
ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 1 — #1

4
Models of Embedded

Computation

Axel Jantsch
Royal Institute of Technology

4.1 Introduction. 4-1
Models of Sequential and Parallel Computation •
Nonfunctional Properties • Heterogeneity • Component
Interaction • Time • The Purpose of an MoC

4.2 The MoC Framework. 4-9
Processes and Signals • Signal Partitioning • Untimed
MoCs • The Synchronous MoC • Discrete Timed MoCs

4.3 Integration of MoCs . 4-16
MoC Interfaces • Interface Refinement • MoC Refinement

4.4 Conclusion . 4-22
References . 4-23

4.1 Introduction

A model of computation (MoC) is an abstraction of a real computing device. Different computational
models serve different objectives and purposes. Thus, they always suppress some properties and details that
are irrelevant for the purpose at hand, and they focus on other properties that are essential. Consequently,
MoCs have been evolving during the history of computing. In the early decades, between 1920 and
1950, the main focus has been on the question: “What is computable?” The Turing machine and the
lambda calculus are prominent examples of computational models developed to investigate that question.1

It turned out that several, very different MoCs, such as the Turing machine, the lambda calculus, partial
recursive functions, register machines, Markov algorithms, Post systems, etc., [1] are all equivalent in the
sense that they all denote the same set of computable mathematical functions. Thus, today the so-called
Church–Turing thesis is widely accepted:

Church–Turing thesis. If function f is effectively calculable, then f is Turing-computable. If function f
is not Turing-computable, then f is not effectively calculable [1, p. 379].

It is the basis for our understanding today what kind of problems can be solved by computers, and what
kind of problems principally are beyond a computer’s reach. A famous example of what cannot be solved by
a computer is the halting problem for Turing machines. A practical consequence is that there cannot be an

1The term “model of computation” came in use only much later in the 1970s, but conceptually the computational
models of today can certainly be traced back to the models developed in the 1930s.

4-1

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 2 — #2

4-2 Embedded Systems Handbook

algorithm that given a function f and a C++ program P (or a program in any other sufficiently complex
programming language), could determine if P computes f . This illustrates the principal difficulty of
programming language teachers in correcting exams, and of verification engineers in validation programs
and circuits.

Later the focus changed to the question: “What can be computed in reasonable time and with reason-
able resources?,” which spun off the theories of algorithmic complexity based on computational models
exposing timing behavior in a particular but abstract way. This resulted in a hierarchy of complexity classes
for algorithms according to their asymptotic complexity. The computation time (or other resources) for an
algorithm is expressed as a function of some characteristic figure of the input, for example, the size of the
input. For instance we can state that the function f (n) = 2n, for natural numbers n can be computed in
p(n) time steps by any computer for some polynomial function p(n). In contrast, the function g (n) = n!
cannot be computed in p(n) time steps on any sequential computer for any polynomial function p(n) and
arbitrary n. With growing n the time steps required to compute g (n) grows faster than can be expressed
by any polynomial function.

This notion of asymptotic complexity allows us to express properties about algorithms in general
disregarding details of the algorithms and the computer architecture. This comes at the cost of accuracy.
We may only know that there exists some polynomial function p(n) for every computer, but we do not
know p(n) since it may be very different for different computers. To be more accurate one needs to take
into account more details of the computer architecture. As a matter of fact the complexity theories rest on
the assumption that one kind of computational model, or machine abstraction, can simulate another one
with a bounded and well-defined overhead. This simulation capability has been expressed in the thesis
given below:

Invariance thesis. “Reasonable”machines can simulate each other with a polynomially bounded overhead
in time and a constant overhead in space [2].

This thesis establishes an equivalence between different machine models and makes results for a particular
machine more generally useful. However, some machines are equipped with considerably more resources
and cannot be simulated by a conventional Turing machine according to the invariance thesis. Parallel
machines have been the subject of a huge research effort and the question, how parallel resources increase
the computational power of a machine has lead to a refinement of computational models and an accuracy
increase for estimating computation time. The fundamental relation between sequential and parallel
machines has been captured by the following thesis.

