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ABSTRACT
The time required by an embedded system to process information
does not only depend on the amount of data; it also depends
heavily on the synchronization overhead, bus protocol and
communication architecture. This paper presents a technique to
estimate the performance of the control and communication part
of an embedded system modeled using the MASIC methodology.
A key concept in MASIC is the strict separation of the computation
part from the control and communication. Based on this clear
separation of concerns the estimator analyzes the communication
delay. Our method targets applications with intense, but regular
data flow with a fair amount of complex control. Examples are
base stations or mobile terminals. For these applications the
method allows a cycle accurate estimation of the delay due to the
communication. Hence, different architectures can be evaluated
and e.g. the effect of different bus arbitration and different DMA
block sizes can be assessed. Thus, the proposed method is an aid
for the designer to explore the system with different system level
decisions.
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1. INTRODUCTION
As the modeling of an embedded DSP system is refined to an
implementation phase, typically a bus-based architecture emerges
where the system bus provides the communication between the
DSP blocks and accesses the shared memory. Since the bus is a
shared communication channel, it requires arbitration. Therefore,
an embedded core interested in transmitting data first needs to
wait to handshake with the arbiter which results in a
synchronization overhead. Hence it is important for the
performance analysis technique to consider this overhead [3]. The
bus protocol and SoC communication architecture also affects the
system performance. Effects of shared memory access and DMA

block size on the performance of HW/SW systems, where system
operation is dominated by memory accesses, have been reported
in [5]. Ignoring these effects caused by control and
communication would result in inaccurate performance estimates,
which in turn would lead to non-optimal design decisions.
Simulation of the RTL models of embedded core with the host
environment gives accurate estimates. However, RT level is too
detailed to be efficient enough during exploration of the design
space. Moreover, detailed RTL hardware models of embedded
processors are often not available.

The performance estimation technique presented in this paper
considers the delay caused by the control and communication part
of the MASIC model of an embedded system. Performance often
refers to both the numbers of clock cycles required for a
particular implementation and the period of the clock cycle
needed to meet the constraints. Our work deals with the former
aspect, while the later is to be dealt with at a lower level of
abstraction. The MASIC, Maths to ASIC, methodology [8-10]
models an embedded system as a set of communicating FSMs. The
communication and synchronization among the cores give rise to
a complex architecture and control scheme that we refer to as the
GLObal Control Configuration and Timing (GLOCCT). The
estimator takes the MASIC description of the communicating
FSMs, replaces the nodes of the GLOCCT FSM by varying
weighted arcs, and builds an internal representation of the system
known as the Delay Graph (DG). To analyze the system
performance, the DG is simulated with input events at different
time instances. Though the data flow rate may vary among
different parts of the system, the rate is fixed for each particular
path. Hence the arrival of the events, that is, the set of input
vectors to the DG can be deduced accurately. The estimator
applies the input events on the DG and computes the following
information:

• Bus usage – shows the amount of time each resource is
occupying the bus.

• Component execution trace – includes the time a component
needs to wait to get access to the shared resources and the
time to finish its communication.

• System performance – gives the total time that the system
needs to consume a certain amount of data using user given
system attributes.

Before describing the proposed technique, we present few related
works in the next section. Section 3 briefly describes the MASIC
methodology of embedded DSP systems design. Next, we
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illustrate the proposed performance estimation technique in
section 4. The following section shows the results computed from
the LPC speech coding example. Finally, in section 6, we conclude
the work presented in this paper.

2. RELATED WORK
A number of system performance analysis techniques were
proposed in the early 90s that targeted the behavioral specification
containing mutually exclusive paths due to the presence of
conditionals. It was assumed that the branches of an if-then-else
have an equal probability of execution. Bhattacharya et. al. have
proposed a Markov chain based technique that takes care of the
fact that, the branch probability may be unequal [1]. They have
derived the branch probability and the state transition probability
to calculate the expected number of clock cycles needed for a
schedule. A Control Flow Graph (CFG) model based on a
homogeneous Markov chain has been reported in [2]. They have
used a probabilistic finite state machine to model the schedule and
evaluate the effectiveness. Since scheduling of the CFG is mainly
a path based approach, they have used scheduled paths from the
CFG and constructed an FSM corresponding to the resulting
schedule.

However, the approaches described above do not take the
synchronization overhead into account. In many real life systems
like telecommunication, networking applications, embedded
control applications, multimedia applications, etc. the system is
described as a set of concurrent communicating processes.
Though the clock period estimation of a system is not affected
whether the system is described and implemented as a single
process or as a set of communicating processes, the number of
required clock cycle estimation is affected. Hence a
synchronization graph based approach is reported where the
synchronization overhead is considered using a static performance
analysis technique [3]. They begin by constructing a
synchronization graph corresponding to a set of communicating
processes. Later on, the loops in the graph are divided into
different communication layers. Analysis of a single
communication layer results in the estimate of a system with multi
layer communication. The technique statically calculates the worst
case performance of a system of communicating processes.

