
Handling Shared Variable Synchronization in
Multi-core Network-on-Chips with Distributed Memory

Xiaowen Chen†,‡, Zhonghai Lu‡, Axel Jantsch‡ and Shuming Chen†
†National University of Defense Technology, 410073, Changsha, China
‡KTH-Royal Institute of Technology, 16440 Kista, Stockholm, Sweden
†{xwchen,smchen}@nudt.edu.cn ‡{xiaowenc,zhonghai,axel}@kth.se

Abstract—Parallelized shared variable applications running on
multi-core Network-on-Chips (NoCs) require efficient support for
synchronization, since communication is on the critical path of system
performance and contended synchronization requests may cause
large performance penalty. In this paper, we propose a dedicated
hardware module for synchronization management. This module is
called Synchronization Handler (SH), integrated with each processor-
memory node on the multi-core NoCs. It uses two physical buffers
to concurrently process synchronization requests issued by the local
processor and remote processors via the on-chip network. One salient
feature is that the two physical buffers are dynamically allocated to
form multiple virtual buffers (a virtual buffer is related to a shared
synchronization variable) so as to improve the buffer utilization
and alleviate the head-of-line blocking. Synthesis results suggest
that the SH can run over 900 MHz in 130nm technology with
small area overhead. To justify the SH-enhanced multicore NoCs,
we employ synthetic workloads to evaluate synchronization cost and
buffer utilization, and run synchronization-intensive applications to
investigate speedup. The results show that our approach is viable.

I. INTRODUCTION

NoC based multi-core systems are promising solutions to
the modern and future processor design challenges. Exploiting
efficient parallelism and hence achieving high performance of
parallelized applications running on multi-core Network-on-Chips
(NoCs) [1][2] require high bandwidth memory subsystem, as
well as efficient synchronization mechanisms. Careful design of
the synchronization should be carried on, meeting strict design
constraints in terms of performance. In this paper, we focus on the
architectural support for efficient synchronization, targeting multi-
core NoCs. Our work is motivated by the three points below.

1) Multi-core NoCs still display significant communication
overhead amongst processor nodes as traditional synchroniza-
tion mechanisms are employed, such as spin lock, which are
based on the busy-wait techniques to ensure mutual exclu-
sion through continuous polling of a shared synchronization
variable. These synchronization mechanisms generate large
network traffic, resulting in heavy contention.

2) The software solution and the hardware solution are two alter-
natives addressing the synchronization problems. In software
solution, various synchronization primitives are implemented
and used based on the underlying hardware architecture,
which provide certain atomic operations, such as the pair of
load-linked and store-conditional instructions and an atomic
test-and-set instruction. However, its generality often comes
with high synchronization overhead. Therefore, for the sake
of obtaining high efficient synchronization, the dedicated
hardware solution is a good choice.

3) The architecture of multi-core NoCs features a packet-
switched network and distributed computing resources and
storage elements. “Distribution” is one of architectural char-
acteristics of multi-core NoCs. In generality, centralized
solution will lead to overwhelming traffic contention near

Fig. 1. (a) A 16-node mesh multi-core NoC, and (b) Processor-Memory node

the central synchronization handling node when multiple
processor nodes compete for a synchronization variable.
Therefore, distributed solution is a good alternative to fit the
architectural feature of multi-core NoCs.

