
ANDRES - ANalysis and Design of run-time REconfigurable,
heterogeneous Systems

Andreas Herrholz?, Frank Oppenheimer?, Andreas Schallenberg†, Wolfgang Nebel†
?OFFIS Institute – †Carl v. Ossietzky University – Oldenburg, Germany

andreas.herrholz@offis.de

Christoph Grimm, Markus Damm
Technical University of Vienna, Austria

Fernando Herrera, Eugenio Villar
University of Cantabria, Spain

Ingo Sander, Axel Jantsch
KTH Stockholm, Sweden

Anne-Marie Fouilliart
Thales Communications, France

Marcos Martinez
DS2, Spain

Abstract

In this paper we will present the ANDRES project. The
main objective of ANDRES is the development of a seamless
design flow for adaptive heterogeneous embedded systems
based on the modelling language SystemC. The methodol-
ogy and tools will enable early integration and exploration
of system specifications using different Models of Compu-
tation as well as automatic synthesis of hardware and soft-
ware implementations. The project explores different as-
pects of adaptivity and will provide means to efficiently use
and exploit adaptivity in embedded system design.

1. Introduction

Today, highly integrated embedded systems have a wide
range of usage in many innovative European industries,
such as telecommunications and automotive. These sys-
tems are usually heterogeneous in nature by including up to
four different domains: software, analogue hardware, static
hardware, and dynamically reconfigurable hardware. Espe-
cially the latter one is gaining more importance as it enables
adaptive systems with increased flexibility and a wide range
of applications.

Up to now, there is no methodology that allows to seam-
lessly specify, simulate, synthesise and verify such adaptive
heterogeneous embedded systems (AHES), because each
domain comes with its own computational models, lan-
guages and design tools. This prevents early holistic sys-
tem validation and postpones the system verification to the
system integration phase causing long, costly and time con-
suming design reiterations.

ANDRES is developing solutions to overcome these

incompatibilities by creating an integrated modelling ap-
proach for AHES. This approach builds on the open-source
modelling language SystemC already adopted by many
European companies. As a result ANDRES will pro-
vide a modelling framework for designing embedded hard-
ware/software systems on a high level of abstraction em-
phasising in particular the integration of adaptivity. This in-
cludes the development of concepts and tools for automatic
synthesis of hardware and software implementations.

Achieving these objectives is a major challenge and re-
quires resources and expertise on the European level. Two
leading European companies in the field of telecommunica-
tion, DS2 and Thales Communications, are joined by four
research institutions, OFFIS, Technical University of Vi-
enna, KTH Stockholm and University of Cantabria, pro-
viding experiences in modelling and synthesis of embedded
systems.

ANDRES is a specific targeted research project
(STREP), co-funded by the European Commission within
the Sixth Framework Programme. It has started in June
2006 and will last for three years. Additional and future
information about ANDRES can be found on the project
website [1].

The rest of the paper is structured as follows: We will
first present the industrial motivation for the project arising
from current issues and problems involved with embedded
system design and from the expectations directed towards
adaptive systems. Then we will present a general view on
adaptivity in embedded systems including the types and ar-
chitectures of adaptivity that are being considered in AN-
DRES. Following an overview of the planned design flow,
we will briefly present the domain specific modelling li-
braries. The paper concludes with a look at the synthesis
concepts for hard- and software.



2. Industrial Motivation

2.1. Thales

The design of today’s embedded systems has to deal
with the complexity implied by the combination of vari-
ous technologies (hardware and software) and the increas-
ing need for (re)configurability (e.g. communication sys-
tems have to support several protocols using the same hard-
ware). Modern mobile phones combine for example a PDA,
a GPS based navigation system, entertainment and multi-
mode communication with all kinds of external devices.
Furthermore, these systems have to manage performance
and concurrent access on resources, which increases the
time of tuning. Dynamically reconfigurable systems have
the potential of realising efficient systems as well as provid-
ing adaptability to changing system requirements. Another
motivation for reconfiguration is resource optimisation of
the physical layer; one of the crucial issues today is power
consumption.

A software-defined-radio (SDR) design must meet to-
day’s reconfigurability requirements to give access to the
variety of different standards as well as accommodate cost,
power and performance demands. The architecture for
an SDR system includes a microprocessor, a DSP and
an FPGA performing the high-computational-load filtering
and digital download conversions. Field Programmable
Gate Arrays (FPGAs) can be configured to perform a spe-
cific task. Once configured, the FPGA contains an imple-
mentation of an algorithm which is executed much faster
and with less energy consumption than a general purpose
processor (GPP), mainly due to its inherent parallelism.
More and more FPGAs have the ability to change their con-
figuration at runtime. Even if FPGAs are still less flexible
than general purpose processors, they are progressing in that
direction.

