance of 

release operation. The release consistency model enforces the 

following global orders on shared memory operations as shown in 

Figure 6:  

 Acquire to data  

 Data to release  

 Acquire to release 

 Release to acquire 
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Figure 6. Global orders enforcement for release consistency 

Figure 7 demonstrates that (RW2-CS, RW4-CS) and (RW1-NCS, 

RW3-NCS, RW5-NCS) are data operations in the critical and non-

critical section of code. Acquire operation (ACQUIRE-L1) must be 

performed before any data operation in the critical section (RW2-

CS) and also before the non-critical section (RW3-NCS) after it. 

The serial order violation between acquire operation to the 

following data operations may change the system behavior. 
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Figure 7.  a) Weak Ordering            b) Release Consistency    

All the data operations in the critical section (RW2-CS) and non-

critical section (RW1-NCS) before the previous acquire operation 

must be completed before the issuance of release operation 

(RELEASE-L1). The serial order violation between the preceding 

data operations and release operation may also change the system 

behavior. The reordering between the release operation and 

previous critical section data operations is forbidden, i.e., exit from 

critical section in the middle. The reordering between release 

operation and non-critical section data operations violate the 

program correctness. The program order relaxation in the release 

consistency model must ensure the overall program correctness 

according to the global orders enforcement. After the completion 

of acquire operation (ACQUIRE-L1) all the data operations in 

critical section (RW2-CS) and non-critical section after release 

operations (RW3-NCS) can be reordered. The data operations 

(RW3-NCS) in the non-critical section can be overlapped with the 

data operations (RW2-CS) in the critical section. Also, data 

operations in the critical section (RW4-CS) before the release 

operation (RELEASE-L2) and data operations in the non-critical 

section (RW3-NCS) before the previous acquire operation can be 

reordered. Ideally, non-critical section data operations (RW3-NCS) 

should overlap with the data operations in just preceding and 

following critical sections (RW2-CS, RW4-CS). The program 

order can be relaxed ideally for the code segment from acquire 

operation (ACQUIRE-L1) of one lock to the release operation of 

just next lock (RELEASE-L2). But practically, enforcement of the 

global order on shared memory operations for the release 

consistency model squeeze the relaxation window to the two 

adjacent release operations. The preceding non-critical section data 

operations must be completed before the issuance of the next 

release operation to ensure the program correctness. The data 

operations (RW3-NCS) in the non-critical section can practically 

be reordered only with the data operations in the following critical 

section (RW4-CS) and not with the preceding critical section data 

operations (RW2-CS). The data operations (RW2-CS) in the 

critical section can be reordered with the preceding non-critical 

section data operations (RW1-NCS). Besides ordering between 

data and synchronization operations (acquire-data, data-release) 

ordering among synchronization operations (acquire-release, 

release-acquire) must also be ensured. An acquire operation must 

be completed before a release operation on the same lock. 

Otherwise, a critical section will be entered without a lock and 

release of a lock is tried that is not yet locked. The release 

operation on the previous lock must be completed before the 

issuance of acquire operation of the next lock. Otherwise, two 

different critical sections will be entered simultaneously under the 

same lock which is illegal and may leads to the system failure. To 

enforce all the requisite serial orders, transaction counters based 

realization of the release consistency model is illustrated. The 

counters avoid all the possible interference problems between the 

synchronization and data operations. 

5.3 Realization of release memory consistency 

To realize the release memory consistency model in the multi-core 

system, transaction counters are used. We implemented two 

transaction counters in each node for two different types of data 

operations. Transaction counter1 (TC1) keeps track of outstanding 

data operations issued in the non-critical section of code. 

Transaction counter2 (TC2) keeps track of outstanding data 

operations issued within the critical sections of code. Each counter 

is incremented and decremented by the issuance and completion of 

relevant data operations correspondingly. Both the counters are not 

affected by acquire and release synchronization operations. 

