
Toggle MUX: How X-Optimism Can Lead to Malicious
Hardware

Christian Krieg* Clifford Wolf** Axel Jantsch** Tanja Zseby*

*Institute of Telecommunications, TU Wien. Gusshausstr. 25 / 389, 1040 Wien, Austria
**Institute of Computer Technology, TU Wien. Gusshausstr. 27–29 / 384, 1040 Wien, Austria

christian.krieg@alumni.tuwien.ac.at, clifford@clifford.at, axel.jantsch@tuwien.ac.at, tanja.zseby@tuwien.ac.at

ABSTRACT
To highlight a potential threat to hardware security, we pro-
pose a methodology to derive a trigger signal from the be-
havior of Verilog simulation models of field-programmable
gate array (FPGA) primitives that behave X-optimistic. We
demonstrate our methodology with an example trigger that
is implemented using Xilinx 7 Series FPGAs. Experimental
results show that it is easily possible to create a trigger sig-
nal that is ‘0’ in simulation (pre- and post-synthesis), and
‘1’ in hardware. We show that this kind of trigger is nei-
ther detectable by formal equivalence checks, nor by recent
Trojan detection techniques. As a countermeasure, we pro-
pose to carefully reconsider the utilization of X-optimism in
FPGA simulation models.

1. INTRODUCTION
Hardware Trojans have been recognized as a serious

concern in the past decade. Numerous works exist to de-
scribe, classify and detect hardware Trojans at several ab-
straction levels. Recent surveys provide an overview of the
field [9, 17]. In general, a hardware Trojan is a system that
serves a shadow functionality besides its intended function-
ality, such as a backdoor or data leakage. In order to evade
detection during functional tests, a hardware Trojan typi-
cally incorporates a trigger circuit which activates Trojan
payload after the testing phase. In this work, we present
such a trigger circuit. Although the trigger principally works
for both application-specific integrated circuit (ASIC) and
field-programmable gate array (FPGA) architectures, we fo-
cus on the latter. We exploit the X-optimistic behavior of
Xilinx 7 Series FPGA simulation models to create a trig-
ger circuit. Our trigger circuit generates a signal that is ’0’
during the design and simulation phase, and ’1’ when the
design is implemented in real hardware.

1.1 Threat model
Our attack relies on a threat model, in which a malicious

designer at an intellectual property (IP) vendor injects ma-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DAC ’17, June 18 - 22, 2017, Austin, TX, USA
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4927-7/17/06. . . $15.00

DOI: http://dx.doi.org/10.1145/3061639.3062328

licious functionality during the design process of an IP core.
The designer obfuscates malicious functionality such that it
is not obvious to code reviewers. This includes proper nam-
ing of signals and registers. During simulation, the compro-
mised design behaves functionally equivalent to the original
design specification. The resulting IP core is shipped to an
IP integrator which incorporates the core in FPGA designs.
The IP core is either shipped encrypted or unencrypted. If
the IP core is encrypted, detection will be more difficult,
because the IP integrator will be limited to a given set of
tools which can process the encrypted IP core. As malicious
functionality is added during design, the resulting functional
specification (typically at register transfer level (RTL)) can
not be trusted. Our circuitry extends the original design’s
functionality. In simulation, it does not violate its specifica-
tion. We present a trigger that exploits common practice in
FPGA simulation models with respect to X-propagation.

1.2 X-propagation
In integrated circuit (IC) design, functional simulation

is used to verify the correctness of implemented functional-
ity. During simulation, multi-value logic is used. Besides
‘0’ and ‘1’, the Verilog standard defines unknown (‘X’) and
tri-state (‘Z’). As the name suggests, a logic simulator as-
signs a signal the value ‘X’ if it cannot predict if it is ‘0’
or ‘1’, such as for uninitialized registers. When applied
to the inputs of subsequent logic operations, such an ‘X’
can propagate through the design (e.g., ‘1’ ∧ ‘X’ = ‘X’,
‘0’ ∨ ‘X’ = ‘X’, ‘0’ ⊕ ‘X’ = ‘X’, ‘1’ ⊕ ‘X’ = ‘X’). This is
commonly referred to as X-propagation. X-propagation can
cause problems such as preventing a design to correctly reset
in simulation. Therefore, certain Verilog constructs behave
X-optimistic, which means that an ‘X’ is turned into a ‘0’
or ‘1’ [11]. X-optimism, however, can hide design bugs, es-
pecially at higher levels of abstraction (e.g., at the RTL).
Therefore, X-pessimism could be a better strategy to verify
the correctness of a design. X-pessimism means that an ‘X’
is passed to the output of a logic operation if it cannot be
evaluated to either ‘0’ or ‘1’.