Parallel computation thesis. Whatever can be solved in polynomially bounded space on a reasonable
sequential machine model, can be solved in polynomially bounded time on a reasonable parallel
machine, and vice versa [2].

Parallel computers prompted researchers to refine computational models to include the delay of
communication and memory access, which we review briefly in Section 4.1.1.

Embedded systems require a further evolution of computational models due to new design and analysis
objectives and constraints. The term “embedded” triggers two important associations. First, an embedded
component is squeezed into a bigger system, which implies constraints on size, the form factor, weight,
power consumption, cost, etc. Second, it is surrounded by real-world components, which implies timing
constraints and interfaces to various communication links, sensors, and actuators. As a consequence, the
computational models that are used and are useful in embedded system design are different from those
in general purpose sequential and parallel computing. The difference comes from the nonfunctional
requirements and constraints and from the heterogeneity.

4.1.1 Models of Sequential and Parallel Computation

Arguably, general purpose sequential computing had for a long time a privileged position, in
that it had a single, very simple, and effective MoC. Based on the van Neumann machine, the

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 3 — #3

Models of Embedded Computation 4-3

random access machine (RAM) model [3] is a sufficiently general model to express all important algorithms
and reflects the salient nonfunctional characteristics of practical computing engines. Thus, it can be used
to analyze performance properties of algorithms in a hardware architecture and implementation inde-
pendent way. This favorable situation for sequential computing has been eroded over the years as processor
architectures and memory hierarchies became ever more complex and deviated from the ideal RAM model.

The parallel computation community has been searching in vain for a similar simple and effective model
[4]. Without a universal model of parallel computation, the foundations for the development of portable
and efficient parallel applications and architectures were lacking. Consequently, parallel computing has not
gained as wide acceptance as sequential computing and is still confined to niche markets and applications.
The parallel random access machine (PRAM) [5] is perhaps the most popular model of parallel computation
and closest to its sequential counterpart with respect to simplicity. A number of processors execute in a
lock-step way, that is, synchronized after each cycle governed by a global clock, and access global, shared
memory simultaneously within one cycle. The PRAM model’s main virtue is its simplicity but it poorly
captures the costs associated with computing. Although the RAM model has a similar cost model, there is a
significant difference. In the RAM model the costs (execution time, program size) are in fact well reflected
and grow linearly with the size of the program and the length of the execution path. This correlation is
in principle correct for all sequential processors. The PRAM model does not exhibit this simple correlation
because in most parallel computers the cost of memory access, communication and synchronization can
be vastly different depending on which memory location is accessed and which processors communicate.
Thus, the developer of parallel algorithms does not have sufficient information from the PRAM model
alone to develop efficient algorithms. He or she has to consult the specific cost models of the target
machine.

Many PRAM variants have been developed to more realistically reflect real cost. Some made the memory
access more realistic. The exclusive read–exclusive write (EREW) and the concurrent read–exclusive write
(CREW) models [5] serialize access to a given memory location by different processors but still maintain
the unit cost model for memory access. The local memory PRAM (LPRAM) model [6] introduces a notion
of memory hierarchy while the queued read–queued write (QRQW) PRAM [7] models the latency and
contention of memory access. A host of other PRAM variants have factored in the cost of synchronization,
communication latency, and bandwidth. Other models of parallel computation, many of which are not
directly derived from the PRAM machine, focus on memory. There either the distributed nature of
memory is the main concern [8] or the various cost factors of the memory hierarchy are captured [6,9,10].
An introductory survey of models of parallel computation has been written by Maggs et al. [4].

4.1.2 Nonfunctional Properties

A main difference between sequential computation and parallel computation comes from the role of
time. In sequential computing, time is solely a performance issue which is moreover captured fairly well
by the simple and elegant RAM model. In parallel computing the execution time can only be captured
by complex cost functions that depend heavily on various details of the parallel computer. In addition,
the execution time can also alter the functional behavior, because the changes in the relative timing of
different processors and the communication network can alter the overall functional behavior. To counter
this danger, different parts of the parallel program must be synchronized properly.