“TC1=0” indicates the completion of all the previously issued data 

operations in the non-critical section of code. “TC2=0” indicates 

the completion of all the previously issued data operations in the 

critical section of code. Acquire and release synchronization 

operations are not issued until the relevant transaction counters 

become zero. The local data operations in the critical and non-

critical sections are issued to the shared locations (1, 2) within the 

node as given in Figure 8. These data operations are completed 

locally in the same node. A data operation may be completed by 
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either local data return or write acknowledgment, respectively (6-1, 

6-2).  Acquire operations are not issued to the local or remote 

synchronization handlers until TC2 in the local node becomes zero. 

Release operations are not issued to the local or remote 

synchronization handlers until both the counters become zero in 

the local node. Local acquire synchronization operation is issued 

(3) to the local synchronization handler and is completed by 

synchronization acknowledgment (6-3). Local release 

synchronization operation is also issued (4) to the local 

synchronization handler. 
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Figure 8.  Transaction counter based release consistency  

For remote memory accesses message passing (5) is carried out to 

the remote node in the network. Remote shared data operations in 

the critical section are issued (7) to the remote shared locations. 

Remote shared data operations in the non-critical section are issued 

(8) to the remote shared locations and are completed either by the 

remote data returns or write acknowledgments (11-7, 11-8). The 

issuance and completion of remote data operations affect the 

transaction counters in the local node. Remote synchronization 

operations (acquire, release) are issued to the remote 

synchronization handler (9, 10). Overall, TC1 in each node is 

incremented with the issuance of local and remote data operations 

in the non-critical section (2, 8). It is decremented by the 

completion of previously issued local and remote data operations 

in the non-critical section (6-2, 11-8). TC2 in each node is 

incremented with the issuance of local and remote data operations 

in the critical section (1, 7). It is decremented by the completion of 

previously issued local and remote data operations in the critical 

section (6-1, 11-7). Both the transaction counters are not affected 

by the local synchronization operations (3, 4, 6-3) and remote 

synchronization operations (9, 10, 11-10). 

6. Experiments and results 
We analyzed scalability of the transaction counter based relaxed 

consistency models in the McNoC system. Tests were performed 

for various network sizes. We investigated the effect of network 

size on the code, synchronization and data latencies. Average and 

maximum latencies were compared for the weak and release 

consistency models with increasing size of the McNoC system. In 

the experimental platforms for both the consistency models 

processor in each node was replaced by the stimulus to initiate the 

data and synchronization operations. The synchronization handler 

in both platforms has 256 locks in the shared address space. 

Transaction counters enforced the required global orders for the 

relaxed consistency models. The NoC supports both 2D mesh and 

torus topologies but we considered regular mesh topologies 

networks in the tests. Priority based round-robin arbitration and 

X-Y deterministic routing were used. Experiments were 

performed with the simple and short code running on each node in 

the platform. The pseudo-code is given in Figure 9. The code has 

data and synchronization operations. 

●●●●●●

// NON-CRITICAL SECTION

STIMULUS (MEMORY_WRITE, ADDRESS, DATA);         // REMOTE SHARED WRITE

STIMULUS (MEMORY_READ, ADDRESS, DATA=0);       // REMOTE SHARED READ

// LOCK ACQUIRE

STIMULUS (LOCK_ACQUIRE, ADDRESS, DATA=0);       // REMOTE LOCK ACQUIRE

// CRITICAL SECTION

STIMULUS (MEMORY_WRITE, ADDRESS, DATA);         // REMOTE SHARED WRITE

STIMULUS (MEMORY_READ, ADDRESS, DATA=0);       // REMOTE SHARED READ

// LOCK RELEASE

STIMULUS (LOCK_RELEASE, ADDRESS, DATA=0);       // REMOTE LOCK RELEASE

// NON-CRITICAL SECTION

STIMULUS (MEMORY_WRITE, ADDRESS, DATA);         // REMOTE SHARED WRITE

STIMULUS (MEMORY_READ, ADDRESS, DATA=0);       // REMOTE SHARED READ

●●●●●●

Figure 9.  Pseudo-code running on each node  

The lock protects the shared memory access in the critical section 

as shown in Figure 10. Both the lock and critical section can be in 

any node of the network. For example the critical section in the CS 

node is protected by the lock maintained in the SYNC node. Every 

node sends synchronization (acquire, release) request to the SYNC 

node. On successful lock acquire in the SYNC node, it accesses the 

shared memory location in the CS node exclusively. After the 

critical section execution, the lock is released for other waiting 

acquire synchronization requests. 
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Figure 10.  Synchronization and data requests  

