
Networks on Chip

Axel Jantsch

Laboratory for Electronics and Computer Systems, Royal Institute of Technology, E-mail: axel@imit.kth.se

Abstract

Future single chip systems will resemble more traditional
computer networks than traditional central processors. The
main reasons for this trend are (A) the infeasibility of global
synchrony on a single chip, (B) the necessity of reuse of
existing hardware and software components as much as
possible, and (C) the heterogeneity of system functions
and features. The consequences of this trend are far reach-
ing and imply the shift in concern from computation and
sequential algorithms to concurrency, communication and
interaction in every aspect of design and development of
hardware and software. A concrete example of this shift
is the expected replacement of purely sequential computer
languages by languages that contain concurrency as a first
order object.

1 Motivation

IC manufacturing technology will provide us with a a few
billion transistors on a single chip within a few years. As-
suming that these predictions hold and that the market will
continue to absorb ever higher volumes of ICs, the key
questions are: how will the future chips be organized and
how will future systems, which include these chips, be
designed? One possible answer is that single CPUs will
still occupy entire chips and will exhibit correspondingly
higher performance. The instruction set will essentially re-
main unchanged to provide backwards compatibility and
the will still be implemented in C or C++. However, there
are a few factors which make this scenario unlikely:

1. Physical effects of deep sub-micron technology make
it increasingly difficult to maintain global synchrony
among all parts of the chip. The clock signal will
soon need several clock cycles to travel across the
chip and the clock distribution tree is already to-
day a major source of power consumption and cost.
The trends of scaling to smaller geometric dimen-
sion and higher clock frequency make these prob-
lems more significant every year.

2. Synthesis and compiler technology development do
not keep pace with IC manufacturing technology de-
velopment. As a consequence, which is called the
design productivity gap, we need either exponen-
tially growing design teams or design time to design

and implement systems which fit onto a single IC.
Since both alternatives are unrealistic we have in the
past escaped from the problem by using ever more
complex components as primitive design units. These
primitive design units have evolved from individual
transistors to logic gates to entire ALUs, multipli-
ers and finite state machines. This trend will likely
continue with CPU and DSP cores and blocks for
compression, encryption and similar functions be-
ing the primitive design units. These design units
have however asynchronous interfaces to the out-
side and vastly different internal clocking regimes.
As a result aglobally asynchronous and locally syn-
chronous (GALS)design style emerges already to-
day.

3. Obviously, systems that can be implemented on a
single chip become increasingly more complex. As
a result different functions and features with vastly
different characteristics and history reside on the same
chip. signal processing algorithms which recover
and generate radio signals will coexist with global
control, maintenance and accounting functions as
well as with natural language comprehension and
generation functions. These functions are developed
in different contexts, by different teams, with differ-
ent design languages and tools. However, they need
to be integrated into a single chip.

Taking these current trends and facts together it is nat-
ural to contemplate a design paradigm where a set of in-
teracting functions and features are implemented on a set
of asynchronously communicating resources, such as CPU
cores and specialized hardware blocks. In this scenario
the mapping and implementation of system functions onto
resources is covered by traditional design and synthesis
methods. It may even an integral part of the reuse of a
given system function and a resource. For instance, the
purchasing of a bluetooth protocol stack may include its
implementation on a combination of a custom hardware
block and an ARM processor core. However, providing
a chip level communication infra-structure and mapping
of system level interactions onto the communication infra-
structure is not covered by any traditional design method-
ology and will become the focus of research and tool de-
velopment in the near future. In fact, in the last two years
we have seen several concrete proposals for on-chip net-
work architectures.



in 2000 Hemani and al. [1] have proposed a packet
switched architecture with switches surrounded by six re-
sources and connected to 6 neighboring switches. The ar-
chitecture is called a Honeycomb due to the hexagon based
pattern of switches and resources. The concept of packet
switching re-appears in other consecutive approaches but
the topology simplifies in most proposals to a mesh of re-
sources and switches. In 2001 Dally and Towles [2] pro-
pose a mesh based packet switched network with very sim-
ple switches which require less than 10% area overhead.
MicroNetworks proposed by Drew Wingard [3] is another
packet switched on-chip interconnection mechanism pro-
posed recently. Keutzer et al. [4] and Sgroi et al. [5]
provide general discussions and motivations for communi-
cation centric on-chip architectures and platforms and for
the strict conceptual separation of computation from com-
munication. More recently, Kumar et al. [6] put forward
a detailed packet switched, mesh based on-chip commu-
nication infra-structure together with a design methodol-
ogy. The proposed concept of a region breaks the strict
mesh-based geometry. A region can cover an arbitrary
number of switches and resources and allows to accom-
modate larger resources such as FPGA areas and memory
banks in a flexible way. This architecture we will also out-
line in the consecutive sections of this paper. Valtonen et
al. [7, 8] propose an on-chip interconnected network of
resources or cells but put the main emphasis on fault toler-
ance and unlimited scalability.