2.2. DS2

One of the most difficult tasks in the design of modern
complex embedded home networking systems like power-
line communication modems is the validation phase of the
devices. In this sense, the use of FPGA technology allows
having an early analysis of the behaviour of the system un-
der almost real conditions while providing an extreme flex-
ibility for adding or modifying the design, making them the
ideal tool for validating powerline developments.

Dynamic reconfiguration of FPGAs can provide even
more capabilities for the validation of this kind of systems:
different peripherals can be included on the FPGA on de-
mand. This way, if a specific interface is needed in order
to extract information from the device under test, it can be
configured and removed on the fly using a reconfigurable

object adapting to different test situations without having
to stop the whole system. A device can then be run dur-
ing long tests, where different operations are performed and
different equipment is connected, without having to stop the
whole test.

This concept can also be extended to the debug phase,
where traditionally there has been a problem of visibility
of internal signals and monitoring of internal modules on
the FPGAs. This limited visibility can be handled properly
through the use of reconfigurable objects, adding monitor-
ing modules on the fly on the device under test reusing and
sharing the available pins of the FPGA.

3. Adaptivity in Embedded System Design

While the heterogeneity of embedded systems has al-
ready been extensively investigated in the past, consider-
ing adaptivity is rather new to embedded system design.
In particular through the availability of high-performance
programmable logic devices, like run-time reconfigurable
FPGAs, making systems adaptive has become very attrac-
tive by offering a whole new range of possible applications.
For instance, if different operating modes are used mutu-
ally exclusive, the system may automatically adapt provid-
ing only one mode at a time, effectively saving ressources.
Other possible applications are the adaptation to future, yet
unknown needs or to increase fault tolerance.

3.1 Adaptive Architectures

In general, adaptivity is not limited to one special do-
main, e.g. the software or reconfigurable hardware domain,
but may be expressed and implemented using a range of dif-
ferent adaptive architectures. In ANDRES we consider the
following architectures exhibiting various forms of adaptiv-
ity:

Microprocessor The microprocessor is highly adaptive
due to the possibility to load and execute different pro-
grams.

FPGA Some FPGA families support both full and partial
reconfigurability during run-time.

Analogue circuits The operation of an analogue circuit
can be adapted by changing parameters of analogue
components.

Custom hardware Even custom hardware can provide
some degree of adaptivity, if a component can be set
to different modes.



3.2 Types of Adaptivity

Depending on the chosen architecture and application
adaptivity comes in different flavours. In ANDRES we
cover the full degree of adaptivity, from setting a few pa-
rameters up to reconfiguring the whole device. We mainly
focus on dynamic adaptivity, where the adaptation of the
system is done during run-time. Components can either be
self-adaptive or their adaptation is controlled externally. We
also consider channel adaptation, where a communication
channel adapts to different interfaces of an adaptive compo-
nent.

ANDRES does not cover the dynamic creation of new
components and channels during run-time, e.g. we do not
consider spawning of new objects or dynamic creation of
processes.

4 ANDRES Design Flow

F
unctional

D
om

ain
Im

plem
entation

D
om

ain

Design Refinement

Specification Model

Constrained Model
with Adaptive Processes

Allocation and Mapping to
Architectural Resources

Design Space Exploration

A
N

D
R

E
S HW and SW Synthesis

Architecture Model

Communication Models

Implementation

Communication Infrastructure

processors
Micro−

Hardware
Reconfig.

Models
SoftwareDigital

Hardware
Models

Mixed Signal
Models

Analogue

Circuits
Analogue

Hardware
Custom

Figure 1. The ANDRES design flow

The design flow in ANDRES, as illustrated in Figure 1,
starts with a constrained system model, which already mod-
els adaptivity and includes functional and non-functional
properties. This constrained model is a SystemC model,
whose design rules and guidelines are based on a formal ap-
proach (Section 5.1). This model can then be refined to dif-
ferent target domains using one of the three domain-specific
modelling libraries that will be provided in ANDRES:

SystemC-AMS A library of building blocks based on
SystemC-AMS will be provided to support the design
of analogue/mixed-signal dominated communication
systems.