The Bus and Synchronization Event (BSE) graph was introduced
to evaluate the performance of a bus-based SoC architecture [4].
The authors showed the effects of bus architecture and bus
protocol on the system performance. They used a dynamic
estimation approach, which is split into two phases. Initially, the
system specification is partitioned into HW and SW, and a
cosimulation is performed where the communication between
components is modeled in an abstract manner. Secondly, from the
initial cosimulation, they extracted a set of computation and
communication traces for each of the components that was known
as the BSE graph. Our proposed performance analysis technique
does not require an initial cosimulation. The estimator takes the
grammar based MASIC notation of the system to evaluate the
performance. Before we describe the proposed technique, the
following section gives a brief overview of the MASIC
methodology.

3. THE MASIC METHODOLOGY
Even if the functionality of a DSP system remains the same, the
architecture may need to be amended to be able to deal with

different product families or HW/SW combination. Furthermore, it
requires being configurable to be able to work with next
generations of products. All these requirements suggest that the
functionality be kept separated from the architecture and
communication. As such, design methodologies have been
proposed to separate these two aspects [6,7]. The MASIC
methodology uses grammar notations to capture a design at a
higher level of abstraction and separates the functionality from the
architecture and communication, which represents the GLOCCT of
the system [8,9]. The MASIC design flow is shown in Figure 1.
Modeling in MASIC begins at the functional level where the
algorithm development and verification is concerned with making
sure that the specified signal processing figures of merit are met.
The output of this phase is a set of DSP functions in C, which
represents the data flow part of the system model. The GLOOCT is
expressed in the MASIC grammar notations in which the grammar
rules describe the communication and synchronization, and the
constraints to the rules manifest the architectural decisions. The
architectural decisions characterize the chip level architecture that
includes processor cores, busses, memories, external interfaces
and sharing of resources. The MASIC compiler reads the system
model written using the MASIC notations and generates a VHDL
description that links to the C functions.

Embedded systems are often modeled using a set of
communicating FSMs [10,11]. MASIC uses grammar notations to
describe the communicating FSMs and employs a library to
manipulate the cores. An embedded core is viewed at two
different layers as shown in Figure 2. The primary intention of the

Figure 1: MASIC design flow
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model is to focus on the interface between the host and the core.
The outer layer provides the interface of the core to the system
GLOCCT. This layer includes peripheral registers, buses and the
associated control logic, which is referred to as core level
GLOCCT. The inner layer contains the software in C, which is a
DSP function developed in the functional modeling phase of the
design. The GLOCCT provides the mean to transfer data among
the cores while the C function performs the DSP computation
when the data is transferred [10]. For a future implementation
phase, the C-function is compiled for the target processor and
elaborated over system clock cycles.

4. PERFORMANCE ANALYSIS
TECHNIQUE

4.1 A Pair of Communicating FSMs
Let us consider a core wishing to read a memory using a bus. The
system is built using the asynchronous bus protocol described in
the Figure 3. The choice of asynchronous protocol stems from the
fact that the target system will have a number of cores connected
to the system bus and they might run on different clock speeds
and have different response times. The operation sequence is
initiated with the arrival of an IO read signal, which creates the arc
between states C1 and C2. Here, we use the symbol C1→C2 to
represent the arc between nodes C1 and C2. With this arc the core
sends rdReq signal to the memory. At the same time, it places
the memory address on the multiplexed bus. However, the
estimator does not account for data assignment statements, like
putting address or data on the bus. It only considers the
synchronization signals, which generate events and synchronize
the system. Hence the estimator does not need to perform any
exhaustive computation to find the performance figures.

The memory reacts to the rdReq signal by asserting the Ack and
reads the address from the bus, which is shown in M1→M2. The
core sees the acknowledgement and drops the rdReq and
relinquishes the bus, in C2→C3. With the remaining steps, the
word is read from the memory and the cycle is completed when
the core finally drops the Ack signal. The MASIC notations are
used to describe the control steps of the above model. The total
time needed to complete the whole operation can be estimated
from the time required in each of these steps.

The total time needed to complete the cycle is the summation of
time elapsed in the nodes and time elapsed in the arcs. We target
the Mealy type implementation with a clocked output stage.
Hence all the arcs of the FSM will take one clock cycle, if not
annotated with a memory access time information as discussed
below. The time taken by a node depends on a signal from the
communicated process. If the desired signal is already present, the
machine does not wait in the node and the wait time in the node is
zero. Otherwise, it waits in the node until it receives the signal.
Depending on the reaction time of the communicated process, we
replace a node with a weighted arc, which gives the wait time in
the node.