1.3 Trigger process
In ASIC design, simulation models of logic operations

and functional blocks tend to be X-pessimistic because an
undetected bug could lead to exorbitant cost. ASIC de-
sign typically is associated with high cost, therefore highly-
skilled verification teams are dedicated to identify the root
cause of bugs when an ‘X’ is encountered during simulation.
Things behave different in FPGA design. Typically, FPGA
design houses are small to mid-sized companies that do not

have the resources to dedicate a verification team to design
debugging. However, since X-propagation can lead to un-
intended behavior during design simulation, FPGA vendors
tend to shape the simulation models of their library compo-
nents to behave X-optimistic. As stated before, X-optimism
can hide design bugs. We exploit this feature in order to de-
rive a trigger signal from a multiplexer that is controlled by
an ‘X’. We enforce the synthesis tool to use the simulation
model of a multiplexer that outputs ‘0’ when it is controlled
by an ‘X’. In hardware, there exists no ‘X’, which means
that the multiplexer is finally controlled by ‘1’ or ‘0’. With
few additional circuitry, we turn the multiplexer’s output to
‘1’. This way, we generate a trigger signal that is ‘0’ during
design-time and ‘1’ in hardware.

2. RELATED WORK
Fern, Kulkarni, and Cheng propose a methodology to

inject hardware Trojans into register transfer level (RTL)
designs leveraging don’t cares [2]. As ‘X’ can mean both ‘0’
and ‘1’, their class of Trojans does not violate the system
specification. In general, the class of Trojans presented in
[2] is designed to leak data. This fundamentally differs from
our proposed malicious circuitry, which implements an in-
telligent trigger in order to activate Trojan payload of any
kind. The characteristic of our trigger signal is that it is ‘0’
throughout the simulation phase, leaving the compromised
design functionally equivalent to the original specification.
Once the design is implemented in hardware, the trigger
signal turns to ‘1’.

Krieg, Wolf, and Jantsch recently proposed a method-
ology that can be used to produce a similar trigger signal
for field-programmable gate array (FPGA) architectures [8].
The authors inject a malicious lookup table (LUT) into the
hardware description language (HDL) specification of an in-
tellectual property (IP) core using a compromised HDL fron-
tend. In a second step, the LUT is reconfigured by the bit-
stream backend of a compromised place-and-route tool such
that malicious functionality is activated. In hardware, mali-
cious behavior is observable, while in the design and simula-
tion phase it is not. This is similar to our approach. While
their attack is sophisticated in automatically inserting mali-
cious functionality in existing designs, the major drawback
of their approach is the high effort required to mount the
attack. The major advantage of this work compared to [8]
is that we can generate a similar trigger signal without the
need to compromise a design tool. Our trigger methodology
only leverages common practice of X-optimism in Verilog
FPGA simulation models. Therefore, an adversary’s only
effort when mounting our attack is to inject specially crafted
Verilog HDL code into an existing design.

3. METHODOLOGY

3.1 General
We present a methodology to create a trigger signal

whose trigger condition is that the point in the design flow
is reached when the design is implemented in target hard-
ware. The compromised design is functionally equivalent to
the original HDL specification. Our methodology is based
on the standardized behavior of Verilog when a multiplexer
is controlled by a signal whose value is ‘X’. In Verilog, a
multiplexer can be inferred from two language constructs:

either by a ternary operator (:? -operator), or by an if/else-
statement. The Verilog standard [6] defines distinct behav-
ior for the multiplexers generated from a ternary operator
or an if/else-statement. If the conditional argument of the
ternary operator carries an ‘X’ as its value, this means that
the inferred multiplexer is controlled by an ‘X’. In this case,
the multiplexer propagates an ‘X’ to its output when the
inputs to the multiplexer carry distinct values (therefore be-
having X-pessimistic). Things are different for a multiplexer
that is inferred from an if/else-statement. If the condition
in the if-statement carries an ‘X’ as its value, the Verilog
standard defines that the else-branch must be evaluated.