HetSC A SystemC based library for system modelling us-
ing different Models of Computations (e.g. KPN, CSP)
which also provides an entry point for automatic soft-
ware synthesis.

OSSS+R A modelling library based on SystemC for
object-oriented modelling of run-time reconfigurable
hardware which will provide direct hardware synthe-
sis capabilities.

Each of the libraries provides means to create executable
specifications to simulate system components. Because all
libraries are based on the discrete-event kernel of SystemC
they can be coupled to provide system level simulation for
analysis and validation of the overall system. Communica-
tion between system components is modelled using a con-
cept called polymorphic signals (Section 5.5). These sig-
nals support fast design exploration as the Models of Com-
putation (MoC) of different system components can be ex-
changed without explicitly changing the underlying com-
munication infrastructure.

The general adaptivity concept already expressed in the
initial model, is specialised within each of the libraries us-
ing domain specific techniques. Because not all target archi-
tectures provide the same types of adaptivity, e.g. analogue
circuits only allow parametrisation, exploration of different
adaptive architectures may be limited.

Finally the refined SystemC system model is the entry
point for automatic synthesis. ANDRES is developing tools
for automatic synthesis of digital reconfigurable hardware,
software and communication infrastructure. However, AN-
DRES does not cover automatic synthesis of analogue cir-
cuits.

5. Specification of AHES

5.1 Formal Specification

The modelling framework in ANDRES is based on the
existing ForSyDe [5, 8] framework developed at KTH. AN-
DRES extends ForSyDe by integration of adaptivity into the
modelling framework. This is done by the concept of an
adaptive process, which changes its behaviour depending
on special input signals from the environment. The values
carried by these input signals can be data values, but also
functions or complete processes. Thus adaptation can be
modelled at a varying degree of complexity.



p
1

p
2

p
3

B

A p
4

p
5

Process

Signal

Domain Interface

MoC A MoC B

B

A

Figure 2. Processes of different Models of
Computation can communicate with each
other via domain interfaces

5.1.1 Model of Computation

ANDRES uses a formally defined, hierarchical heteroge-
neous MoC, which is illustrated in Figure 2. Processes com-
municate via signals. There are so-called domain interfaces
to formally define the interaction between processes of dif-
ferent computational models. The following MoCs are used
in ANDRES:

• untimed model

• synchronous model

• discrete time model

• continuous time model

Since the designer uses SystemC as a modelling language,
the ANDRES project will define modelling rules and guide-
lines, which guarantee the SystemC models to be compliant
with the ANDRES modelling formalism. Thus methods de-
veloped for this framework, e.g. for property analysis, veri-
fication or transformation, will also be applicable to the AN-
DRES SystemC models.

5.1.2 Modelling of Adaptivity

Adaptivity is modelled by means of formally defined adap-
tive processes. The functionality that the adaptive process
computes can be changed from the environment depending
on the value of an input signal.

Figure 3 shows a simple, but typical example for the
modelling of adaptivity. The processes Encoder and De-
coder are both adaptive processes and are fed with signals
carrying functions. These functions change the behaviour
of the encoder. In the first cycle the encoding function adds
one, while in the second cycle two is added to the incoming
value. The same adaptivity mechanism is used for the de-
coder. To yield an implementation this model is refined and

generate
Encoder

Encoder Decoder

generate
Decoder

N)S(N N)S(N

Key

Encoding
Function

Decoding
Function

S(N)

S(N)
Signal

S(N)
Encoded Signal Decoded Signal

S(N)

<1,2,...>

<f(x) = x−1, f(x) = x−2, ...><f(x) = x+1, f(x) = x+2, ...>

<2,4,...> <2,4,...><3,6,...>

Figure 3. The Encoder/Decoder is a typical
example for adaptivity.

non-functional characteristics, like reconfiguration time, are
taken into account in subsequent design phases and the as-
sociated model.

5.2 SystemC-AMS

The OSCI working group SystemC-AMS is currently
working on a prototype allowing designers to simulate sys-
tems that combine data-flow modelling (using the Syn-
chronous Data Flow (SDF) MoC), analogue circuits (us-
ing the continuous time network (CT-NET) MoC), and
rather control oriented digital circuits (using the discrete-
event (DE) MoC). Compared with circuit simulators such as
SPICE, the focus of SystemC-AMS is on executable speci-
fication, design space exploration and virtual prototyping of
signal processing and analogue/mixed-signal systems [12].
All these use-cases require high simulation performance
while less accurate simulation is acceptable.