Based on the aforementioned three motivations, we propose
a dedicated and distributed synchronization hardware module,
named Synchronization Handler (SH), targeting multi-core NoCs.
Fig. 1 (a) shows an example of our multi-core NoC architec-
ture. The system is composed of 16 Processor-Memory (PM)
nodes interconnected via a packet-switched network. The network
topology is a mesh, which is a most popular NoC topology
proposed today [3]. As shown in Fig. 1 (b), each PM node hosts
a processor, a local memory, a Network Interface (NI) and a
Synchronization Handler (SH). The SH module is connected to
the processor and the Network Interface (NI). The SH offers a set
of synchronization variables, which are globally addressed and
accessed by all nodes. The synchronization variables are used as
locks to provide mutual exclusion when shared memory references
occur. Considering that, at each node, there are at most two
requests coming simultaneously (one is from the local processor,
the other from the network) in our multi-core NoC architecture,
the SH features two physical buffers to serve synchronization
requests issued by the local processor and remote processors via
the on-chip network concurrently. The two physical buffers are
dynamically allocated and logically organized as multiple virtual
buffers to improve their utilization. This organization can avoid
both consuming much area cost resulting from maintaining a
physical buffer for each lock and one synchronization request
blocking another independent synchronization request. To evaluate
the SH’s performance, we apply both detailed synthetic work-
loads and synchronization-intensive application workloads on our
cycle-accurate multi-core NoC platform. The experimental result
evaluates the cost of successful synchronization, the utilization of
dynamically allocated buffers and the speedup of applications.

The rest of the paper is organized as follows. Section II dis-
cusses related work. Section III details the SH micro-architecture
and its operation mechanism, and gives hardware synthesis results.
Section IV reports simulation results with synthetic and applica-
tion workloads. Finally we conclude in Section V.



II. RELATED WORK

As a multiprocessor system, multi-core NoCs try to boost
overall performance by exploiting efficient parallelism of applica-
tions running on it. Efficient synchronization support is important
in exploiting efficient parallelism. Synchronization attracted a
large body of research in multiprocessor systems. Recently, many
researchers shifted to discuss synchronization issues in a single
chip, including communication overhead [4][5][6][7][8], energy
efficiency [4][9], scalability [7][9], etc.

Regarding efficient synchronization mechanism, in [5], Samp-
son presented a novel mechanism for barrier synchronization
on chip multiprocessors (CMPs). His contribution is on barrier
synchronization rather than lock/semaphore synchronization. In
[8], Zhu proposed a scalable architectural design, which records
and manages the states of frequently synchronized data, for fine-
grain synchronization that efficiently performs synchronizations
amongst concurrent threads. In [4][6], Monchier explored an
optimization technique of synchronization mechanisms for shared
memory MPSoCs based on NoC and targeted eliminating large
contention incurred by re-spinning a lock. A synchronization
hardware module was designed to augment the memory controller
to support polling a lock locally in the shared memory. However,
since all synchronization requests issued by all nodes flow through
the network into the synchronization module, contention latency
induced by heavy traffic near the module brings negative perfor-
mance. In [9], Yu proposed a synchronization architecture for em-
bedded multiprocessors to effectively implement the queued-lock
semantics in a completely distributed way. In their multiprocessor
platform, each processing node hosts a synchronization controller.
However, 1) their multiprocessor platform uses the bus rather than
complex interconnect (e.g. packet-switched network), and 2) the
announcement of remote lock acquire request in the bus induces
much traffic and is lack of scalability.

III. SYNCHRONIZATION HANDLER (SH)

In this section, we detail the SH architecture, its operation
mechanism and the hardware cost.

A. Architecture

The SH consists of a Synchronization Variable Pool, a Schedul-
ing Logic, two Physical Buffers and a Crossroad (see Fig. 2).

Synchronization Variable Pool:
it contains N locks with 1 bit each. There are two access ports

for these locks. One is connected to Physical Buffer 1 and the
other is connected to Physical Buffer 2. That is to say, it supports
two concurrent accesses. All of locks in the pools of all nodes are
globally addressed. All locks’ status are back to the Scheduling
Logic for controlling the Physical Buffers and guaranteeing the
correctness of synchronization handling.

Physical Buffer:
Two physical buffers in the SH are adopted to permit responding

to two simultaneous synchronization requests from both the local
processor and remote processors via the on-chip network. Each
physical buffer owns a buffer queue with the depth of Q and can
receive synchronization requests from either the local processor
or the network. The bypass path in the physical buffer allows that
some requests are able to access the Synchronization Variable Pool
directly without residing in the queue. The physical buffers are
controlled by the Scheduling Logic to buffer incoming requests
and to forward the request, which meets the synchronization

Fig. 2. The structure of the Synchronization Handler (SH)

requirement, to the pool. Moreover, the buffer is not a sequential
queue. Logically, it’s organized as several virtual buffers.

