
Scalability of Relaxed Consistency Models in NoC based
Multicore Architectures

Abdul Naeem1, Xiaowen Chen1, 2, Zhonghai Lu1 and Axel Jantsch1

1
Department Electronic Systems, School of ICT, Royal Institute of Technology (KTH), Stockholm, Sweden

2
Institute of Microelectronics and Microprocessor, School of CS, NUDT, Changsha, China

{abduln, xiaowenc, zhonghai, axel}@kth.se

ABSTRACT

This paper studies realization of relaxed memory consistency

models in the network-on-chip based distributed shared memory

(DSM) multi-core systems. Within DSM systems, memory

consistency is a critical issue since it affects not only the

performance but also the correctness of programs. We investigate

the scalability of the relaxed consistency models (weak, release

consistency) implemented by using transaction counters. Our

experimental results compare the average and maximum code,

synchronization and data latencies of the two consistency models

for various network sizes with regular mesh topologies. The

observed latencies rise for both the consistency models as the

network size grows. However, the scaling behaviors are different.

With the release consistency model these latencies grow

significantly slower than with the weak consistency due to better

optimization potential by means of overlapping, reordering and

program order relaxations. The release consistency improves the

performance by 15.6% and 26.5% on average in the code and

consistency latencies over the weak consistency model for the

specific application, as the system grows from single core to 64

cores. The latency of data transactions grows 2.2 times faster on

the average with a weak consistency model than with a release

consistency model when the system scales from single core to 64

cores.

Categories and Subject Descriptors

C.1.4 [Parallel Architectures]: Distributed architectures;

B.3 [Memory Structures]: Shared Memory;

General Terms

Performance, Design

Keywords

Synchronization, Scalability, Memory consistency, Distributed

shared memory.

1. INTRODUCTION
As a general trend, processor development has been shifted from

single sequential processor to parallel multi-core systems. Most

computer companies for example, AMD, Intel, Sun, ARM and

IBM have shifted their next generation designs to be based on

multi-core systems [1, 2, 3, 4]. NoC based multi-core (McNoC)

systems are promising solutions to the modern and future processor

design challenges [5, 6]. In order to reuse the huge amount of

legacy code and facilitate programming, distributed memories are

preferable to be shared. Multi-threaded applications running on

multi-core, shared memory platforms suffer from memory

consistency problem. Various memory consistency models have

been proposed as alternative solutions [7, 8, 9, 10]. The sequential

consistency model does not allow performance optimizations due

to the strictness in the program order. The strict ordering on

memory operations is prohibitively expensive in distributed

shared memory (DSM) systems. Consequently, a large number of

relaxed ordering (weak ordering, release consistency) [11, 12, 13,

14] have been developed to allow for compiler and hardware

optimizations. The relaxed models enhance the system

performance significantly at reasonable cost. The weak

consistency model distinguishes shared memory operations as

synchronization and data operations. Atomic synchronization

operations on reserved shared variables (locks) protect shared data

operations (critical section). The data operations can be reordered

and overlapped in the weak consistency model. The release

consistency model further differentiates synchronization operations

as acquire and release operations. It permits additional reordering

in the data operations of critical and non-critical sections as

compared to the weak consistency model.

We investigated scalability of the transaction counter based

relaxed consistency models in the NoC based system. Both the

consistency models used locks in the shared address space for the

synchronization. We explored and compared code,

synchronization and data latencies for the mesh networks with

various sizes in the tests. The code latency comprises of

synchronization and data latencies. The differences in the code and

data latencies for both the consistency models are significant in

large networks. It is due to the allowed additional reordering in the

release consistency model. The synchronization latency increases

exponentially with the network growth. It is due to waiting for

acquiring dependent locks. The system performance is greatly

suffered from synchronization latency in the large networks.

Average and maximum code, synchronization and data latencies

increase for both the consistency models in the larger networks.

These latencies are reduced by the release consistency in

comparison to the weak consistency model as a result of further

relaxation in the program order.

The rest of the paper is organized as follows. In the next section,

we describe related work to the scalability analysis of

synchronization in multi-core systems. In section 3, DSM based

McNoC platform is discussed. In section 4, transaction counter

based realization of weak consistency model while in section 5,

transaction counter based realization of release consistency model

has been focused. In section 6, simulation results and scalability

analysis of both the consistency models in the NoC based system

is described. Section 7 summarizes our contribution and future

plan.

2. RELATED WORK
The NoC work has so far mainly focused on the architectural and

modeling aspects [15, 16]. Very few researchers have worked on

the scalability analysis of synchronization among cores in the NoC

based multi-processor systems. Oreste Villa et al. [17] performed

ACM SIGARCH Computer Architecture News 8 Vol. 37, No. 5, December 2009

http://portal.acm.org/results.cfm?query=CCS%3AC14&querydisp=CCS%3AC14&termshow=matchboolean&coll=portal&dl=GUIDE&CFID=68184399&CFTOKEN=63774778
http://portal.acm.org/results.cfm?query=Subject%3A%22Distributed%20architectures%22&querydisp=Subject%3A%22Distributed%20architectures%22&termshow=matchboolean&coll=portal&dl=GUIDE&CFID=68184399&CFTOKEN=63774778

quantitative analysis to understand how different topologies behave

when dealing with different SW/HW barriers implementations in

the NoC systems. Four different barriers were implemented and

evaluated for a number of cores (from 4 to 128) and five different

network topologies. Simple network topologies proved to be more

efficient than the complex topologies. However, their work

focused on off-chip main memory rather than on-chip DSM based

systems. Petrini et al. [18] analyzed the scalability of HW and SW

based barriers designed and implemented in a programmable

network interface card for the quadrics interconnection networks.