An important feature of SystemC-AMS is its extensibil-
ity by other Models of Computation. Often, application or
abstraction specific methods allow designers a more effi-
cient modelling, or result in higher simulation performance.
An example is the simulation of linear networks, which can
be orders of magnitudes faster than the more general numer-
ical integration for non-linear networks. New ”solvers” for
alternative MoCs can be integrated easily into the synchro-
nization layer. The synchronisation layer supports directed
communication and only a simple (but efficient) synchroni-
sation on user specified events or in fixed time steps. This
reflects the requirements for high simulation performance
at reduced simulation accuracy. This extensibility makes
SystemC-AMS a very good integration platform for system
level simulations.

In ANDRES for modelling AHES, like in the formal
specification of adaptivity, different sets of possible func-
tional behaviour can be expressed by overloading virtual
methods. Parametrisation and other kinds of adaptivity can
be modelled by parameters, and can be made more ex-
plicit by attributes. The means for specifying and mod-



Figure 4. HetSC specification methodology

elling adaptivity will be encapsulated within a class that
is inherited from an adaptive object class specified in the
original system model. To support system level design
of adaptive communication systems, a library of building
blocks is being developed. This building block library
will support designers in evaluating different variants of re-
configurable signal processing systems by comparing e.g.
switched capacitor or parametrisable analogue circuits with
digital hardware or software realisations.

5.3 HetSC

HetSC [3] is a methodology for enabling heterogeneous
specification of complex embedded systems in SystemC
(see Figure 4). Computational models supported include
untimed MoCs, synchronous MoCs and the timed MoCs
already supported by SystemC. Though HetSC aims at a
complete system-level HW/SW codesign flow, in ANDRES
HetSC will be integrated into the design flow for modelling
and generation of embedded software (see Figure 5). Pro-
viding several abstract MoCs (e.g. KPN, PN, CSP, SR, etc.),
HetSC enables a more intuitive and safer design of con-
current software systems adjusting to different specification
needs of the designer. In addition, the HetSC methodology
defines a set of specification rules and coding guidelines for
each specific MoC making the design task more system-
atic. The fulfillment of MoC specification rules provides
useful properties for concurrent software, such as determin-
ism, deadlock protection, etc, which can easily be lost when
using plain SystemC language elements.

The HetSC library, associated to the HetSC methodol-
ogy, provides a set of facilities to cover the deficiencies of
the SystemC core language for heterogeneous specification.
The support of some MoCs requires new specification facil-
ities with specific semantics and abstraction levels. In addi-
tion, some facilities of the HetSC library help to detect and
locate MoC rule violations and assist in debugging concur-
rent specifications.

Though an important part of the work on the software
design flow based on HetSC has already been developed
[2], several tasks are being carried out for integrating the
HetSC methodology into the AHES design framework:

• Formalisation of the HetSC methodology under the
ForSyDe formal model of AHES.

Figure 5. HetSC in ANDRES

• Providing the HetSC methodology with the capability
for specifying Adaptive Objects (AO), thus adaptivity.

• Connecting HetSC with other SystemC based specifi-
cation methodologies.

• Defining and providing specific features for software
modelling.

The ForSyDe formal model provides means to analyse,
verify and transform system specifications and is being ex-
tended to support AHES. To be able to apply these methods
to HetSC specifications, the HetSC methodology needs to
be formalised in ForSyDe. To assist this task the ForSyDe
formal model is being implemented using HetSC.

Regarding the specification of adaptivity, HetSC will
be able to capture adaptive objects (AO). For this, be-
side considering the different types of adaptivity defined
in ForSyDe, the MoC employed has to be taken into ac-
count, too. That is, the MoC affects when and how adap-
tation is performed. For instance, given the untimed KPN
MoC, adaption is synchronized with the inputs and outputs
of a process by means of an uc fifo channel, a specialized
type of channel provided by HetSC. The only information
about the adaptation time is an order relationship between
the adaption and other process computations. However, in a
clocked synchronous MoC, adaptation can take place at ex-
plicit clock ticks. This is a more precise timing information
about adaptation than in the untimed case.

Finally, since the HetSC methodology will be integrated
into the AHES modelling framework, other tasks deal with
the interoperability and connection with other ANDRES
specification methodologies. Specifically, the connection
with SystemC-AMS is being studied and enabled.