The Multi-core NoC architecture characteristics lead to at most
two requests coming simultaneously to the SH. The one is from
the local processor and the other is from the remote processor via
the network. Although processes or threads on the local processors
could possibly send out their independent requests simultaneously,
these requests are serialized by the local processor and sent to the
SH one by one. It’s the same for the remote requests which are
serialized by the switches in the network and routed to the SH
one by one. Therefore, two physical buffers are enough to meet
the concurrent processing requirement.

To improve the two physical buffers’ utilization, to avoid
consuming much area cost resulting from maintaining a physical
buffer for each lock, and to avoid one synchronization request
blocking another independent synchronization request, the two
physical buffers are dynamically allocated according to coming
synchronization requests and logically organized as N virtual
buffers (equals the number of locks). Each virtual buffer is coupled
with a lock. Under this organization, synchronization requests
accessing different locks go through their independent virtual
buffers and do not interfere with one another. The buffer’s dynamic
allocation is maintained by the Scheduling Logic. Section III-B
details how the virtual buffers work.

Crossroad:
The Crossroad receives control signals from the Scheduling

Logic to automatically dispatch the synchronization requests to
the proper physical buffers.

Scheduling Logic:
The Scheduling Logic acts as the central controller in the SH. It

controls the Crossroad to determine directions of synchronization
requests. It allocates the two physical buffers dynamically and
organizes them to be N virtual buffers logically. It monitors all
locks’ status to maintain these virtual buffers and to perform
correct actions on the coming synchronization requests. It acquires
and releases the corresponding lock in an efficient way to reduce
the contention and the overhead for improving the response time.

In summary, the SH (i) features a set of synchronization vari-
ables and two physical buffers, (ii) enables concurrent processing
of synchronization requests from the local processor and remote
processors via the on-chip network, and (iii) allocates the two
physical buffers dynamically and organizes them into multiple
virtual buffers to support efficient synchronization.



Fig. 3. (a) Buffer’s dynamic allocation and “virtual buffers” organization, (b) an example describing how the two physical buffers are allocated dynamically and
organized as multiple virtual buffers, and (c) two kinds of synchronization actions on locks

B. Operation Mechanism: Dynamic Buffer Allocation

The SH can respond to synchronization requests from the
local processor and remote processors via the on-chip network
concurrently. The two physical buffers are dynamically allocated
and logically organized as multiple virtual buffers. As shown in
Fig. 3 (a), synchronization requests come from the local processor
and the network, go through the corresponding virtual buffers and
finally enter the Synchronization Variable Pool. The requests are
differentiated into two types: Lock Acquire and Lock Release. The
“Lock Release” request always goes along the bypass path, while
the “Lock Acquire” request also can go along the bypass path only
when the related virtual buffer is empty. That is to say, the virtual
buffers are only used for the “Lock Acquire” requests.

Fig. 3 (b) shows an example of how the two physical buffers are
allocated dynamically and organized as multiple virtual buffers.
Assuming that the Lock #1, #2 and #N are used, there are
seven “Lock Acquire” requests coming from the local processor or
remote processors. Request 1, 5 and 6 acquire Lock #1, Request
3 and 7 acquires Lock #2, and Request 2 and 4 acquires Lock
#N. Because Lock #1, #2 and #N are used, the seven requests are
buffered in the physical buffers. Their locations in the physical
buffers reveal the order of their arrivals. In functionality, these
requests are re-ordered according to the locks they acquire. Hence,
Request 1, 5 and 6 logically form Virtual Buffer 1, Request 3 and
7 logically form Virtual Buffer 2, and Request 2 and 4 logically
form Virtual Buffer N.