This work evaluated that the HW approach is more efficient than

the SW approach in the presence of network contention. Without

the network contention both algorithms can be used

interchangeably on a flat-tree topology for systems of 64 to128

nodes. Although this work is not related to the on-chip scalability

analysis. Sarita V et al. [11] discussed memory consistency issues

with an emphasis on the system optimizations they allow. They

proposed to use a counter to realize weak memory consistency.

The proposed counter keeps track of the outstanding data

operations between two synchronization operations. The data

operations may still be reordered and overlapped with respect to

one another. Petro et al. [19] explored the reordering of

synchronization and data operations due to diverse paths, routing

scheme and physical location of the target in the network.

3. DISTRIBUTED SHARED MEMORY

BASED MULTI-CORE NOC PLATFORM

3.1 McNoC platform

Figure 1a shows a homogenous NoC based multi-core system

having one type of nodes. The system is composed of 16 nodes

interconnected via a packet-switched network.

Sync.

Handler

Processor

Interface

keep_going

SH

SRAM

Module

Transaction

private

Network

Interface

P
o

rt
 A

P
o

rt
 B

local

MemAcc.

Sync.

remote

shared

Router

(V2P translation)

PM PM PM

PM PM

PM PM PM

PM

PM PM

PM

PM

PM

PMPM

PM node

M
e

m
A

c
c
.

S
y
n

c
.

Figure 1. a) Homogeneous McNoC b) PM node

All the nodes are connected in a 2D mesh topology. Each node

represents a typical processor-memory (PM) node in the platform.

The structure of a PM node is given in Figure 1b. Each PM node

consists of a processor, synchronization handler, network

interface and local memory. The network interface performs

packetization, de-packetization, arbitration, queuing and connects

a PM node to the NoC. Routers use X-Y deterministic routing

algorithm to rout the packets to proper destinations.

3.2 Distributed shared memory (DSM)

The platform uses distributed shared memories which are

integrated with processors in the nodes. The local memory is

partitioned into private and shared parts. The private memory can

only be accessed by the local processor and it is physical. All of

shared memories are visible to every node in the network and

known as virtual memory. The virtual memory is organized as a

distributed shared memory. All shared parts of local memories can

logically form a single global memory address space. Two

addressing schemes physical and logical (virtual) are adopted.

Software developers can access DSM in a single virtual address

space.

The traditional centralized memory system has the performance,

power and area bottleneck in on-chip systems [20]. The

centralized UMA architecture not only limits the scalability but

also become the hot spot on the chip. The DSM architecture is

much preferred to single centralized memory. As the number of

processor grows on the chip their memory requirements also

grow. There is already a lot of memory on logic chip and there

will be even more. Recent Tilera's 100 cores processor TILE-

Gx100 has 32MB of on-chip distributed caches. The distributed

shared memory can be used for several purposes. One way is to

use it for caches another way is to use most of it as a shared

memory for sharing data among different cores. That may allow

for a more efficient memory handling and management in the

applications where memory needs are well known (e.g.

multimedia). The DSM architecture will also assist the 3D

integration process in the chip design where logic die with one or

more DRAM memory dies stacked on top of it. The expected

gains in the 3D integration process can be in terms of memory

bandwidth, latency and power [21]. The 3D integration can reduce

individual die size, improve chip yield, ease packaging and reduce

power for main memory [22]. Such 3D memory stacks are

critically dependent on the through-silicon-via (TSV) diameters

and overhead.

3.3 Synchronization handler

Each PM node in the platform has a synchronization handler

which maintains a set of synchronization variables and queues. It

provides efficient synchronization support and mutual exclusion

for synchronization operations. The synchronization handler is

connected to the processor and network interface. It serves the

synchronization requests from the local processor within the node

and remote processors via the network.

3.3.1 Structure
The synchronization handler is mainly composed of a

synchronization variable pool, scheduling logic, two physical

channels and a crossroad as given in Figure 2. The

synchronization variable pool has N locks one bit each. These

locks have special reserved addresses in the shared address space

known to the software developers. Programmers can use it

through relevant programming language constructs. There are two

access ports for these locks, one from the local processor and

other from the network. Two physical channels can receive and

respond simultaneously to two synchronization requests from the

local processor and the network. Each physical channel owns a

buffer queue of depth Q. The crossroad dispatches the

synchronization requests to the proper physical channels. The

scheduling logic controls the crossroad to determine directions of

synchronization requests. It organizes the two physical channels

in to N virtual channels logically. It also monitors lock„s status,

maintains the virtual channels and performs correct actions on the

coming synchronization requests. It handles the lock requests in

an efficient way to reduce the contention, overhead and improve

ACM SIGARCH Computer Architecture News 9 Vol. 37, No. 5, December 2009

the response time. To access a shared lock in a sequential order,

the synchronization handler architecture uses logical virtual

channels per lock to maintain synchronization requests over the

same lock.