5.4 OSSS+R

The latest generation of FPGAs can be partially recon-
figured during run-time without interfering with the rest of
the design. Though this enables the creation of dynamically
adaptive hardware, current design tools lack the support
for this kind of application at higher levels. OSSS+R is a
SystemC based modelling library providing high-level lan-
guage constructs to model (self-)reconfigurable hardware



systems. Additionally OSSS+R keeps a well-defined syn-
thesis semantics providing a direct entry point for automatic
hardware synthesis (Section 6.2).

Figure 6. Polymorphism and configurations

Based on the original OSSS approach of combining
object-orientation and hardware design [6], in OSSS+R
object-orientation is used as an adequate abstraction mecha-
nism for dynamically reconfigurable hardware. The concept
is based on the assumption that changing functions of parts
of a hardware system largely resembles the use of polymor-
phism in object-oriented software design [9].

Polymorphism, as it is used in object-oriented program-
ming, enables calling methods on an object, whose exact
type is unknown to the caller. The only known reference to
the object is its interface. Depending on the actual class of
the object, the corresponding implementation of a method
is executed. This technique enables changing parts of the
software at run-time without modifying the static part of
the code.

Considering a digital hardware system consisting of a
static and a dynamically reconfigurable part, it is obvi-
ous that the interface between the two parts needs to be
fixed. However, the implemented functionality of the re-
configurable hardware may change. Hence, the key idea of
OSSS+R is to model the reconfigurable area of a hardware
system as an adaptive (polymorphic) object with a fixed in-
terface. This interface is defined by a base class, while its
possible variants belong to different subclasses. During run-
time, different variants of the adaptive object can be config-
ured and used (see Figure 6).

To handle the management of different object configura-
tions and to ensure persistance OSSS+R introduces Named
Contexts. A context represents all relevant information of
an object, including its current type and state. From the de-
signer’s point of view, a context is used similar to a C++
pointer, so objects can be assigned to it and methods can
be called arbitrarily. However, automatically instantiated
infrastructure ensures that a context is enabled (i.e. config-
ured) only if it is accessed. Additionally its state is auto-
matically saved and restored during consecutive reconfig-

urations. Because a context can be accessed concurrently,
incoming request are serialised using a built-in scheduler.
Contexts hide the complexity of configuration management
and state preservation and enable the designer to use adap-
tivity transparently.

The concept of OSSS+R focuses on run-time recon-
figurable FPGAs and resembles the concept of adaptiv-
ity through configuration. Simulating a design provides
a cycle-accurate simulation of an FPGA implementation
including annotated reconfiguration times. In ANDRES
OSSS+R is being further extended to support a wider range
of adaptive architectures at higher levels of abstractions en-
abling faster and easier exploration of different adaptive ar-
chitecures.

5.5 Polymorphic Signals

When modelling heterogeneous systems, typically sev-
eral different MoCs are used for different subsystems.
Moreover, the MoC used for a specific system part may
change during system development, e.g. when passing over
(due to a top-down refinement) from an abstract descrip-
tion of a low pass filter using a transfer function within the
SDF-MoC to an explicit one using an RC circuit within a
continuous time MoC.

Therefore, two problems arise: to use appropriate con-
verter modules when connecting systems parts described
within different MoCs, and to exchange these when chang-
ing the MoC for a specific subsystem. This has to be done
manually and is therefore time consuming and potentially
error-prone. To overcome these problems, the concept of
polymorphic signals was developed and prototypically im-
plemented in SystemC-AMS [10].

Polymorphic signals are able to convert value types (e.g.
real to bit-vector) and semantics (e.g. SDF-MoC to DE-
MoC) automatically. This is achieved by instantiating ap-
propriate converter modules depending on the types of the
ports the signal is connected to, such that the designer has
not to be concerned with this. Another application of poly-
morphic signals is simulator coupling [11].

Polymorphic signals will be used within ANDRES to
support the interactive performance analysis of heteroge-
neous systems by mixed level simulation.

6. Synthesis of AHES

6.1 Synthesis of Software

In ANDRES, HetSC will be the entry point for soft-
ware development and synthesis. In [2] an automatic soft-
ware generation methodology based on HetSC has been
presented based on a library called SWGen. This library
enables the generation of target code (source and binary)



corresponding to the software partition of a HetSC speci-
fication. Because there is no modification of the original
specification code needed, this technique is called single-
source software generation [7]. In ANDRES, this work will
be reused, improved and adapted to the AHES design flow
(see Figure 5).