6.1 Code latency 

The average and maximum code latencies for different size 

networks are shown in Figure 11. The code latency increases for 

both the consistency models as the network grows from single 

core to 64 cores. Average code latency for the release consistency 
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model in the 8x8 network is approximately 101.1 times of the 

single core, whereas for the weak consistency model it is 113.8 

times respectively. The difference between the observed code 

latencies become obvious as the network size grows. It is due to 

the further overlapping and program order relaxation in the release 

consistency as compared to the weak consistency model. 

 

Figure 11. Code latency    

6.2 Consistency latency 

The consistency latency is the code latency without the network 

latency and synchronization wait time. The average and maximum 

consistency latencies observed in the experiments for various size 

networks are shown in Figure 12. It increases as the network size 

increases for both the consistency models. Average consistency 

latency for the weak consistency model in the 8x8 network is 

approximately 8.2 times of the single core, whereas for the release 

consistency model it is 7 times. The difference between the 

observed consistency latencies becomes obvious in the large 

networks. It is due to the increasing overlapping, reordering and 

program order relaxation in the release consistency as compared to 

the weak consistency model. 

 

Figure 12. Consistency latency    

6.3 Synchronization latency 

The code latency comprises of synchronization and data latencies. 

Average and maximum synchronization latencies were compared 

for both the consistency models with increasing network size as 

given in Figure 13. Overall, there is no big difference in the   

synchronization latencies for both the consistency models as they 

use the same synchronization handler and network. The difference 

in the synchronization latencies is mainly due to the simultaneous 

issuance of synchronization requests in the release consistency 

model as initially TC2 is zero. While these requests are issued at 

different time in the weak consistency model as the completion 

time of the previous data operations in the non-critical section for 

all the nodes are different. Average synchronization latency for 

the weak consistency model in the 8x8 network is approximately 

964 times of the single core, while for the release consistency 

model it is 1077 times. Average and maximum synchronization 

latencies increases exponentially for both the consistency models 

as the network size grows. The synchronization latency limits the 

system performance in large networks. 

 

Figure 13. Synchronization latency    

6.4 Data latency 

The main performance gain of the release consistency model over 

the weak consistency model is the decrease in data latency. 

Average and maximum data latencies increases for both the 

consistency models with increasing network size as shown in 

Figure 14. For larger network the difference between the average 

and maximum data latencies become evident. Data latencies 

increase exponentially for both the consistency models with the 

increase in network size. Average data latency in the 8x8 network 

for the weak consistency model is approximately 17.11 times of 

the single core and for release consistency model it is 5.5 times. 

The difference in the average data latencies for both the 

consistency models in the 8x8 network is the highest (110 cycles). 

A large difference in the data latencies is observed in very large 

networks. The data latency decreases in the release consistency 

model as a result of reordering between non-critical section and 

next critical section of code. 

 

Figure 14. Data latency 

7. CONCLUSION AND FUTURE WORK 

We analyze the scalability of transaction counter based relaxed 

consistency models in the NoC based MPSoC platforms. We 
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observe that a single transaction counter can enforce the required 

global orders needed for the weak consistency model. Also, two 

transaction counters ensure the serial order enforcement needed 

for the release consistency model. Transaction counter based 

realization of the relaxed consistency models avoids the possible 

interference problem between the data and synchronization 

operations. In the experimental platforms, we consider a mesh 

network for the weak and release consistency models. All the 

nodes synchronized over the same lock in a particular node. 

Average and maximum code, synchronization and data latencies 

increase significantly for both weak and release consistency 

models as the network size scales. The experimental results show 

that the release consistency model scales nicely in comparison to 

the weak consistency model. The synchronization latency affects 

the efficiency of memory consistency in very large networks. In 

the future, we will study the implementation overhead and power 

analysis of various memory consistency models in the NoC based 

DSM systems. 
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