Synchronization Variable Pool
(N locks)

Local Processor Network

Scheduling

Logic

control

signals

} }

feedback feedback

Sync. Handler

Crossroad
P

h
y
s
ic

a
l
C

h
a

n
n

e
l
2

. .
 .

?
b

y
p

a
s
s

P
h

y
s
ic

a
l
C

h
a

n
n

e
l
1

.
 .

 . ?

b
y
p

a
s
s

Variable

status

request Brequest A

Figure 2. Structure of Synchronization handler

3.3.2 Operation mechanism

The synchronization requests come from the local processor and

the network, go through the virtual channels and finally enter the

synchronization variable pool. The synchronization request may

be either lock acquire or release operation. The lock release

request always goes along the bypass path, while the lock acquire

request may go along the bypass path only when the related

virtual channel is empty. The lock acquires request changes lock

status from unlocked to locked and the lock release request

changes the status from locked to unlocked. The scheduling logic

monitors the status of all the locks and performs actions

accordingly. The synchronization message size is 80 bits and has

six fields, i.e., message type, source node number, destination

node number, transfer type (reserved bit), address and data. The

synchronization request may be dependent (to the same lock) or

independent (to different locks). We consider two situations

accordingly.

3.3.2.1 Two simultaneous independent requests

If the requested lock's status is unlocked then the lock acquire

request goes along the bypass path to access the synchronization

variable pool directly. The status of the lock is changed to locked.

The lock acquire acknowledgement with the success status is sent

back to the source node. If the requested lock is in the locked

status, and the buffer queues in the physical channels are full, then

the lock acquire acknowledgement with fail status is sent back to

the source node. If the buffer queues are not full, the request is

buffered in the related virtual channel until the lock is released.

When a lock release request comes and there are one or more lock

acquire requests buffered in the virtual channel which is related to

the lock to-be-released. The lock release request does not need to

access the synchronization variable pool but the first lock acquire

request in the virtual channel is forwarded into the

synchronization variable pool. The related lock acquire

acknowledgement with the success status is sent back. The lock's

status is still locked. If the related virtual channel is empty the

lock release request goes along the bypass path to access the

synchronization variable pool and changes the lock's status to be

unlocked.

3.3.2.2 Two simultaneous dependent requests
If the requested lock status is unlocked and one of the two

dependent lock acquire requests is selected to access the

synchronization variable pool through the bypass path directly.

The lock acquire acknowledgement with the success status is sent

back to the relevant node. If the buffer queues are full, the lock

acquire acknowledgement with the fail status is sent back to

which node the other request is from. If not, the other is buffered

in the related virtual channel. Meanwhile, the lock's status is

changed into locked. If the requested lock is on its locked status,

and the buffer queues are full, two lock acquire acknowledgement

with fail status are sent back to the requesting nodes. If there is

only one empty item in the buffer queues, one request is buffered

in it and a lock acquire acknowledgement with fail status is sent

back to the other node. If there are at least two empty items in the

buffer queues, the two requests are buffered in the related virtual

channel. When the dependent lock acquire request and lock

release request come simultaneously, and there is one or more

lock acquire requests buffered in the related virtual channel, then

the lock release request does not access the synchronization

variable pool. The first lock acquire request in the virtual channel

is forwarded into the synchronization variable pool and the related

lock acquire acknowledgement with the success status is sent

back. While the coming lock acquire request goes into the virtual

channel. Therefore, the lock's status is still locked. If the related

virtual channel is empty and two requests comes, the lock release

request does not need to access the synchronization variable pool

while the lock acquire request goes along the bypass path to

access the synchronization variable pool. The lock's status is still

locked.

4. TRANSACTION COUNTER BASED

WEAK CONSISTENCY

4.1 McNoC platform for weak consistency

Figure 3 shows our McNoC platform for the weak consistency

model. It is identical to the platform discussed earlier except for

the transaction counter which is used to realize the weak

consistency model.

Sync.

Handler

Processor

Interface

keep_going

SH

SRAM

Module

Transaction

private

Network

Interface

P
o

rt
 A

P
o

rt
 B

local

MemAcc.

Sync.

remote

shared

Router

(V2P translation)

PM PM PM

PM PM

PM PM PM

PM

PM PM

PM

PM

PM

PMPM

Transaction Counter

PM node

M
e

m
A

c
c
.

S
y
n

c
.

Figure 3. NoC platform for weak memory consistency

ACM SIGARCH Computer Architecture News 10 Vol. 37, No. 5, December 2009

4.2 Weak memory consistency

The sequential consistency requires strict program order for

individual processor and sequential order among multi-processor

in the parallel system. It enforces the global order on each

individual shared memory operation pair according to the program

order. It does not allow performance optimizations in the hardware

(cache, interconnection network) and software (compiler

reordering, register allocation) in multi-processor systems [7].