By monitoring all locks’ status, the Scheduling Logic performs
actions to guarantee the correctness and efficiency of locking. The
lock status is categorized into two types: unlocked – the lock is
not being used by any processors and locked – the lock is being
used by a certain processor. Fig. 3 (c) describes synchronization
actions on locks. The “Lock Acquire” request changes the lock’s
status from “unlocked” to “locked” and the “Lock Release” request
changes the status from “locked” to “unlocked”.

We consider the dynamic buffer allocation under two situations
by the dependency of the two simultaneously coming requests.
Here, “dependent” means the two simultaneous requests access
the same lock. In contrast, “independent” means the two requests
access different locks. The following paragraphs and Fig. 4
illustrate synchronization actions under different cases.

Situation I: only one request or two independent requests come.
A: When a “Lock Acquire” request comes,

1) If the requested lock’s status is “unlocked”, the request goes
along the bypass path to access the Synchronization Variable

Pool directly. The “successful” acknowledgement is sent back
to the source node. In the meantime, the lock’s status is
changed into “locked”. [see (3) and (5) in Fig. 4].

2) If the requested lock is on its “locked” status, (i) if the
buffer queues in the physical buffers are full, the “failed”
acknowledgement is sent back to the source node, and (ii)
if the buffer queues are not full, the request is buffered in
the related virtual buffer until the lock is released. The lock’s
status remains. [see (3) in Fig. 4]

B: When a “Lock Release” request comes,
1) If there are one or more “Lock Acquire” requests buffered

in the virtual buffer which is related to the to-be-released
lock, the “Lock Release” request doesn’t need to access the
Synchronization Variable Pool but the first “Lock Acquire”
request in the virtual buffer is forwarded into the Synchro-
nization Variable Pool. The related “successful” acknowl-
edgement is sent back. The lock’s status remains. [see (5),
(6) and (7) in Fig. 4].

2) If the related virtual buffer is empty, the “Lock Release”
request goes along the bypass path to access the Synchro-
nization Variable Pool and changes the lock’s status to be
“unlocked”. [see (6) in Fig. 4]

Situation II: Two dependent requests come simultaneously.
A: When two dependent “Lock Acquire” requests come,

1) If the requested lock’s status is “unlocked”, one of the two
requests is selected to access the Synchronization Variable
Pool via the bypass path directly and the related “successful”
acknowledgement is sent back. If the buffer queues are
full, the “failed” acknowledgement is sent back to the node
sending the other request. If not, the other request is buffered
in the related virtual buffer. Meanwhile, the lock’s status is
changed into “locked”. The selection conforms to the round-
robin policy. [see (2) in Fig. 4]

2) If the requested lock is on its “locked” status, (i) if the buffer
queues are full, two “failed” acknowledgement are sent back
to where the two requests are from, respectively, (ii) if there
is only one empty item in the buffer queues, one request
is buffered and a “failed” acknowledgement is sent back to
the node sending the other request, and (iii) if there are at
least two empty items in the buffer queues, the two requests
are buffered in their related virtual buffers. The lock’s status
remains. [see (4) in Fig. 4]

B: When the dependent “Lock Acquire” request and “Lock
Release” request come,

1) If there are one or more “Lock Acquire” requests buffered in



Fig. 4. Different cases of performing synchronization actions

the related virtual buffer, the “Lock Release” request doesn’t
need to access the Synchronization Variable Pool, the first
“Lock Acquire” request in the virtual buffer is forwarded into
the Synchronization Variable Pool, the related “successful”
acknowledgement is back, and the coming “Lock Acquire”
request goes into the virtual buffer. The lock’s status remains.
[see (9) in Fig. 4]

2) If the related virtual buffer is empty, the “Lock Release”
request doesn’t need to access the Synchronization Variable
Pool, while the “Lock Acquire” request goes along the bypass
path to access the Synchronization Variable Pool directly and
the related “successful” acknowledgement is sent back. The
lock’s status remains. [see (8) in Fig. 4]