In the SWGen methodology, the SystemC implementa-
tion of the HetSC specification facilities (provided by the
HetSC and SystemC libraries) is substituted by a C/C++
implementation provided by the SWGen library, which is
based on real-time operating system (RTOS) calls belong-
ing to one of the supported RTOS APIs. The generated soft-
ware code is equivalent to the specification code in a sense
that it preserves the properties guaranteed by the specifica-
tion. Most of this is provided by preserving the structures of
concurrency and hierarchy of the specification in the gen-
erated code. Thus, most of the MoC rules, which impose
constraints on structure, are kept. However, the SWGen
methodology also involves some kind of MoC refinement
since the underlying DE simulation kernel of SystemC is
substituted by a RTOS runtime library. This refinement pre-
serves the semantics of the user view, but uses the resources
and assumptions of the target MoC, i.e. the RTOS runtime
library. In ANDRES, using ForSyDe will be helpful for
formalising the refinements performed by the software gen-
eration methodology.

One particular task in ANDRES regarding software syn-
thesis is considering what adaptivity actually means in soft-
ware. A basic interpretation is to view adaptation as mul-
tiplexing different functionalities over a shared execution
resource. In software, these are usually the processor and
the memory hierarchy. This drives to already well-known
software concepts and techniques, such as process schedul-
ing, context switching, virtual memory, etc. Most of these
are already handled by RTOS. However, in ANDRES, the
SWGen methodology will be extended to support software
generation from a HetSC adaptive object (AO). Assigning
two or more exclusive functionalities to an AO in the HetSC
specification will induce the SWGen methodology to map
those functions to the same resource, i.e. the same proces-
sor, using the underlying services of the RTOS. This might
be useful, for instance, to save processing resources in a
multiprocesor SoC architecture (MPSoC). However this re-
quires the selected RTOS to support multiprocessor archi-
tectures and to provide corresponding system calls.

6.2 Synthesis of run-time reconfigurable
digital Hardware

One of the major goals of the ANDRES project concern-
ing digital hardware is the automated synthesis of reconfig-
urable hardware architectures. In this case “Synthesis” cov-
ers the translation of a given OSSS+R model to RT-level

VHDL, which in turn serves as input for third-party back-
end tools, e.g. Xilinx’ Early Access Partial Reconfiguration
Design Flow [13] (see Figure 7). The synthesis tool FOSSY
(Functional Oldenburg System SYnthesizer) for OSSS will
be extended to support the language constructs for reconfig-
urable components introduced with OSSS+R.

Figure 7. OSSS+R synthesis flow

The major transformation step towards a pure RTL de-
sign from a OSSS+R model consists of the generation of
various management structures. Additional to the applica-
tion and annotations given by the designer, different arbitra-
tion mechanisms, structural information (e.g. FPGA types)
etc. need to be considered. The generated infrastructure
consists of a set of hierarchically organised controllers. A
set of distributed controllers for each reconfigurable area
handles access requests by the static design parts. Each ac-
cess controller uses a central reconfiguration controller per
device to accomplish reconfigurations. That unit resolves
conflicts between different distributed controllers and pro-
vides an interface to the FPGA’s configuration port.

The required interfaces to the reconfigurable areas can
be determined during synthesis by analysing the interfaces
of the corresponding Named Contexts that are bound to the
area. This even allows the synthesis of static signal-level
interfaces for unrelated interfaces bound to a single recon-
figurable area on the application layer.

For each possible functional content of a Named Con-
text, a VHDL implementation of the behaviour is generated
separately. In the later steps of the synthesis flow each of
these functional blocks can be used for the generation of
the required partial bitstreams.

6.3 Synthesis of Communication Inter-
faces

Beside the automatic synthesis of hard- and software
components, ANDRES is developing means for automatic
synthesis of communication infrastructure between those
components. In particular, the communication between
adaptive objects will be studied. One primary goal is the au-
tomatic generation of hardware/software interfaces, which



will enable, for example, to access and to control adaptive
hardware objects from software and vice versa. However,
also the interaction between the digital hardware/software
and the analogue part is investigated.