We make use of this behavior in order to implement a
trigger signal that is always ‘0’ during simulation, and ‘1’
after the design is implemented in hardware. Although our
methodology is principally applicable to application-specific
integrated circuit (ASIC) architectures, in this work we pri-
marily focus on FPGA architectures. Figure 1b illustrates
the behavior of such a signal. After the design is imple-
mented in hardware, our trigger signal changes from ‘0’ to
‘1’.

All we need to create such a signal is to leverage the
standard behavior of a multiplexer that is inferred from an
if/else-statement and which is controlled by an ‘X’. In or-
der to implement our trigger signal, we have to ensure that
during simulation we provide a constant and reliable ‘X’-
source to the multiplexer’s controlling input, and to provide
a constant ‘0’-source to the multiplexer’s input that is in-
ferred from the else-branch of the if/else-statement. If we
can provide such constant sources of ‘X’ and ‘0’, we can en-
sure a constant ‘0’ at the output of the multiplexer during
simulation.

Things become interesting, when this multiplexer is ac-
tually implemented in hardware, because the notion of ‘X’
only is defined for the simulation model of a design. If a
signal’s value is ‘X’ in hardware, this means that it can ei-
ther be ‘0’ or ‘1’. And it must be either ‘0’ or ‘1’. This is
also true for the multiplexer’s control input. If so, the multi-
plexer propagates the corresponding input to its output. An
abstract model of such a multiplexer is given in Figure 1c.
However, we cannot determine the control input’s value in
hardware a-priori. We must connect the multiplexer’s other
input to a signal that is constant ‘1’, and make sure that
the multiplexer propagates this ‘1’ to its output. One way
to accomplish this is to toggle between the two inputs (i.e.,
between ‘0’ and ‘1’), and to delay the multiplexer’s output
by one clock cycle. When OR’ing the original and the de-
layed versions of the multiplexer’s output, the result is a
constant ‘1’. In order to reflect its toggle behavior, we call
this concept Toggle MUX. A high-level model of the trig-
ger signal generator incorporating a Toggle MUX is given in
Figure 1d. A more detailed schematic of the trigger gener-
ator is provided in Figure 2. Listing 1 provides the Verilog
HDL specification of our trigger signal generator.

In the following, we provide details on how we generate
signals whose values are constant ‘0’, ‘1’, and ‘X’. Also, we
describe how we enforce the design tool to instantiate a mul-
tiplexer that implements the behavior we need to generate
our trigger signal.

3.2 ‘X’-generation
In order to provide the control input of the Toggle MUX

with a signal that constantly and reliably carries an ‘X’ value

Trigger
generator

T

(a)

T

Design and verification flow
t

’1’

’0’

Pre-
synthesis

Post-
synthesis Hardware

(b)

M
‘0’

‘1’

‘X’

O

(c)

M
’0’ generator

’1’ generator

’X’ generator

Rectifier
circuit

Trigger
signal T

(d)

Figure 1: Function principle of our trigger. We inject a trigger generator circuit that generates a trigger signal T (a). The
trigger signal is constant ‘0’ during design time and becomes constant ‘1’ when implemented in hardware (b). The core
element of our trigger signal generator is a multiplexer which is controlled by a signal which is ‘X’ during design time. In
simulation, output O of the multiplexer is determined by the else-branch of the inferring if/else-statement (X-optimistic
behavior) (c). By wisely crafting Verilog HDL, the multiplexer can be forced to help in generating a trigger signal as shown
in (b). A high-level schematic of the trigger signal generator is shown in (d).

during simulation, we generate such a signal that is per-
sistent even if a global reset is applied to the design. We
achieve such behavior by using a digital signal processor
(DSP) core available on the target FPGA (Lines 23 to 30
in Listing 1). Making our trigger implementation depend-
ing on a DSP core may seem limiting. However, in order
to demonstrate the feasibility of our attack, we think that
the use of a DSP core is acceptable. We configure the DSP
core in a way that it outputs an ‘X’ at its OVERFLOW output
(Listing 7). In principle, this is the only output we need to
generate an ‘X’. However, using only the OVERFLOW output
might appear suspicious during design review, therefore we
also use the DSP core’s data output (which we configure
to be constant). In order to preserve the ‘X’, we combine
the multi-bit data output and the OVERFLOW output by an
XOR operation (because A ⊕ ‘X’ = ‘X’). In a real-world
design, it is very likely that a DSP core is used. In this case,
the existing DSP core can be used to also generate the ‘X’
signal.