To help understand Fig. 4, we take (2), (4) and (9) in Fig. 4
as examples to explain the dynamic buffer allocation in detail. In
(2), when L1 and L2 comes concurrently, Lock #1 is “unlocked”.
L1 acquires Lock #1 successfully and hence the status of Lock
#1 changes to be “locked”, but L2 is stored in Physical Buffer
2 (in Virtual Buffer 1 logically). In (4), when L5 and L6 comes
concurrently, Lock #0 is “locked”. L5 is stored in Physical Buffer
1 because it’s from the processor and L6 is stored in Physical
Buffer 2 because it’s from Physical Buffer 2. However, they are
both in Virtual Buffer 0 logically. In (9), when L9 and R2 comes
concurrently, Lock #1 is “locked” and L4 is in Physical Buffer 2
(in Virtual Buffer 1 logically) to wait for acquiring Lock #1. L4
acquires Lock #1 successfully as soon as R2 releases Lock #1.
L9 goes into Physical Buffer 1 (in Virtual Buffer 1 logically).

TABLE I
SYNTHESIS RESULTS

HHHH
N=2 N=8 N=32 N=128

A F A F A F A F
Q= 1 0.89 1.79 1.18 1.60 1.93 1.47 4.44 1.28
Q= 2 1.78 1.56 2.26 1.42 3.32 1.32 5.11 1.20
Q= 4 3.69 1.43 4.04 1.30 5.40 1.21 8.32 1.16
Q= 8 7.60 1.32 8.39 1.22 9.31 1.16 13.41 1.12
Q=16 14.63 1.16 18.41 1.11 20.76 1.06 23.77 1.02
Q=32 29.02 1.04 38.64 0.99 42.12 0.95 50.46 0.92

A: Area (Kilo gate); F: Frequency (GHz)

C. Hardware Implementation

The SH design is synthesized using Synopsys R⃝ Design Com-
piler in Chartered R⃝ 0.13 µm technology. The synthesis results are
listed in TABLE I. For all, the clock frequency can reach more
than 900 MHz. As Q and N increases, the area cost increases and
the clock frequency decreases, because larger Q and N result in
more storage and logic area and less clock frequency. For instance,
when Q=1and N=2, the area is 0.89K and it can reach 1.79 GHz.
When Q=32 and N=128, the area rises up to 50.46K and the
frequency reduces to 0.92 GHz. The values of Q and N affect not
only the hardware cost but also the performance. Although the
increase of Q and N leads to larger hardware cost, the designs
gain better performance (see in Section IV).

IV. EXPERIMENTS AND RESULTS

We perform experiments to evaluate the SH in a multi-core NoC
platform, applying both synthetic and application workloads.



TABLE II
DEFINITIONS AND NOTATIONS

Q: The depth of buffer queue in each physical buffer
N: The number of locks
C: Average cycles of acquiring a lock successfully in a

simulation. C = (the time when the first acquire is sent
in a simulation - the time when the last “successful”
acknowledgment is received in a simulation) / clock period

L: Lock life time: when a lock is acquired by a PM node
successfully and will be released after L cycles.

γ(t): Buffer utilization at cycle #t. γ(t) = the number of used
items in the two physical buffers at cycle #t / the total item
numbers in the two physical buffers (2*Q).

Γ: Average buffer utilization during a simulation. Γ = the sum
of γ(t) / the total cycles in a simulation.

A. Experimental Platform

We constructed a multi-core NoC experimental platform as
shown in Fig. 1. The multi-core NoC uses the LEON3 [10]
as the processor in each PM node and uses the Nostrum NoC
[11] as the on-chip network. The LEON3 processor core is a
synthesizable VHDL model of a 32-bit processor compliant with
the SPARC V8 architecture. The Nostrum NoC is a 2D mesh
packet-switched network with configurable size. It serves as a
customizable platform.

B. Definitions and Notations

To facilitate the analysis and discussion in the following sub-
sections, we first define a set of symbols in TABLE II.

C. Simulation Results with Synthetic Workloads

First, we use synthetic workloads to evaluate the SH’s perfor-
mance. In the experiment, all nodes acquire the same lock located
in the central node. If a node receives a “failed” acknowledgment
from the central node, it re-acquires the lock again until it receives
a “successful” acknowledgment. Once a node acquires the lock
successfully, it holds the lock for L cycles, and then releases it.
The simulation ends after all nodes acquire the lock successfully
and release it.