Relaxed memory consistency models (weak consistency, release

consistency) permit such optimizations. They relax the program

order and enhance the system performance as compared to the

sequential consistency model. The weak consistency model

classifies shared memory operations as synchronization and data

operations. It enforces the following global orders on shared

memory operations:

 Synchronization to data

 Data to synchronization

 Synchronization to synchronization

The data operations (1, 3, 2) before, after and between the

synchronization operations can be reordered as shown in Figure 4a.

All previous data operations must be completed before the issuance

of synchronization operation and vice versa. The global orders

need to be enforced for the weak consistency model is given in

Figure 4b. We illustrate the transaction counter based technique for

the enforcement of the global orders in the upcoming section.

READ/WRITE

READ/WRITE

SYNCHRONIZATION

READ/WRITE

READ/WRITE

SYNCHRONIZATION

READ/WRITE

READ/WRITE
1

2

3

SYNCRONIZATION

SYNCRONIZATION

READ/WRITE

READ/WRITE

READ/WRITE

READ/WRITE

SYNCHRONIZATION

SYNCHRONIZATION

Figure 4. a) Weak Ordering b) Global orders to enforce

4.3 Realization of weak memory consistency

We adopted the transaction counter based approach [7] to realize

the weak memory consistency model in the McNoC system.

Transaction counter in each node keeps track of outstanding data

operations. The counter is incremented and decremented by the

issuance and completion of data operations correspondingly. It is

not affected by the synchronization operations. The counter zero

value indicates completion of all previously issued data operations.

Synchronization operations are not issued until the transaction

counter becomes zero. Figure 5 illustrates shared memory

operations initiated by the processor in each node. After virtual to

physical address translation shared memory operation is checked

whether it is in the local or remote node. Local shared memory

operations are accomplished within the node. Messages are sent to

the remote node for the remote shared memory accesses. Shared

memory operations are classified into synchronization and data

operations. Local data operations in the critical section of code are

issued to the shared locations (1) in the same node. A data

operation may be memory read (load) or write (store) operation

and is completed by either local data return or write

acknowledgment respectively (5-1). Local data operations issued

to the shared locations (2) in the non-critical section of code are

also completed locally within the node either by local data returns

or write acknowledgments (5-2). Local synchronization operations

are issued (3) to the local memory mapped synchronization handler

and are completed by synchronization acknowledgments (5-3). For

remote memory operations (data, synchronization) message

passing (4) is carried out to the remote node in the network.

Remote shared data operations in the critical section are issued to

the remote shared locations (6). Remote data operations are

completed either by the remote data returns or write

acknowledgments (9-6). Similarly, (7) and (9-7) are for the remote

data operations in the non-critical section of code. Remote

synchronization operations (8, 9-8) are issued to the remote

memory mapped synchronization handler.

R
E
M

 R
E
TU

R
N
 D

A
TA

 O
R
 W

R
ITE

 A
C
K
 (M

P
)

MESSAGE P
ASSIN

G T
O R

EM N
ODE

SHARED

MEMORY

ACCESS

START

V2P ADDR

TRANS

LOC/

REM ?

SYNC/

DATA?

END

CS ?

L

S

N

D

D

TC = 0 ?

Y

SYNC/

DATA?

END

CS ?

S

DATA/ACK

SHARED

MEMORY

ACCESS

LOCAL PM NODE
REMOTE PM NODE

 ADDR : ADDRESS

 V2P : VIRTUAL TO PHYSICAL

 LOC : LOCAL

 REM : REMOTE

 ST : STORE

 LD : LOAD

 CS :CRITICAL SECTION

 MP : MESSAGE PASSING

 ACK : ACKNOWLEDGMENT

 SYNC : SYNCHRONIZATION

 TC : TRANSACTION COUNTER

MP

REQ

D

1

CONTINUE

?

Y

LOCAL

SHARED

MEMORY

Y

N

REM

SHARED

MEMORY

LOCAL

SYNC

HANDLER

INCREMENT

TC

DECREMENT

DATA / ACK

REM SYNC

HANDLER

MP

REPL

LD/ST ?

LD/ST ? S

N

SYNC/

DATA?
R

N

L

TC = 0 ?

S
S

S

LD/ST ?

LD/ST ?

S

N

Y

L L
S

ACK

4

2

3

5-1 5-2

5-3

1

9-6

9-7

9-8
8

6

7

2

6 7

5-19-6

5-2

9-7

MP

REPL

MP

REQ

Figure 5. Transaction counter based weak consistency

Overall, transaction counter in each node is incremented with the

issuance of local data operations (1, 2) and remote data operations

(6, 7). It is decremented by the completion of previously issued

local data operations (5-1, 5-2) and remote data operations (9-6, 9-

7). It is not affected by the local synchronization operations (3, 5-

3) and remote synchronization operations (8, 9-8).

5. TRANSACTION COUNTER BASED

RELEASE CONSISTENCY

5.1 McNoC platform for release consistency

The NoC based multi-core platform for the release consistency

model is similar to the weak consistency platform except for the

number of transaction counters, requesting messages, response

messages and the number of commands. Two transaction counters

are used to realize the release consistency model in the McNoC

platform.