In hardware, the DSP core’s output will actually be ‘0’
or ‘1’. It depends on the target architecture which value
an ‘X’ will be in hardware. Because we cannot predict this
value, we add a toggling signal as input to the XOR oper-
ation (Line 11 and Line 20 in Listing 1). This way, during
simulation, the XOR’s output is still ‘X’. However, in hard-
ware the XOR’s output toggles with each clock cycle. This
way, we are able to guarantee that a ‘1’ can propagate to the
multiplexer’s output O, which also toggles in hardware. In
order to generate a constant ‘1’ as specified in Figure 1b, we
shape O with a digital rectifier, whose output T is constant
‘1’.

In a hand-optimized real-world design, it is usual that a
DSP core is manually instantiated, therefore not being sus-
picious to HDL analysis. Once there is a DSP core present
in a design, we can adapt its configuration to perform addi-
tional functionality to derive an ‘X’. However, there may be
other options to create an ‘X’.

3.3 ‘0’/‘1’-generation
As already stated, the Toggle MUX has to be provided

a constant ‘0’ to its input that is inferred from the else-
branch, and a constant ‘1’ to the input that is inferred from
the if -branch of the if/else-statement. In order to prevent
optimization passes to optimize away these constant signals,
we use linear-feedback shift registers (LFSRs) to derive such
signals. We use different polynomials in order to prevent
the optimizer to merge the LFSRs for ‘0’ and ‘1’ genera-

tion (Line 8, Line 12, and Line 13 in Listing 1). An LFSR
will never carry all register bits ‘0’. In order to derive a
‘0’, we compare if the LFSR is equal to ‘0’ (Line 32 in List-
ing 1). Likewise, we compare if the LFSR is unequal to ‘0’
to generate a ‘1’ (Line 33 in Listing 1). The outputs of the
comparators C1 and C2 in Figure 2 carry the constant ‘0’
and ‘1’ signals.

3.4 Toggle MUX
The core part of our trigger is a multiplexer that is

inferred from a Verilog if/else-statement, and which is con-
trolled by an ‘X’ (Lines 38 to 41). It is important that
this behavior persists over the entire design and simulation
phase. We therefore need a multiplexer, which again uses
an if/else-statement in its Verilog simulation model (and
not the ternary operator). We investigated the simulation
models for Xilinx FPGAs and found out that the MUXF7
primitive satisfies this requirement. It is unusual to man-
ually instantiate a MUXF7 primitive, which would appear
suspicious during design review. Instead of manual instan-
tiation, we use a coding style that forces the synthesis tool
to instantiate a MUXF7 cell.

Xilinx 7 Series FPGA architectures provide dedicated
multiplexers to combine the outputs of LUTs [1]. A MUXF7
primitive combines the outputs of two 6-input LUTs (which
are both part of the same logic cell of the FPGA). This
means, that in order to enforce the synthesis tool to in-
stantiate a MUXF7, we have to make sure that the if/else-
statement in Listing 1 performs logic functions that can be
mapped to 6-input LUTs. In our case, these logic functions
are the comparators C1 and C2 in Figure 2, or the gen-
eration of signal 0 and signal 1 in Listing 1, Lines 32
to 33. Comparators C1 and C2 directly process the out-
puts of the respective LFSRs without any logic in between.
Therefore, we use 6-bit wide LFSRs to enforce C1 and C2

to be mapped to 6-input LUTs. As a result, the if/else-
statement is mapped to a MUXF7, and we can exploit its
simulation behavior when it is controlled by an ‘X’.

3.5 Rectifier circuit
When simulated, the Toggle MUX constantly outputs

‘0’ (as illustrated in Figure 1b). Once the design is imple-
mented in hardware, output O of the MUX toggles. In order
to generate a constant ‘1’, we need to rectify O. We achieve
this task by delaying O by one clock cycle (Line 42) and
OR’ing it with the original O (Line 45). This way, a trigger
signal T is generated that constantly outputs ‘1’.

4. DEMONSTRATION
We simulate our trigger using Xilinx Vivado R©, Ver-

sion 2016.3, and experimentally evaluate our design on a
BasysTM 3 FPGA board. Using Xilinx Vivado R©, we per-
form simulations of our trigger at several stages in the design
flow: 1. behavioral simulation, 2. post-synthesis simula-
tion (including timing), and 3. post-implementation simu-
lation (including timing). At any stage, the trigger shows
expected behavior, i.e., propagating the DSP’s ‘X’ output
value such that trigger output T is ‘0’ during simulation.