Let us apply these observations on the model of the Figure 3. If
we do not consider the initial wait time, the core FSM starts with
the C1→C2, which requires one cycle. The wait time in the node
C2 depends on M1→M2, which is another cycle. After one more
cycle it crosses the C2→C3 and waits in node the C3 for M2→M3
be completed. Since this arc is related to memory access we
cannot apply the general rule of one cycle for an arc. In this

sequence of operations, the memory receives the address during
M1→M2. Therefore, the wait time in the node C3 can be estimated
as: max ( roof(memory_access_time/clock_period), 2 ). The
MASIC description does not contain any information about
memory access time. This information is given to the estimator.
The rest of the arcs take one cycle each. Thus the core will take
seven cycles to perform the operation, if memory access time is
less than or equal to two clock cycles.

So far, the wait time in a node corresponds to an arc in the
communicated FSM. The scenario changes when several of them
communicates with each other. We model such a situation by
creating a DG of the system.

4.2 Systems with Multiple FSMs
To be able to connect multiple cores to the system bus we need to
introduce a bus arbiter, which ensures that only one core has
control over the bus at a particular time. Thus a core wishing to
transfer data using the bus needs to wait to handshake with the
arbiter. The GLOCCT provides the bus arbitration, which could be
of any kind. As an example, let us describe a round robin
arbitration scheme where the GLOCCT sequentially reads the
request from each core to grant the bus and moves to the next one
as shown in the Figure 4. The read operation still works in the
same way as described in Figure 3, with the exception that it
incorporates a wait state labeled as C2 to synchronize with the
GLOCCT. The time spent in this state shows the wait time in the
performance analysis. Along with the read cycle, now the core
FSM also includes the memory write cycle. With the arrival of an
IO_wr, instead of generating a memory wrReq, the core
generates a request to the GLOCCT and waits in node C6. To get
an estimate of this system we need to consider the GLOCCT input
events associated with a time instance and generate the resulting
system response.

Let us consider that the arbiter begins at time t to react to the
input events shown in Figure 5. At time t, there is no request
from core-1 though core-2 wishes to write to the memory. Hence,
the GLOCCT does not wait in node G1 and the estimator replaces
node G1 with an arc of weight zero to build the DG. It would,
however, need a clock for the G1→G3. A request from core-2 has
been waiting since time t and this request brings the system from
G3 at t+1 to G4 at t+2. At this time Grant2 signal also appears.
It communicates with two different nodes of the core-2 as shown
by the dotted arrows in Figure 4. Since Core-2 was waiting in
node C6 the path C6→C7 is chosen that in turn communicates with
the memory. From this point the core and the memory perform a
set of operations, similar to the previously described read cycle.
These are shown by the dotted arrows in the Figure 4. The
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operation finishes when the core2 reaches C1 after five clock
cycles. A read cycle, alternatively, would require seven cycles to
traverse from node C2 to C1. Hence, a node might have different
wait time depending on the operation. To build the DG, we replace
node G4 with an arc of weight five for write cycle and weight
seven for read cycle. On the other hand, a node might have a
weight of zero, as was the case with node G1. Depending on the
input event one of the weighted arcs is chosen, which gives the
time elapsed in the node. The arcs of the FSM are not replaced in
the DG and they correspond to a time of one clock period, unless
annotated with memory access information as explained in the
previous sub section. In this way, the effects of all the
communicating FSMs are mapped together in the DG. The DG is
simulated with the input events at different time instances to get
the performance figures.

4.3 Tracing the Resource Execution
The DG of the system is the basis of the estimator. A start up
sequence gives the initial state of the system. From that point the
estimator simulates the DG of the system with the input events and
fills up the rows of the Execution Trace Table (ETT) with the
output response as shown in the Figure 5.

Let us assume that the GLOCCT in Figure 4 begins at time t with
state G1. It receives input events ReqFrom1 and ReqFrom2 at

time t as shown in the Figure 5. Since ReqFrom1 is low, the
FSM moves through G1→G3. Hence, we put state G3 at the time
t+1 and keep the input event ReqFrom2 in input event register.
The length of the input event register is one. The sender can
rewrite the register. For instance, in the event of a timed out
request the sender broadcasts a zero, which changes the content of
the input event register.

The ReqFrom2 is read from the register at time t+1 that causes
the machine to move to G4. Hence, we put core-2 in G4 at time
t+2. In addition we also generate the Grant2, as it is a
synchronizing signal. For a write cycle, we know from the
discussion in the previous sub section that the arbiter stays in G4
for five cycles after the grant is made. Hence we put the GLOCCT
in G4 from time t+3 to t+7, at the end of which we know that
the ReqFrom2 will be dropped low.  Therefore, the input event
register is made zero at t+7, which causes the machine to move
to G5 and drop the Grant2 signal at time t+8. The ETT shows
that the event ReqFrom2 waits for one cycle and takes seven
cycles to be processed.