2 Network on Chip Architecture

Special
Purpose
Region

Region Wrapper

Figure 1: Each node in the mesh contains a switch and a
resource.

The Network-on-Chip (NOC) architecture, as outlined
in figure 1, provides the communication infrastructure for

the resources. In this way it is possible to develop the hard-
ware of resources independently as stand-alone blocks and
create the NOC by connecting the blocks as elements in
the network. Moreover, the scalable and configurable net-
work is a flexible platform that can be adapted to the needs
of different workloads, while maintaining the generality of
application development methods and practices.

A simple mesh interconnection topology is simplest
from a layout perspective and the local interconnections
between resources and switches are independent of the
size of the network. Moreover,routing in a two-dimensional
mesh is easy resulting in potentially small switches, high
bandwidth, short clock cycle, and overall scalability. A
NoC consists of resources and switches that are connected
using channels as a mesh (Manhattan- like structure) so
that they are able to communicate with each other by send-
ing messages. A resource is a computation or storage unit.
Switches route and buffer messages between resources.
Each switch is connected to four other neighboring switches
through input and output channels. A channel consists
of two one-directional point-to-point buses between two
switches or a resource and a switch. Switches may have in-
ternal queues to handle congestion. The precise layout and
geometry depends on the technology generation. We ex-
pect that the area of a resource is the maximal synchronous
region in a given technology. It is expected to shrink with
every new technology generation. Consequently the num-
ber of resources will grow, the switch-to-switch and the
switch-to-resource bandwidth will grow, but the network
wide communication protocols will be unaffected. Figure
2 illustrates the principles of the physical floor plan within
the NOC. Consider a 60nm CMOS technology expected
in 2008, a 22mm 22mm chip size, a resource size of 2mm
2mm and a minimum wire pitch of 300nm. A NoC would
accommodate 10 10 resources, each switch would occupy
30µm�30µmand the channels would be can use 3 metal
layers for we have space for 300 wires. Since we need con-
trol, handshaking and signaling, this scenario would yield
an effective data bus width of 256 wires.

A Region, as illustrated in figure 1, is an area inside
the NoC which is insulated from the network by a wrap-
per. The internal architecture and organization of a re-
gion is invisible to the network and can be arbitrary. The
network is not even aware of the presence of the region
because the region wrapper maintains the illusion of an
undisturbed network to the outside by, for instance rout-
ing packets around rather than through the region if the
packet’s destination is on the other side. This concept al-
lows to accommodate arbitrary sized resources in a flexi-
ble way.

3 NoC Implications

There are many compelling reasons for the emergence of
NoCs although the architecture and organization may be
different from everything proposed today. However, the



Resource

256Switch

Figure 2: The expected footprints of resource, switch and
channels in 60nm CMOS technology.

precise application area and deployment mechanism is still
very uncertain. Two scenarios can be envisioned. Scenario
(A) holds that there will be a rather big number of NoC
based platforms specialized for a particular product range.
For instance, the NoC platform for cellular phones will be
optimized for power efficiency and equipped with a lim-
ited but highly targeted set of functions and features. The
NoC platform for base station will be optimized for op-
timized for performance and scalability to allow painless
growth when higher performance or extended functional-
ity is requested. NoC platforms for automotive and med-
ical applications will be highly fault tolerance and safety
critical while multi-media consumer devices will provide a
variety of compression/decompressionand encryption/decryption
built-in functions. Development and verification cost for
the platform, the communication infra structure, operating
system services and design methodology and tools will be
shared among all the products in an application domain.
Conceptually, a NoC platform will be similar to dedicated
embedded systems of today.

In contrast, scenario (B) holds that the volumes in in-
dividual application areas such as base stations, mobile
phones, automotive devises, etc. are not sufficient to amor-
tize the significant investment in platform development and
manufacturing sites. Only the combined volumes of sev-
eral of these application areas will justify the costs of 60nm-
10nm CMOS fabs and the development and maintenance
of a NoC platform architecture and design tools. The result
would be a general purpose NoC assuming the role of to-
day’s CPUs as general computing engines for a wide range
if not for all application areas including the PC. The con-
sequences would be far reaching. Many of today’s com-
puter science and computer engineering disciplines have
a sequentially operating single CPU as implicit or explicit
fundamental assumption. These disciplines had to broaden

their scope considerably and entire curricula had to be re-
written. The bulk of theory and practice in disciplines such
as computer languages, compiler construction, operating
systems, programming, algorithm design, simulation, etc.
are geared towards single CPU implementations. This is
not to say that there is not a significant amount of knowl-
edge and expertise on parallelism and concurrency in all
these disciplines. But replacement of current CPUs by
NoC based computing engines would bring concurrency to
the mainstream in all disciplines and downgrade sequen-
tiality to a limited and special case.