When we map the design to the bitstream and configure
the target FPGA, the design again shows intended behav-
ior. Now, ‘X’ is set to either ‘0’ or ‘1’, which forces trigger
output T to be ‘1’ (which is indicated by turning on a light
emitting diode (LED) on the evaluation board). Listings 2
to 7 provide the complete code in order to reproduce our
trigger circuit. The schematic of our trigger circuit is shown
in Figure 2. The timing diagram of our trigger circuit is
shown in Figure 3.

Listing 1: Verilog model of the trigger circuit (trigger.v).
For the sake of clarity, we print only the relevant parts of
the instantiated DSP core. The entire listing of the DSP
core can be found in Listing 7

1 ‘timescale 1 ns / 1 ps
2
3 module trigger (
4 input clk,
5 output trigger
6);
7 reg toggle;
8 reg [5:0] lfsr_0 = 1, lfsr_1 = 2;
9

10 always @(posedge clk) begin
11 toggle <= !toggle;
12 lfsr_0 <= {lfsr_0, lfsr_0[5] ˆ

lfsr_0[4]};
13 lfsr_1 <= {lfsr_1, lfsr_1[5] ˆ

lfsr_1[4]};
14 end
15
16 wire [48:0] signal_x_vec;
17 reg signal_x;
18
19 always @(posedge clk) begin
20 signal_x <= ˆ{signal_x_vec, toggle};
21 end
22
23 DSP48E1 #(
24 [...]
25) signal_x_dsp (
26 [...]
27 .OVERFLOW(signal_x_vec[48]),
28 .P(signal_x_vec[47:0]),
29 [...]
30);
31
32 wire signal_0 = lfsr_0 == 0;
33 wire signal_1 = lfsr_1 != 0;
34
35 reg trigger_a, trigger_b;
36
37 always @(posedge clk) begin
38 if (signal_x)
39 trigger_a <= signal_1;
40 else
41 trigger_a <= signal_0;
42 trigger_b <= trigger_a;
43 end
44
45 assign trigger = trigger_a || trigger_b;
46 endmodule

’X’ generator

Toggle
circuit

’0’ generator

’1’ generator

Rectifier circuit

D Q

F1

G1

M1

X

D Q

F2

G2

DSP

= 0
C1

LFSR 0 ’0’
6

6= 0
C2

LFSR 1

’1’

6

D Q

F3

D Q

F4

G4

O

T

Figure 2: The schematic of our trigger circuit

5. DISCUSSION
X-Analysis tools that aim at detecting ‘X’s primarily

target X-induced functional errors that propagate to the
primary outputs of a system. However, because the mul-
tiplexer we use in our trigger circuit behaves X-optimistic,
it prevents an ‘X’ at its control input to propagate. Also,
the ‘X’ generated in our trigger circuit is persistent even
when a global reset is applied to the system and will there-
fore not render our trigger useless. Simply simulating the
system and manually analyzing all occurring ‘X’s will not
be feasible, as the number of ‘X’s during design simulation
is considered prohibitively high. Because the system lacks
a golden reference, a formal equivalence check between the
hardware representation and the original HDL will fail in
detecting our trigger. Since our trigger is always on in hard-
ware, detectability of malicious functionality by in-circuit
testing highly depends on the details of Trojan payload im-
plementation. In the following, we qualitatively evaluate the
detectability of our trigger against the recent design-level
detection approaches unused circuit identification (UCI) [4],
functional analysis for nearly-unused circuit identification
(FANCI) [15], functional identification of gate-level hard-
ware trustworthiness (FIGHT) [10], Trojan prevention and
detection (TPAD) [16], gate-level information flow tracking
(GLIFT) [12] and Verifiable ASICs [14].

UCI is a dynamic approach proposed by Hicks et al. that
analyzes the data flow graph (DFG) of a given design [4].
UCI flags input signals suspicious that do not impact (direct
and indirect) output signals, which are therefore considered
unused. Our proposed trigger will be detected by UCI for
the case when ‘X’ is propagated to the control input of mul-
tiplexer M1. However, according to [3], UCI only supports

CLK

X X

O

T
Figure 3: The timing diagram of our trigger circuit. The
vertical line indicates the point in time when the design is
implemented in hardware (and therefore the trigger condi-
tion is satisfied)

two-valued logic, considering both cases for ‘X’-valued sig-
nals during simulation, therefore setting such signals ‘0’ and
‘1’. As the DSP’s output will be set to either ‘0’ or ‘1’,
the output of XOR G1 will toggle, and therefore also multi-
plexer M1 will toggle. This means that the circuit will not
be unused and therefore not be detected by UCI.