In embedded systems the situation is even more delicate if real-time deadlines have to be observed.
A system that responds slightly too late may be as unacceptable as a system that responds with incorrect
data. Even worse, it is entirely context dependent if it is better to respond slightly too late, incorrectly,
or not at all. For instance when transmitting a video stream, incorrect data arriving on time may be
preferable to correct data arriving too late. Moreover, it may be better not to send data that arrive too late
to save resources. On the other hand, control signals to drive the engine or the breaks in a car must always
arrive and a tiny delay may be preferable to no signal at all. These observations lead to the distinction of
different kinds of real-time systems, for example, hard versus soft real-time systems, depending on the
requirements on the timing.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 4 — #4

4-4 Embedded Systems Handbook

Since most embedded systems interact with real-world objects they are subject to some kind of real-time
requirements. Thus, time is an integral part of the functional behavior and cannot be abstracted away
completely in many cases. So it should not come as a surprise that MoCs have been developed to allow the
modeling of time in an abstract way to meet the application requirements while at the same time avoiding
the unnecessary burden of too detailed timing. We will discuss some of these models below. In fact, the
timing abstractions of different MoCs is a main organizing principle in this chapter.

Designing for low power is a high priority for most, if not all, embedded systems. However, power
has been treated in a limited way in computational models because of the difficulty to abstract the
power consumption from the details of architecture and implementation. For very large-scale integration
(VLSI) circuits computational models have been developed to derive lower and upper bounds with respect
to complexity measures that usually include both circuit area and computation time for a given behavior.
AT 2 has been found to be a relevant and interesting complexity measure, where A is the circuit area and T is
the computation time either in clock cycles or in physical time. These models have also been used to derive
bounds on the energy consumption by usually assuming that the consumed energy is proportional to the
state changes of the switching elements. Such analysis shows for instance that AT 2 optimal circuits, that
is, circuits which are optimal up to a constant factor with respect to the AT 2 measure for a given boolean
function, utilize their resources to a high degree, which means that on average a constant fraction of the
chip changes state. Intuitively this is obvious since, if large parts of a circuit are not active over a long period
(do not change state), it can presumably be improved by making it either smaller or faster and thus utilizing
the circuit resources to a higher degree on average. Or, to conclude the other way round, an AT 2 optimal
circuit is also optimal with respect to energy consumption for computing a given boolean function. One
can spread out the consumed energy over a larger area or a longer time period, but one cannot decrease the
asymptotic energy consumption for computing a given function. Note, that all these results are asymptotic
complexity measures with respect to a particular size metric of the computation, for example, the length
in bit of the input parameter of the function. For a detailed survey of this theory see Reference 11.

These models have several limitations. They make assumptions about the technology. For instance,
in different technologies the correlation between state switching and energy consumption is different.
In n-channel metal oxide semiconductor (NMOS) technologies the energy consumption is more correlated
with the number of switching elements. The same is true for complementary metal oxide semiconductor
(CMOS) technologies if leakage power dominates the overall energy consumption. Also, they provide
asymptotic complexity measures for very regular and systematic implementation styles and technologies
with a number of assumptions and constraints. However, they do not expose relevant properties for
complex modern microprocessors, VLIW (Very Large Instruction Word) processors, DSPs (Digital Signal
Processings), FPGAs (Field Programmable Gate Arrays), or ASIC (Application Specific Integrated Circuit)
designs in a way useful for system level design decisions. And we are again back at our original question
about what exactly is the purpose of a computational model and how general or how specific should it be.