Several key developments are a prerequisite for sce-
nario (B) to become a viable alternative.

NoC Architecture Since the resources in a NoC can be of
different types from CPU cores, DSP cores, FPGA
blocks to dedicated hardware blocks, a right mixture
has to be found which suits all the different applica-
tion areas sufficiently well. Furthermore, the com-
munication network must have a sufficiently high
bandwidth in addition to be able to accommodate
various traffic types such as real-time traffic, regular
data streams and irregular control messages.

NoC Assembler LanguageA standardized way to con-
figure and program a NoC has to be developed which
is independent from the particular NoC instance with
a fixed number of resources. It has also to be inde-
pendent from the various ways to specify and model
the functionality of systems at a high level. In ad-
dition to capture the computation of resources it has
to capture the acts of communication between re-
sources.

NoC Operating System A standardized set of operating
system services and interfaces has to be developed.
A NoC operating system is a generalization of tra-
ditional operating systems and will include, among
other features, the internal and external communica-
tion, run-time error diagnostics and recovery, load
balancing and dynamic task migration.

NoC Design MethodologyA sufficiently robust and pre-
dictable design methodology, including the detailed
methods and tools, has to include the mapping and
verification of the functionality as well as of all the
relevant non-functional requirements and constraints.

The great potential of NoC based platforms notwith-
standing, it is far from obvious that this potential can be
tapped. For this list illustrates clearly that if even one of
the necessary components of a NoC platform is not devel-
oped well enough, the application of NoC concepts will be
limited to rather small niches and not become mainstream.

4 Conclusion

We have briefly discussed the emerging concept of Networks-
on-Chip (NoC) and we have described one concrete NoC



architecture. This led us to speculate on the future and
potential impact of NoC platforms. We have concluded
this discussion with the observation that, even though the
potential of NoC concepts may be tremendous, it is not
likely that NoC can fulfill its promises due to the signifi-
cant number of key components that have to be developed
before NoC products can be deployed on a larger scale.

References

[1] Ahmed Hemani, Axel Jantsch, Shashi Kumar, Adam
Postula, JohnnÿOberg, Mikael Millberg, and Dan
Lindqvist. Network on chip: An architecture for bil-
lion transistor era. InProceeding of the IEEE NorChip
Conference, November 2000.

[2] William J. Dally and Brian Towles. Route packets, not
wires: On-chip interconnection networks. InProceed-
ings of the 38th Design Automation Conference, June
2001.

[3] Drew Wingard. MicroNetwork-based integration of
SOCs. InProceedings of the 38th Design Automation
Conference, June 2001.

[4] Kurt Keutzer, Sharad Malik, Richard Newton,
Jan Rabaey, and Alberto Sangiovanni-Vincentelli.
System-level design: Orthogonalization of concerns
and platform-based design.IEEE Trasnactions on
Computer-Aided Design of Integrated Circuits and
Systems, 19(12):1523–1543, Decmber 2000.

[5] Marco Sgroi, M. Sheets, A. Mihal, K. Keutzer,
S. Malik, J. Rabaey, and A. Sangiovanni-Vincentelli.
Addressing the system-on-a-chip interconnect woes
through communication-based design. InProceedings
of the 38th Design Automation Conference, June 2001.

[6] Shashi Kumar, Axel Jantsch, Juha-Pekka Soininen,
Martti Forsell, Mikael Millberg, JohnnÿOberg, Kari
Tiensyrjä, and Ahmed Hemani. A network on chip ar-
chitecture and design methodology. InProceedings of
IEEE Computer Society Annual Symposium on VLSI,
April 2002.

[7] T. Valtonen et al. Interconnection of autonomous
error-tolerant cells. InProceedings of the Interna-
tional Symposium on Circuits and Systems, Scottsdale,
AZ, USA, 2002.

[8] T. Valtonen et al. An atonomous error-tolerant cell
for scalable network-on-chip architectures. InPro-
ceedings of the 19th IEEE NorChip Conference, Kista,
Sweden, November 2001.