FANCI is a static approach that aims to find rarely used
signals in a gate-level netlist by analyzing the truth tables
of all output signals’ fan-in trees. As Sullivan et al. point
out, FANCI fails in correctly evaluating sequential blocks
and feedback loops [10]. Thus, FANCI will not detect the
constant ‘0’ and ‘1’ signals, which are generated using LF-
SRs. [15] does not indicate explicit consideration of ‘X’ in-
puts. Therefore, FANCI will not flag output O suspicious,
because the control input X will toggle (which results in a
toggling output signal O). Because FANCI treats sequential
logic as non-clocked combinational blocks, neither T will be
flagged suspicious by simply evaluating the truth table of
the circuit (because the truth table does not represent any
notion of time).

FIGHT is an extension to FANCI proposed by Sullivan
et al. which enables the evaluation of designs that contain
sequential logic and feedback loops [10]. While FIGHT al-
lows to compare IP cores with similar functionality provided
by different vendors, it does not support to detect single rare
signals [7]. Therefore, our trigger will remain undetected. It
will, however, depend on whether the triggered Trojan pay-
load will propagate rare signals. If so FIGHT will probably
flag the design suspicious due to such rare signals.

Wu et al. present TPAD, which is an approach to de-
tect hardware Trojans during design-time testing and post-
deployment [16]. In their methodology, a checker module
is derived and synthesized from a given high-level specifi-
cation of the design under test. TPAD addresses hardware
Trojans that result from a malicious manufacturer and/or
malicious design tools that inject extra functionality. TPAD
requires a trusted version of the RTL or system specification.
Our threat model, however, assumes a malicious designer in-
jecting and obfuscating additional RTL. Therefore, the RTL
specification cannot be trusted and TPAD may fail in reveal-
ing our trigger. Also, TPAD aims at detecting systems that
behave incorrectly at runtime. Our trigger is fully specified
at design-time, showing a subset of specified behavior during
design-time (i.e., producing a constant ‘0’), and the comple-
mentary behavior at runtime (i.e., producing a constant ‘1’).
At no point, our trigger behaves out of specification.

Wahby et al. present the Verifiable ASICs approach to
verify that hardware systems operate correctly [14]. The au-
thors propose to leverage technology gap in order to justify
trust in a verifier core. In principle, the Verifiable ASICs ap-
proach implements a challenge response protocol which ver-
ifies that the result of a computation is correct. According
to [13], the Verifiable ASICs approach could probably de-
tect the trigger presented in this paper. However, it would
be very impractical to leverage technology gap for FPGA
systems. Nevertheless, adversaries potentially could mod-
ify design tools for 20-year-old FPGA technology, therefore
greatly reducing trust imposed by technology gap.

Another promising approach to detect malicious hard-
ware proposed by Tiwari et al., GLIFT, is to track the flow
of information in order to detect data leakage caused by
hardware Trojans [12]. Hu et al. study the impreciseness
problem of GLIFT on the example of a 2-input multiplexer

for the theoretical case if the select input of the multiplexer
is both ‘0’ and ‘1’ at the same time. This is a condition that
could be considered similar to the condition when the select
signal in our Toggle MUX is ‘X’. In any case, GLIFT is effec-
tive to detect two types of Trojans: Those which leak data,
and those which alter register values. Therefore, our trigger
alone will not be detected by GLIFT, detection will instead
depend on the Trojan payload activated by our trigger.

6. CONCLUSIONS
We presented an attack that leverages common practice

in Verilog simulation models with regard to X-propagation.
As discussed, recent methods to detect hardware Trojans
will not reveal our trigger, because: (1) When the synthe-
sized hardware is verified, no golden reference exists against
which a design under verification could be checked because
the original RTL is compromised. (2) When the simula-
tion model of the design is checked, there is no unused or
rarely used signal or circuit which could be detected. An ef-
fective countermeasure would be to allow X-propagation in
FPGA design and verification. This would cause our Tog-
gle MUX to propagate an ‘X’ instead of forcing its output
to ‘0’, thus disabling its usage as a trigger. However, X-
propagation will increase the number of ‘X’ in simulation
results, requiring design engineers to thoroughly verify their
designs. FPGA design requires less resources compared to
ASIC design. FPGA design houses therefore typically do not
have dedicated teams for hardware verification. This is why
FPGA vendors make huge efforts to prevent X-propagation
in order to satisfy customers (which do not have to care
about ‘X’s in their simulation results). Therefore, allowing
X-propagation would be a trade-off between correct hard-
ware behavior and ease of verification.