In principle, there are two alternatives to integrate nonfunctional properties such as power, reliability,
and also time in an MoC:

• First, we can include these properties in the computational model and associate every functional
operation with a specific quantity of that property. For example, an add operation takes 2 nsec and
consumes 60 pW. During simulation or some other analysis we can calculate the overall delay and
power consumption.
• Second, we can allocate abstract budgets for all parts of the design. For instance, in synchronous

design styles, we divide the time axis in slots or cycles and assign every part of the design to exactly
one slot. Later on during implementation, we have to find the physical time duration of each slot,
which determines the clock frequency. We can optimize for high clock frequency by identifying the
critical path and optimizing that design part aggressively. Alternatively, we can move some of the
functionality from the slot with the critical part to a neighboring slot, thus balancing the different
slots. This budget approach can also be used for managing power consumption, noise, and other
properties.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 5 — #5

Models of Embedded Computation 4-5

The first approach suffers from inefficient modeling and simulation when all implementation details
are included in a model. Also, it cannot be applied to abstract models since there these implementation
details are not available. Recall, that a main idea of computational models is that they should be abstract
and general enough to support analysis of a large variety of architectures. The inclusion of detailed timing
and power consumption data would obstruct this objective. Even the approach to start out with an abstract
model and later on back-annotate the detailed data from realistic architectural or implementation models
does not help, because the abstract model does not allow to draw concrete conclusions and the detailed,
back-annotated model is valid only for a specific architecture.

The second approach with abstract budgets is slightly more appealing to us. On the assumption that
all implementations will be able to meet the budgeted constraints, we can draw general conclusions about
performance or power consumption on an abstract level valid for a large number of different architectures.
One drawback is that we do not know exactly for which class of architectures our analysis is valid, since
it is hard to predict which implementations will at the end be able to meet the budget constraints.
Another complication is, that we do not know the exact physical size of these budgets and it may indeed
be different for different architectures and implementations. For instance an ASIC implementation of
a given architecture may be able to meet a cycle constraint of 1 nsec and run at 1 GHz clock frequency,
while an FPGA implementation of exactly the same algorithms requires a cycle budget of 5 nsec. But still,
the abstract budget approach is promising because it divides the overall problem into more manageable
pieces. At the higher level we make assumptions about abstract budgets and analyze a system based
on these assumptions. Our analysis will then be valid for all architectures and implementations that
meet the stated assumptions. At the lower level we have to ensure and verify that these assumptions are
indeed met.

4.1.3 Heterogeneity

Another salient feature of many embedded systems is heterogeneity. It comes from various environ-
mental constraints on the interfaces, from heterogeneous applications and from the need to find different
tradeoffs among performance, cost, power consumption, and flexibility for different parts of the system.
Consequently, we see analog and mixed signal parts, digital signal processing parts, image, and video
processing parts, control parts, and user interfaces coexisting in the same system or even on the same
VLSI device. We also see irregular architectures with microprocessors, DSPs, VLIWs, custom hardware
coprocessors, memories, and FPGAs connected via a number of different segmented and hierarchical
interconnection schemes. It is a formidable task to develop a uniform MoC that exposes all relevant
properties while nicely suppressing irrelevant details.

Heterogeneous MoCs is one way to address heterogeneity at the application, architecture, and imple-
mentation level. Different computational models are connected and integrated into a hierarchical,
heterogeneous MoC that represents the entire system. Many different approaches have been taken to
either connect two different computational models or provide a general framework to integrate a number
of different models. It turns out that issues of communication, synchronization, and time representation
pose the most formidable challenges. The reason is that the communication, and, in particular, the syn-
chronization semantics between different MoC domains correlates the time representation between the
two domains. As we will see below, connecting a timed MoC with an untimed model leads to the import
of a time structure from the timed to the untimed model resulting in a heterogeneous, timed MoC. Thus
the integration cannot stop superficially at the interfaces leaving the interior of the two computational
domains unaffected.

Due to the inherent heterogeneity of embedded systems, different MoCs will continue to be used and
thus different MoC domains will coexist within the same system. There are two main possible relations,
one is due to refinement and the other due to partitioning. A more abstract MoC can be refined into a
more detailed model. In our framework, time is the natural parameter that determines the abstraction
level of a model. The untimed MoC is more abstract then the synchronous MoC, which in turn is more
abstract than the timed MoC. It is in fact common practice that a signal processing algorithm is first

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 6 — #6

4-6 Embedded Systems Handbook

modeled as an untimed dataflow algorithm, which is then refined into a synchronous circuit description,
which in turn is mapped onto a technology dependent netlist of fully timed gates.