5.2 Release memory consistency

The release consistency is a refinement of the weak ordering. It

allows further overlapping, reordering and relaxation in the

ACM SIGARCH Computer Architecture News 11 Vol. 37, No. 5, December 2009

program order. It further distinguishes synchronization operations

as acquire and release operations. An acquire operation must be

performed before the issuance of any data operation in the critical

section (CS) and in the non-critical section (NCS) after it. All the

data operations in the critical section and non-critical section prior

to the release operation must be completed before the issuance of

release operation. The release consistency model enforces the

following global orders on shared memory operations as shown in

Figure 6:

 Acquire to data

 Data to release

 Acquire to release

 Release to acquire

READ/WRITE

READ/WRITE

READ/WRITE

READ/WRITE

ACQUIRE

RELEASE

ACQUIRE

RELEASE

RELEASE

ACQUIRE

RW-NCS RW-CS

RW-NCS RW-CS

Figure 6. Global orders enforcement for release consistency

Figure 7 demonstrates that (RW2-CS, RW4-CS) and (RW1-NCS,

RW3-NCS, RW5-NCS) are data operations in the critical and non-

critical section of code. Acquire operation (ACQUIRE-L1) must be

performed before any data operation in the critical section (RW2-

CS) and also before the non-critical section (RW3-NCS) after it.

The serial order violation between acquire operation to the

following data operations may change the system behavior.

SYNCHRONIZATION

READ/WRITE 1

READ/WRITE 2

ACQUIRE-L1

READ/WRITE 3

RELEASE-L1

READ/WRITE 1

READ/WRITE 4

ACQUIRE-L2

READ/WRITE 5

RELEASE-L2

SYNCHRONIZATION

READ/WRITE 2

SYNCHRONIZATION

READ/WRITE 3

SYNCHRONIZATION

READ/WRITE 4

READ/WRITE 5

RW1-NCS

RW2-CS

RW3-NCS

RW4-CS

RW5-NCS

RW1-NCS

RW3-NCS

RW5-NCS

RW2-CS

RW4-CS

Figure 7. a) Weak Ordering b) Release Consistency

All the data operations in the critical section (RW2-CS) and non-

critical section (RW1-NCS) before the previous acquire operation

must be completed before the issuance of release operation

(RELEASE-L1). The serial order violation between the preceding

data operations and release operation may also change the system

behavior. The reordering between the release operation and

previous critical section data operations is forbidden, i.e., exit from

critical section in the middle. The reordering between release

operation and non-critical section data operations violate the

program correctness. The program order relaxation in the release

consistency model must ensure the overall program correctness

according to the global orders enforcement. After the completion

of acquire operation (ACQUIRE-L1) all the data operations in

critical section (RW2-CS) and non-critical section after release

operations (RW3-NCS) can be reordered. The data operations

(RW3-NCS) in the non-critical section can be overlapped with the

data operations (RW2-CS) in the critical section. Also, data

operations in the critical section (RW4-CS) before the release

operation (RELEASE-L2) and data operations in the non-critical

section (RW3-NCS) before the previous acquire operation can be

reordered. Ideally, non-critical section data operations (RW3-NCS)

should overlap with the data operations in just preceding and

following critical sections (RW2-CS, RW4-CS). The program

order can be relaxed ideally for the code segment from acquire

operation (ACQUIRE-L1) of one lock to the release operation of

just next lock (RELEASE-L2). But practically, enforcement of the

global order on shared memory operations for the release

consistency model squeeze the relaxation window to the two

adjacent release operations. The preceding non-critical section data

operations must be completed before the issuance of the next

release operation to ensure the program correctness. The data

operations (RW3-NCS) in the non-critical section can practically

be reordered only with the data operations in the following critical

section (RW4-CS) and not with the preceding critical section data

operations (RW2-CS). The data operations (RW2-CS) in the

critical section can be reordered with the preceding non-critical

section data operations (RW1-NCS). Besides ordering between

data and synchronization operations (acquire-data, data-release)

ordering among synchronization operations (acquire-release,

release-acquire) must also be ensured. An acquire operation must

be completed before a release operation on the same lock.

Otherwise, a critical section will be entered without a lock and

release of a lock is tried that is not yet locked. The release

operation on the previous lock must be completed before the

issuance of acquire operation of the next lock. Otherwise, two

different critical sections will be entered simultaneously under the

same lock which is illegal and may leads to the system failure. To

enforce all the requisite serial orders, transaction counters based

realization of the release consistency model is illustrated. The

counters avoid all the possible interference problems between the

synchronization and data operations.

5.3 Realization of release memory consistency

To realize the release memory consistency model in the multi-core

system, transaction counters are used. We implemented two

transaction counters in each node for two different types of data

operations. Transaction counter1 (TC1) keeps track of outstanding

data operations issued in the non-critical section of code.

Transaction counter2 (TC2) keeps track of outstanding data

operations issued within the critical sections of code. Each counter

is incremented and decremented by the issuance and completion of

relevant data operations correspondingly. Both the counters are not

affected by acquire and release synchronization operations.