Acknowledgments
This paper is supported by TU Wien research funds. Special thanks

goes to the spirit of San Francisco, Santa Monica and San Diego,

where this paper was created. The first author would like to thank

Róiśın Murphy and Atoms for Peace for their idiosyncratic sounds,

which provided an invaluable source of inspiration.

References
[1] 7 Series FPGAs Configurable Logic Block User Guide. Tech.

rep. Xilinx, Inc., Sept. 27, 2016.

[2] N. Fern, S. Kulkarni, and K. T. T. Cheng. “Hardware Trojans
hidden in RTL don’t cares — Automated insertion and preven-
tion methodologies”. In: Test Conference (ITC), 2015 IEEE
International. 2015, pp. 1–8.

[3] M. Hicks. Personal E-Mail Communication on How UCI treats
’X’ input signals. Nov. 18, 2016.

[4] M. Hicks et al. “Overcoming an Untrusted Computing Base:
Detecting and Removing Malicious Hardware Automatically”.
In: Security and Privacy (SP), 2010 IEEE Symposium on.
May 2010, pp. 159 –172.

[5] W. Hu et al. “Theoretical Fundamentals of Gate Level Infor-
mation Flow Tracking”. In: IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 30.8 (2011),
pp. 1128–1140.

[6] “IEEE Standard Verilog Hardware Description Language”. In:
IEEE Std 1364-2001 (2001), pp. 1–856.

[7] Y. Jin. Personal E-Mail communication if FIGHT detects sin-
gle unused signals. Nov. 19, 2016.

[8] C. Krieg, C. Wolf, and A. Jantsch. “Malicious LUT: A Stealthy
FPGA Trojan Injected and Triggered by the Design Flow”. In:
Proceedings of the 35th International Conference on Computer-
Aided Design. ICCAD ’16. Austin, Texas: ACM, 2016, 43:1–
43:8.

[9] H. Li, Q. Liu, and J. Zhang. “A survey of hardware Trojan
threat and defense”. In: Integration, the {VLSI} Journal 55
(2016), pp. 426 –437.

[10] D. Sullivan et al. “FIGHT-Metric: Functional Identification of
Gate-Level Hardware Trustworthiness”. In: Proceedings of the
51st Annual Design Automation Conference. DAC ’14. San
Francisco, CA, USA: ACM, 2014, 173:1–173:4.

[11] S. Sutherland. “I’m Still In Love With My X!” In: Proceedings
of the Design and Verification Conference (DVCon). 2013.

[12] M. Tiwari et al. “Complete Information Flow Tracking from
the Gates Up”. In: Proceedings of the 14th International Con-
ference on Architectural Support for Programming Languages
and Operating Systems. ASPLOS XIV. Washington, DC, USA:
ACM, 2009, pp. 109–120.

[13] R. S. Wahby. Personal conversation regarding detectability of
Toggle MUX by Verifiable ASICs approach, and the appica-
bility of Verificable ASICs to the detection of Toggle MUX.
Nov. 14, 2016.

[14] R. S. Wahby et al. “Verifiable ASICs”. In: 2016 IEEE Sympo-
sium on Security and Privacy (SP). 2016, pp. 759–778.

[15] A. Waksman, M. Suozzo, and S. Sethumadhavan. “FANCI: Iden-
tification of Stealthy Malicious Logic Using Boolean Functional
Analysis”. In: Proceedings of CCS 2013. Authors version. To
be published in the Proceedings of the CCS 2013. 2013.

[16] T. F. Wu et al. “TPAD: Hardware Trojan Prevention and De-
tection for Trusted Integrated Circuits”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems 35.4 (2016), pp. 521–534.

[17] K. Xiao et al. “Hardware Trojans: Lessons Learned After One
Decade of Research”. In: ACM Trans. Des. Autom. Electron.
Syst. 22.1 (May 2016), 6:1–6:23.