Cost of Successful Synchronization
In this subsection, the cost of successful synchronization is

discussed with respect to three factors: (i) network size, (ii) depth
of buffer queue in the two physical buffers, and (iii) lock life time.
The cost of successful synchronization is reflected by the average
cycles of acquiring a lock successfully (C). It is demonstrated that
our SH design achieves higher performance as either the network
size or the depth of the buffer queue in the two physical buffers
is becoming larger.

Fig. 5(a) plots the average cycles of acquiring a lock success-
fully (C) versus the network size and the queue depth. the lock
life time (L) is fixed to be 10 cycles. We can see that (i) as the
network size increases, the C increases, because network latency
becomes larger, and (ii) for the same network size, the larger the
queue depth is, the less the C is.

Fig. 5(b) plots the average cycles of acquiring a lock success-
fully (C) versus the network size and the lock life time (L). The
queue depth is fixed to be 8. We can observe that (i) with the
increase of the network size, the C is increasing, and (ii) for the
same network size, the C is positively proportional to the L. Larger
L leads to longer waiting time for lock release, so more packets
transmit in the network and hence network latency becomes larger,
under the same queue depth condition.

Analysis of Buffer Utilization

Fig. 5. Cost of Successful Synchronization

Since the SH’s main feature is the two physical buffers and their
“virtual buffer” organization, the buffer utilization is analyzed. In
the experiment, The buffer utilization (γ(t)) and the average buffer
utilization (Γ) of the SH in the central node are obtained.

Fig. 6 shows the average buffer utilization (Γ) of the SH in the
central node versus the lock life time and the queue depth. The
network size is fixed to be 8x8(64). As we can see, (i) the Γ for
larger queue depth is lower than that for smaller queue depth. For
instance, the Γ for QueueDepth=1, 2, 4, 8, 16 and 32 are more
or less 97%, 96%, 94%, 90%, 76% and 47%, and (ii) the Γ is
almost a constant for each value of queue depth, no matter what
the lock life time is. This is because larger lock life time leads to
not only longer simulation time but also the larger sum of γ(t) .

Fig. 7 shows the buffer utilization (γ(t)) of the SH in the central
node for different queue depth, versus the clock cycle. For larger
queue depth, the width of the bottom of the curve is smaller and
the top of the curve is narrower. The width of the bottom reflects
how long the simulation runs, so the smaller the width of the
bottom is, the better the performance is. The narrower top of the
curve leads to the lower Γ. For instance, for QueueDepth Q=1,
the width of the top is almost equal to the width of the bottom.
It means that the two physical buffers are always close to be full.
For QueueDepth=32, the top is very sharp, meaning that the two
physical buffers are only close to be full during a very small part
of the entire simulation. This is why the (Γ) for larger queue depth
in Fig. 6 is lower. We can obtain that higher queue depth can cause
better performance, but brings more area cost and lower (Γ).

D. Simulation Results with Application Workloads

This subsection evaluates the SH’s performance in terms of
speedup by employing two synchronization-intensive applications:
Livermore Loop 6 and Wavefront Computation. In Livermore



Fig. 6. average buffer utilization (Γ) of the SH in the central node

Fig. 7. buffer utilization (γ(t)) in the central node for different queue depth

Loop 6, the computation in each iteration depends on the values
calculated in all previous iterations. In Wavefront Computation,
the computation of each matrix element depends on its neighbors
to the left, above, and above-left.