“TC1=0” indicates the completion of all the previously issued data

operations in the non-critical section of code. “TC2=0” indicates

the completion of all the previously issued data operations in the

critical section of code. Acquire and release synchronization

operations are not issued until the relevant transaction counters

become zero. The local data operations in the critical and non-

critical sections are issued to the shared locations (1, 2) within the

node as given in Figure 8. These data operations are completed

locally in the same node. A data operation may be completed by

ACM SIGARCH Computer Architecture News 12 Vol. 37, No. 5, December 2009

either local data return or write acknowledgment, respectively (6-1,

6-2). Acquire operations are not issued to the local or remote

synchronization handlers until TC2 in the local node becomes zero.

Release operations are not issued to the local or remote

synchronization handlers until both the counters become zero in

the local node. Local acquire synchronization operation is issued

(3) to the local synchronization handler and is completed by

synchronization acknowledgment (6-3). Local release

synchronization operation is also issued (4) to the local

synchronization handler.

R
E
M
 R

E
T
U
R
N
 D

A
T
A
 O

R
 W

R
IT
E
 A

C
K
 (M

P
)

M
ESSAG

E P
ASSIN

G
 T

O
 R

EM
 N

O
DE

MEMORY

ACCESS

START

V2P ADDR

TRANS

LOC/

REM ?

SYNC/

DATA?

END

CS ?

L

S

N

D

D

Y

SYNC/

DATA?

END

S

ACQR/

REL?

DATA OR ACK

MEMORY

ACCESS

LOCAL PM NODE

REMOTE PM NODE

D

A

TC1,2

= 0?

CONTINUE ?

R

LOCAL

SHARED

MEMORY

Y

Y

Y

N

REM

SHARED

MEMORY

LOC SYNC

HANDLER

DATA / ACK

REM SYNC

HANDLER

R

MP

REPL

LD/ST ?

S

N

R

N

L

TCs= 0?

S S

LD/ST ?

S

L

TC2= 0? A

N

CS ? Y LD/ST ?

N LD/ST ?
L

S

5

2

1

3

4

6-3

6-26-1

7

8

9

10

MP

REPL

MP

REQ

MP

REQ

 SYNC : SYNCHRONIZATION

 CS : CRITICAL SECTION

 MP : MESSAGE PASSING

 ACK : ACKNOWLEDGMENT

 V2P : VIRTUAL TO PHYSICAL

 TC : TRANSACTION COUNTER

SYNC/

DATA?

ACQR/

REL?

A
C

K

INC TC1 DEC

7 1

8 2 6-2 11-8

6-1 11-7

11-7

11-8

11-9

 LOC : LOCAL, REM : REMOTE

 ST : STORE, LD : LOAD

 REQ : REQUEST, ADDR : ADDRESS

 ACQR : ACQUIRE, REL : RELEASE,

 INC : INCREMENT, DEC : DECREMENT

INC TC2 DEC

Figure 8. Transaction counter based release consistency

For remote memory accesses message passing (5) is carried out to

the remote node in the network. Remote shared data operations in

the critical section are issued (7) to the remote shared locations.

Remote shared data operations in the non-critical section are issued

(8) to the remote shared locations and are completed either by the

remote data returns or write acknowledgments (11-7, 11-8). The

issuance and completion of remote data operations affect the

transaction counters in the local node. Remote synchronization

operations (acquire, release) are issued to the remote

synchronization handler (9, 10). Overall, TC1 in each node is

incremented with the issuance of local and remote data operations

in the non-critical section (2, 8). It is decremented by the

completion of previously issued local and remote data operations

in the non-critical section (6-2, 11-8). TC2 in each node is

incremented with the issuance of local and remote data operations

in the critical section (1, 7). It is decremented by the completion of

previously issued local and remote data operations in the critical

section (6-1, 11-7). Both the transaction counters are not affected

by the local synchronization operations (3, 4, 6-3) and remote

synchronization operations (9, 10, 11-10).

6. Experiments and results
We analyzed scalability of the transaction counter based relaxed

consistency models in the McNoC system. Tests were performed

for various network sizes. We investigated the effect of network

size on the code, synchronization and data latencies. Average and

maximum latencies were compared for the weak and release

consistency models with increasing size of the McNoC system. In

the experimental platforms for both the consistency models

processor in each node was replaced by the stimulus to initiate the

data and synchronization operations. The synchronization handler

in both platforms has 256 locks in the shared address space.

Transaction counters enforced the required global orders for the

relaxed consistency models. The NoC supports both 2D mesh and

torus topologies but we considered regular mesh topologies

networks in the tests. Priority based round-robin arbitration and

X-Y deterministic routing were used. Experiments were

performed with the simple and short code running on each node in

the platform. The pseudo-code is given in Figure 9. The code has

data and synchronization operations.