APPENDIX

Listing 2: Testbench (testbench.v)

1 ‘timescale 1 ns / 1 ps
2
3 module testbench;
4 reg clk = 1;
5 wire trigger;
6
7 always #50 clk = ˜clk;
8
9 trigger uut (

10 .clk(clk),
11 .trigger(trigger)
12);
13
14 initial begin
15 // $dumpfile("testbench.vcd");
16 // $dumpvars(0, testbench);
17 repeat (1000) @(posedge clk);
18 $finish;
19 end
20
21 always @(posedge clk) begin
22 $display("%t %b", $time, trigger);
23 end
24 endmodule

Listing 3: Constraints file (trigger.xdc)

1 set_property -dict { IOSTANDARD LVCMOS33 PACKAGE_PIN W5 } [get_ports clk
]

2 set_property -dict { IOSTANDARD LVCMOS33 PACKAGE_PIN U16 } [get_ports
trigger]

Listing 4: Synthesis script (trigger.tcl)

1 create_project -part xc7a35tcpg236-1 -force vivadoprj
2
3 read_verilog trigger.v
4 read_verilog testbench.v
5 read_xdc trigger.xdc
6
7 synth_design -top trigger
8
9 opt_design

10 place_design
11 route_design
12
13 write_verilog -force -mode timesim trigger_post.v
14 write_bitstream -force trigger.bit

Listing 5: Simulation script (runsim.sh)

1 #!/bin/bash
2
3 set -ex
4
5 xvlog testbench.v
6 xvlog trigger.v
7 xelab --runall -L unisims_ver testbench work.glbl
8
9 xvlog trigger_post.v

10 xelab --runall -L unisims_ver testbench work.glbl

Listing 6: FPGA configuration script (program.tcl)

1 open_hw
2 connect_hw_server
3 open_hw_target [lindex [get_hw_targets] 0]
4 set_property PROGRAM.FILE trigger.bit [lindex [get_hw_devices] 0]
5 program_hw_devices [lindex [get_hw_devices] 0]

Listing 7: Full instantiation of DSP core in Listing 1

1 DSP48E1 #(
2 .ACASCREG(0),
3 .ADREG(1),
4 .A_INPUT("DIRECT"),
5 .ALUMODEREG(0),
6 .AREG(0),
7 .AUTORESET_PATDET("NO_RESET"),
8 .BCASCREG(0),
9 .B_INPUT("DIRECT"),

10 .BREG(0),
11 .CARRYINREG(0),
12 .CARRYINSELREG(0),
13 .CREG(1),
14 .DREG(1),
15 .INMODEREG(0),
16 .MASK(48’h3FFFFFFFFFFF),
17 .MREG(1),
18 .OPMODEREG(0),
19 .PATTERN(48’h000000000000),
20 .PREG(0),
21 .SEL_MASK("MASK"),
22 .SEL_PATTERN("PATTERN"),
23 .USE_DPORT("FALSE"),
24 .USE_MULT("MULTIPLY"),
25 .USE_PATTERN_DETECT("NO_PATDET"),
26 .USE_SIMD("ONE48")
27) signal_x_dsp (
28 .A({5{lfsr_0}}),
29 .ACIN(0),
30 .ACOUT(),
31 .ALUMODE(0),
32 .B({3{lfsr_1}}),
33 .BCIN(0),
34 .BCOUT(),
35 .C(1),
36 .CARRYCASCIN(0),
37 .CARRYCASCOUT(),
38 .CARRYIN(0),
39 .CARRYINSEL(0),
40 .CARRYOUT(),
41 .CEA1(0),
42 .CEA2(0),
43 .CEAD(0),
44 .CEALUMODE(0),
45 .CEB1(0),
46 .CEB2(0),
47 .CEC(0),
48 .CECARRYIN(0),
49 .CECTRL(0),
50 .CED(0),
51 .CEINMODE(0),
52 .CEM(0),
53 .CEP(0),
54 .CLK(clk),
55 .D(0),
56 .INMODE(0),
57 .MULTSIGNIN(0),
58 .MULTSIGNOUT(),
59 .OPMODE(0),
60 .OVERFLOW(signal_x_vec[48]),
61 .PATTERNBDETECT(),
62 .PATTERNDETECT(),
63 .PCIN(0),
64 .PCOUT(),
65 .P(signal_x_vec[47:0]),
66 .RSTA(0),
67 .RSTALLCARRYIN(0),
68 .RSTALUMODE(0),
69 .RSTB(0),
70 .RSTC(0),
71 .RSTCTRL(0),
72 .RSTD(0),
73 .RSTINMODE(0),
74 .RSTM(0),
75 .RSTP(0),
76 .UNDERFLOW()
77);