Fig. 8 shows the application speedup results versus the network
size. We can see that our SH design achieves fairly good speedup.
When the network size increases, the speedup (Ωm = T1node/Tmnode,
where T1node is the single PM node execution time as the baseline,
Tmnode the execution time of m PM node(s).) goes up from 1, 1.82,
3.72, 6.72, 11.82, 19.45 to 26.34 for the Livermore Loop 6 and
from 1, 1.92, 3.76, 6.95, 13.22, 20.73 to 27.37 for the Wavefront
Computation. To make the comparison fair, we calculate the per-
node speedup by Ωm/m. As the network size increases, the per-
node speedup decreases from 1, 0.91, 0.93, 0.84, 0.74, 0.61 to 0.41
for the Livermore Loop 6 and from 1, 0.96, 0.94, 0.87, 0.83, 0.65
to 0.43 for the Wavefront Computation. This means that, as the
network size increases, the speedup acceleration is slowing down.
This is due to that the communication latency goes up nonlinearly
and the synchronization overhead increases with the network size,
limiting the performance.

V. CONCLUSION

In this paper, we have proposed a hardware Synchronization
Handler (SH) on multi-core NoCs with distributed memories to
enable efficient shared variable synchronization. The SH features
two physical queues to buffer and handle synchronization requests
issued by the local and remote processors via the on-chip network.

Fig. 8. Speedup of Livermore Loop 6 and Wavefront Computation

The two physical buffers are dynamically allocated and logically
organized as multiple virtual buffers. This dynamic buffer alloca-
tion and virtual organization results in efficient buffer utilization
and gains in performance. The SH design has been implemented
and integrated in our cycle-accurate multi-core NoC platform.
To quantify its speed and area, the SH design was synthesized
in 130nm technology under various queue dimensions, showing
that it can run more than 900 MHz with small area overhead.
Finally, both synthetic and synchronization-intensive application
workloads have been applied to evaluate the cost of successful
synchronization, the utilization of dynamically allocated buffers
and application speedup.

ACKNOWLEDGMENT

The research is partially supported by the FP7 EU project
MOSART (No. IST-215244), the National 863 Program of China
(No. 2009AA011704), the Innovative Team of High-performance
Microprocessor Technology (No. IRT 0614), and the National
Natural Science Foundation of China (No. 60676010).

REFERENCES

[1] A. Jantsch and H. Tenhunen, Networks on chip. Kluwer Academic
Publishers, 2003.

[2] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of
network-on-chip,” ACM Comp. Surveys, vol. 38, no. 1, pp. 1–51, Mar. 2006.

[3] P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance evalu-
ation and design trade-offs for network-on-chip interconnect architectures,”
IEEE Trans. on Computers, vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[4] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Power/performance
hardware optimization for synchronization intensive applications in mpsocs,”
in Proc. of the Conf. on Design, automation and test in Europe (DATE’06),
2006, pp. 606–611.

[5] J. Sampson, R. Gonzalez, J.-F. Collard, N. Jouppi, and M. Schlansker,
“Fast synchronization for chip multiprocessors,” ACM Computer Architecture
News, vol. 33, no. 4, pp. 64–69, Apr. 2005.

[6] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Efficient synchroniza-
tion for embedded on-chip multiprocessors,” IEEE Trans. on VLSI, vol. 14,
no. 10, pp. 1049–1062, Oct. 2005.

[7] O. Villa, G. Palermo, and C. Silvano, “Efficiency and scalability of barrier
synchronization on noc based many-core architectures,” in Proc. of the 2008
Int’l Conf. on Compilers, architectures and synthesis for embedded systems
(CASES’08), 2008, pp. 81–89.

[8] W. Zhu, V. Sreedhar, Z. Hu, and G. Gao, “Synchronization state buffer:
supporting efficient fine-grain synchronization on many-core architectures,”
in Proc. of the 34th annual Int’l Symp. on Computer Architecture (ISCA’07),
2007, pp. 35–45.

[9] C. Yu and P. Petrov, “Distributed and low-power synchronization
architecture for embedded multiprocessors,” in Proc. of the 6th
IEEE/ACM/IFIP Int’l Conf. on Hardware/Software codesign and system
synthesis (CODES+ISSS’08), 2008, pp. 73–78.

[10] “Leon3 processor,” in http://www.gaisler.com.
[11] A. Jantsch et al., “The nostrum network-on-chip,” in

http://www.ict.kth.se/nostrum.