●●●●●●

// NON-CRITICAL SECTION

STIMULUS (MEMORY_WRITE, ADDRESS, DATA); // REMOTE SHARED WRITE

STIMULUS (MEMORY_READ, ADDRESS, DATA=0); // REMOTE SHARED READ

// LOCK ACQUIRE

STIMULUS (LOCK_ACQUIRE, ADDRESS, DATA=0); // REMOTE LOCK ACQUIRE

// CRITICAL SECTION

STIMULUS (MEMORY_WRITE, ADDRESS, DATA); // REMOTE SHARED WRITE

STIMULUS (MEMORY_READ, ADDRESS, DATA=0); // REMOTE SHARED READ

// LOCK RELEASE

STIMULUS (LOCK_RELEASE, ADDRESS, DATA=0); // REMOTE LOCK RELEASE

// NON-CRITICAL SECTION

STIMULUS (MEMORY_WRITE, ADDRESS, DATA); // REMOTE SHARED WRITE

STIMULUS (MEMORY_READ, ADDRESS, DATA=0); // REMOTE SHARED READ

●●●●●●

Figure 9. Pseudo-code running on each node

The lock protects the shared memory access in the critical section

as shown in Figure 10. Both the lock and critical section can be in

any node of the network. For example the critical section in the CS

node is protected by the lock maintained in the SYNC node. Every

node sends synchronization (acquire, release) request to the SYNC

node. On successful lock acquire in the SYNC node, it accesses the

shared memory location in the CS node exclusively. After the

critical section execution, the lock is released for other waiting

acquire synchronization requests.

SYNC

NODE

CS NODE

S
Y

N
C

R

E
Q

S

DATA REQS

Figure 10. Synchronization and data requests

6.1 Code latency

The average and maximum code latencies for different size

networks are shown in Figure 11. The code latency increases for

both the consistency models as the network grows from single

core to 64 cores. Average code latency for the release consistency

ACM SIGARCH Computer Architecture News 13 Vol. 37, No. 5, December 2009

model in the 8x8 network is approximately 101.1 times of the

single core, whereas for the weak consistency model it is 113.8

times respectively. The difference between the observed code

latencies become obvious as the network size grows. It is due to

the further overlapping and program order relaxation in the release

consistency as compared to the weak consistency model.

Figure 11. Code latency

6.2 Consistency latency

The consistency latency is the code latency without the network

latency and synchronization wait time. The average and maximum

consistency latencies observed in the experiments for various size

networks are shown in Figure 12. It increases as the network size

increases for both the consistency models. Average consistency

latency for the weak consistency model in the 8x8 network is

approximately 8.2 times of the single core, whereas for the release

consistency model it is 7 times. The difference between the

observed consistency latencies becomes obvious in the large

networks. It is due to the increasing overlapping, reordering and

program order relaxation in the release consistency as compared to

the weak consistency model.

Figure 12. Consistency latency

6.3 Synchronization latency

The code latency comprises of synchronization and data latencies.

Average and maximum synchronization latencies were compared

for both the consistency models with increasing network size as

given in Figure 13. Overall, there is no big difference in the

synchronization latencies for both the consistency models as they

use the same synchronization handler and network. The difference

in the synchronization latencies is mainly due to the simultaneous

issuance of synchronization requests in the release consistency

model as initially TC2 is zero. While these requests are issued at

different time in the weak consistency model as the completion

time of the previous data operations in the non-critical section for

all the nodes are different. Average synchronization latency for

the weak consistency model in the 8x8 network is approximately

964 times of the single core, while for the release consistency

model it is 1077 times. Average and maximum synchronization

latencies increases exponentially for both the consistency models

as the network size grows. The synchronization latency limits the

system performance in large networks.

Figure 13. Synchronization latency

6.4 Data latency

The main performance gain of the release consistency model over

the weak consistency model is the decrease in data latency.

Average and maximum data latencies increases for both the

consistency models with increasing network size as shown in

Figure 14. For larger network the difference between the average

and maximum data latencies become evident. Data latencies

increase exponentially for both the consistency models with the

increase in network size. Average data latency in the 8x8 network

for the weak consistency model is approximately 17.11 times of

the single core and for release consistency model it is 5.5 times.

The difference in the average data latencies for both the

consistency models in the 8x8 network is the highest (110 cycles).

A large difference in the data latencies is observed in very large

networks. The data latency decreases in the release consistency

model as a result of reordering between non-critical section and

next critical section of code.

Figure 14. Data latency

7. CONCLUSION AND FUTURE WORK

We analyze the scalability of transaction counter based relaxed

consistency models in the NoC based MPSoC platforms. We

ACM SIGARCH Computer Architecture News 14 Vol. 37, No. 5, December 2009

observe that a single transaction counter can enforce the required

global orders needed for the weak consistency model. Also, two

transaction counters ensure the serial order enforcement needed

for the release consistency model. Transaction counter based

realization of the relaxed consistency models avoids the possible

interference problem between the data and synchronization

operations. In the experimental platforms, we consider a mesh

network for the weak and release consistency models. All the

nodes synchronized over the same lock in a particular node.

Average and maximum code, synchronization and data latencies

increase significantly for both weak and release consistency

models as the network size scales. The experimental results show

that the release consistency model scales nicely in comparison to

the weak consistency model. The synchronization latency affects

the efficiency of memory consistency in very large networks. In

the future, we will study the implementation overhead and power

analysis of various memory consistency models in the NoC based

DSM systems.

8. ACKNOWLEDGMENTS
This work has been supported partially by the FP7 EU project

Mosart under contract number IST-215244, and the SI/HEC joint

scholarship program of Pakistan and Sweden.