The ETT grows with time as it receives more input events and
generates corresponding system responses. If the same pattern of
communication and data transfer are repeated over and over then
it is enough to simulate the DG with input events corresponding to
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one frame. Though the technique is explained using a round robin
arbiter, it is not restricted to any particular type of
implementation. To change the arbitration scheme to a priority
arbiter, for instance, we need to change the MASIC description of
the system. In that case the arbiter would read all the requests
from the cores at a time and assign the system bus to a core using
a preset priority.

Until now, we have only explained a single word of data transfer
over the bus. It will be efficient to use a DMA mode transfer to
shift a block of data, because we do not need to send the address
with all the data words. To model a block data transfer the core
and memory FSMs include DMA mood transfer. In that case, the
DG is built by replacing the nodes of the GLOCCT FSM by a
varying weighted arc that depends on the size of the DMA transfer.
For a system with multiple clocks we consider the system clock,
which is typically a multiple of the slowest clock in the system.
When the GLOCCT communicates with a slower process the
estimator updates the value of the weighted arcs using the ratio
between the clock speeds. Bus width also affects the system
performance. If, for example, we use a 16 bit bus to transfer a
32 bit word then we change the core and memory FSM to include
the extra steps needed. To show the effect of the architectural
change on system performance, the estimator builds a DG from the
modified MASIC model and the ETT shows a longer response time
for an input event.

5. RESULTS
In this section we apply the described performance analysis
technique on the Linear Predictive Coding (LPC) speech
processing system. We shall model the system with different
system level decisions and investigate their effects on the system
performance. A 20 ms frame of speech data is buffered at a
sampling rate of 8 kHz. The system takes a frame of 160 samples,
which corresponds to a 20 ms frame and performs the Hamming
windowing operation on the samples of the speech frame. The
result is stored in the memory. Next the autocorrelation block
reads the 160 samples stored by the Hamming block and
computes 50 autocorrelation lags. Finally, the LPC block takes
these values and compute 10 coefficients and a pitch period,
which is stored back in the memory. We decided to perform these
operations on three different cores, which are connected to the
shared memory by a multiplexed bus. The speech processing
system works in a globally pipelined manner where each of the
blocks works on the set of data computed by the previous block in

the earlier frame. The interface of the core is captured in the
MASIC notation and the computation is performed using
C function, as described in section 3. The GLOOCT provides the
interface of the system, and communication and synchronization
between the cores and the memory.

The estimator takes the MASIC description and builds the DG of
the system. Since the same pattern of data communication is
performed over every 20 ms frame, we simulated the DG with the
input events corresponding to a single speech frame. First we
studied the effects of different realistic DMA block sizes on the
system performance as shown in the Figure 6. We considered
different sizes starting from 4 to 256. For each of the cases, same
input events are applied on the DG to construct the ETT, which
shows total cycles needed to consume the input events. As
expected, the performance increases with the increase in block
size. However, the performance of the LPC block starts to
deteriorate after 16 because it outputs only 11 words. On the other
hand, the Hamming block deteriorates after 64, because it
operates on 160 words and a bigger block causes some non-
meaningful words in the last block. Figure 6 shows that the
overall system performance is optimum with a DMA size of 32
words. Since we know the optimum size of the blocks, we use this
size to check the bus usage figures. Figure 7 shows the percentage
of bus usage by different blocks that include both reading data
from the memory and writing the results back to the memory. The
idle time shown in the figure is calculated assuming a budget of
2000 cycles.

The bus usage figures show the amount of time required by each
of the DSP blocks within each speech frame. These figures help
the designer to assign the priority to different blocks. The block
with a higher priority receives its data first and gets more time to
finish its task. Hence, we experimented with different priority
given to different blocks. Figure 8 shows the computation time
available to each of the blocks in three different priority schemes
assuming a budget of 2000 cycles. These figures help the designer

Figure 6: Effect of DMA size on performance
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to assign priority to individual blocks so that the computation
timing requirements are met.

6. CONCLUSION
This paper presents a performance estimation technique that has
been integrated in the MASIC environment. The technique targets
applications with predictable data rates. The estimator works on
the higher abstraction level of MASIC models. It does not perform
any computationally exhaustive method as would have been
needed at a lower level. Despite working on the higher level
model, it gives an accurate estimate, which considers the
synchronization overhead, effects of shared memory access and
memory access time. Experimental results have been presented,
which show the effects of different system level decisions on
system performance. Thus it helps the designer to probe the model
from a higher level of design abstraction by assisting the designer
to optimize the model with different system level decisions. For
instance, making a dedicated link between the two most
frequently communicating components would lessen the traffic on
system bus. Changing the arbitration scheme or DMA block size
might result in less wait time for a component.
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