The basis for a methodology and corresponding tools for
communication synthesis are on one hand the communica-
tion modelling framework provided by the polymorphic sig-
nals (see Section 5.5) and on the other hand the approaches
for communication refinement and synthesis developed by
the ICODES project [4]. While the polymorphic signals
provide means to connect models with different computa-
tional models, they might not provide enough information
to efficiently synthesise communication infrastructure be-
tween them. Here the methods developed by ICODES will
be adopted for communication refinement in adaptive het-
erogeneous architectures. As this affects all domain specific
modelling libraries, it will require a close cooperation of the
involved research partners.

As a result, a synthesis tool, based on FOSSY, will be
developed that enables automatic generation of signal-level
and software interfaces from abstract interface descriptions
for integration of adaptive objects into a heterogeneous
system environment. As these abstract interfaces can ef-
ficiently be synthesised to fit to different communication
structures (buses, networks-on-chip, etc), different architec-
tures can be explored and evaluated.

7. Conclusion

This paper presented motivation, goals and ongoing
work of the ANDRES project. While the heterogeneous
nature of embedded systems still yields many problems in
current design flows due to different computational mod-
els, languages and tools, these methodologies particularly
lack support for adaptive architectures. To resolve this is-
sues, ANDRES is developing a seamless design flow for
such adaptive heterogeneous embedded system and corre-
sponding tools including automatic synthesis of software
and runtime reconfigurable digital hardware, like FPGAs.

Based on a formalism to express and analyse adaptivity
in different Models of Computation, three SystemC based
modelling libraries are used for specification, simulation
and analysis of adaptive system designs: SystemC-AMS
for analogue/mixed-signal components, HetSC for software
and OSSS+R for run-time reconfigurable digital hardware.
An overall framework includes and connects these libraries
using a concept calls polymorphic signals. This modelling
framework provides direct entry points for automatic and
efficient synthesis of hardware, software and communica-
tion interfaces. These synthesis concepts particularly con-
sider different types of adaptivity and adaptive architectures
and will be implemented in corresponding synthesis tools.

The concepts and tools of ANDRES are evaluated using

industrial use-cases. As a result, ANDRES will provide a
complete design flow and tools based on SystemC. At the
end of the project, the modelling framework is planned to
be released to the public.

References

[1] ANDRES project. http://andres.offis.de.
[2] V. Fernandez, F. Herrera, P. Sanchez, and E. Villar. Em-

bedded Software Generation from SystemC, chapter 9, pages
247 – 272. Kluwer, March 2003.

[3] F. Herrera and E. Villar. A framework for embedded system
specification under different models of computation in Sys-
temC. In Proceedings of the Design Automation Conference,
2006.

[4] ICODES project. http://icodes.offis.de.
[5] A. Jantsch. Modelling Embedded Systems and SoCs. Mor-

gan Kaufmann, June 2003.
[6] H. Kleen, T. Schubert, and C. Grabbe. A tutorial for

OSSS. Technical report, OFFIS Institute, Oldenburg, Ger-
many, January 2006. http://icodes.offis.de.

[7] H. Posadas, F. Herrera, V. Fernandez, P. Sanchez, and E. Vil-
lar. Single source design environment for embedded systems
based on SystemC. Transactions on Design Automation of
Electronic Embedded Systems, 9(4):293 – 312, December
2004.

[8] I. Sander and A. Jantsch. System Modeling and Transfor-
mational Design Refinement in ForSyDe. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and
Systems, 23(1):17–32, January 2004.

[9] A. Schallenberg, F. Oppenheimer, and W. Nebel. OSSS+R:
Modelling and Simulating Self-Reconfigurable Systems. In
Proceedings - 2006 International Conference on Field Pro-
grammable Logic and Applications, pages 177–182, Aug.
2006.

[10] R. Scholl, C. Grimm, and K. Waldschmidt. Heaven: A
Framework for the Refinement of Heterogeneous Systems.
In Proceeding of the Forum on Specification and Design
Languages (FDL ’04), Lille, France, Sept. 2004.

[11] R. Schroll. Design komplexer heterogener Systeme mit Poly-
morphen Signalen. PhD thesis, Institut für Informatik, Uni-
versität Frankfurt am Main, 2007.

[12] A. Vachoux, C. Grimm, and K. Einwich. Towards Ana-
log and Mixed-Signal SoC Design with SystemC-AMS. In
IEEE International Workshop on Electronic Design, Test
and Applications (DELTA’04), Perth, Australia, 2004.

[13] Xilinx, Inc. Early Access Partial Reconfiguration User
Guide (UG208), Mar. 2006.