REFERENCES
[1] D. C. Pham, T. Aipperspach and D. Boerstler, “Overview of

the architecture, circuit design, and physical implementation

of a first-generation cell processor”, IEEE J. Solid-State

Circuits, 2006, 41, (1), pp. 179–196.

[2] S. Bell, B. Edwards and J. Amann, “TILE64TM processor: A

64-core SoC with Mesh Interconnect”. Digest of Technical

Papers, IEEE Int. Solid-State Circuits Conf., February 2008,

vol. 51, pp. 588–598.

[3] B. Stackhouse, B. Cherkauer and M. Gowan, “A 65-nm 2-

billion-transistor quad-core Itanium processor”. Digest of

Technical Papers, IEEE Int. Solid-State Circuits Conf,

February 2008, vol.51, pp.592–598.

[4] L. Seiler, D. Carmean and E. Sprangle, et al: „Larrabee: a

many core x86 architecture for visual computing‟, ACM

Trans. Graph., 2008, 27, (3), Article 18.

[5] L. Benini and G. D. Micheli. Networks on Chip: A new SoC

paradigm. IEEE Computer, 35(1):70–78, January 2002.

[6] W. J. Dally and B. Towles. Route packets, net wires: on-chip

inteconnectoin networks. In DAC‟01: Proceedings of the

38th Conference on Design Automation, pages 684–689,

New York, NY, USA, 2001.

[7] S. V. Adve and K. Gharachorloo, “Shared Memory

Consistency Models: A Tutorial”, IEEE Computer, Vol. 29

No. 12, pp. 66–76, Dec. 1996.

[8] J. Protic, I.Tartalja, “Memory consistency models for shared

memory multiprocessors and DSM systems”, Melecon 96,

8th Mediterranean IEEE Electrotechnical Conference, vol.2,

Page(s):1112-1115, May 1996.

[9] David Mosberger, “Memory Consistency Models”, ACM

SIGOPS Operating Systems Review, Vol. 27, No. 1, USA,

January 1993.

[10] Robert C. Steinke and Garry J. Nutt, "A unified theory of

shared memory consistency", Journal of the ACM, vol. 51,

no. 5, pp. 800-849, 2004.

[11] Sarita V. Adve and Kourosh Hgarachorloo, Shared Memory

Consistency Models: A Tutorial, Digital Western Research

Laboratory, report no. 95/7, Palo Alto, California 94301

USA, September 1995.

[12] K. Gharachorloo, D. Lenoski, J. Laudon, Phillip Gibbons,

Anoop Gupta, and John Hennessy. “Memory consistency and

event ordering in scalable shared-memory multiprocessors”.

Computer Architecture News, 18(2): 15-26, June 1990.

[13] S.V.Adve, V.S.Pai and P.Ranganathan “Recent advances in

memory consistency models for hardware shared memory

systems”, Proceedings of the IEEE, Vol. 87, No.3, March

1999 Page(s):445–455.

[14] K. Gharachorloo. “Memory Consistency Models for Shared-

Memory Multiprocessors”, PhD thesis, Stanford University,

Dec. 1995.

[15] Axel Jantsch and Hannu Tenhunen, “Networks on Chip”,

Kluwer Academic Publishers, 2003.

[16] Fayez Gebali, Haytham Elmiligi, Mohamed Watheq El-

Kharashi, “Networks on Chip: Theory and Practice”. Taylor

& Francis Group LLC-CRC Press, 2009.

[17] O. Villa, G. Palermo, C. Silvano, "Efficiency and Scalability

of Barrier Synchronization on NoC Based Many-core

Architectures". In Proceedings of CASES 2008- International

Conference on Compilers, Architectures and Synthesis for

Embedded Systems. Atlanta, Georgia, USA, October 2008,

pp. 81-90.

[18] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie.

Hardware- and software-based collective communication on

the quadrics network. In Proceedings of the IEEE

International Symposium on Network Computing and

Applications (NCA‟01), page 24-35, Washington, DC, USA,

2001.

[19] F. Petrot, A.Greiner, P. Gomez, “On cache coherency and

memory consistency issues in NoC based shared memory

multiprocessor SoC architectures”, 9th EUROMICRO

Conference on Digital System Design: Architectures,

Methods and Tools, 2006, Pages: 53-60.

[20] E.J. Marinissen, B. Prince, D. Keltel-Schulz and Y. Zorian,

“Challenges in embedded memory design and test”,

Proceedings of Design, Automation and Test in Europe

Conference (DATE‟05), vol. 2, pp. 722-727, Mar. 2005.

[21] Yuan Xie, “Processor Architecture Design Using 3D

Integration Technology”, In Proceedings of 23rd

International Conference on VLSI Design (VLSID '10),

Page(s):446–451, India, January 2010.

[22] S. S. Iyer, “Three Dimensional integration-memory

applications”, In Proceedings of IEEE International SOI

Conference, Page(s):1-5, USA, Oct. 2009.

ACM SIGARCH Computer Architecture News 15 Vol. 37, No. 5, December 2009

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=16140
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5400049
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5400049
http://ieeexplore.ieee.org/xpl/RecentCon.jsp?punumber=5299295