However, this is not a natural flow for all applications. Control dominated systems or subsystems require
some notion of time already at the system level and sensor and actuator subsystems may require a continu-
ous time model right from the start. Thus, different subsystems should be modeled with different MoCs.

4.1.4 Component Interaction

A troubling issue in complex, heterogeneous systems is unexpected behavior of the system due to subtle
and complex ways of interaction of different MoCs parts. Eker et al. [12] call this phenomenon emergent
behavior. Some examples shall illustrate this important point:

Priority inversion. Threads in a real-time operating system may use two different mechanism of resource
allocation[12]. One is based on priority and preemption to schedule the threads. The second is based on
monitors. Both are well defined and predictable in isolation. For instance, priority and preemption based
scheduling means that a higher priority thread cannot be blocked by a lower priority thread. However, if
the two threads also use a monitor lock, the lower priority thread may block the high priority thread via
the monitor for an indefinite amount of time.

Performance inversion. Assume there are four CPUs on a bus. CPU1 sends data to CPU2, CPU3 sends
data to CPU4 over the bus [13]. We would expect that the overall system performance improves when
we replace one CPU with a faster processor, or at least that the system performance does not decrease.
However, replacing CPU1 with a faster CPU′1 may mean that data is sent from CPU′1 to CPU2 with a higher
frequency, at least for a limited amount of time. This means, that the bus is more loaded by this traffic,
which may slow down the communication from CPU3 to CPU4. If this communication performance has
a direct influence on the system performance, we will see a decreased overall system performance.

Over synchronization. Assume that the upper and lower branches in Figure 4.1 have no mutual functional
dependence as the dataflow arrows indicate. Assume further that process B is blocked when it tries to send
data to C1 or D1, but the receiver is not ready to accept the data. Then, a delay or deadlock in branch D
will propagate back through process B to both A and the entire C branch.

These examples are not limited to situations when different MoCs interact. They show that, when
separate, seemingly unrelated subsystems interact via a nonobvious mechanism, which is often a shared
resource, the effects can be hard to analyze. When the different subsystems are modeled in different MoCs
the problem is even more pronounced and harder to analyze due to different communication semantics,
synchronization mechanisms, and time representation.

4.1.5 Time

The treatment of time will serve for us as the most important dimension to distinguish MoCs. We can
identify at least four levels of accuracy, which are continuous time, discrete time, clocked time, and
causality. In the sequel, we only cover the last three levels.

When time is not modeled explicitly, events are only partially ordered with respect to their causal
dependences. In one approach, taken for instance in deterministic dataflow networks [14,15], the system

A B

C1 C2 C3

D1 D2 D3

FIGURE 4.1 Over synchronization between functionally independent subsystems.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 7 — #7

Models of Embedded Computation 4-7

behavior is independent of delays and timing behavior of computation elements and communication
channels. These models are robust with respect to time variations in that any implementation, no matter
how slow or fast it is, will exhibit the same behavior as the model. Alternatively, different delays may affect
the system’s behavior and we obtain an inherently nondeterministic model since time behavior, which
is not modeled explicitly is allowed to influence the observable behavior. This approach has been taken
both in the context of dataflow models [16–19] and process algebras [20, 21]. In this chapter we follow
the deterministic approach, which however can be generalized to approximate nondeterministic behavior
by means of stochastic processes as shown in Reference 22.

To exploit the very regular timing of some applications, the synchronous dataflow (SDF) [23] has been
developed. Every process consumes and emits a statically fixed number of events in each evaluation cycle.
The evaluation cycle is the reference time. The regularity of the application is translated into a restriction
of the model, which in turn allows efficient analysis and synthesis techniques that are not applicable for
more general models. Scheduling, buffer size optimization, and synthesis has been successfully developed
for the SDF.

One facet related to the representation of time is the dichotomy of dataflow dominated and control flow
dominated applications. Dataflow dominated applications tend to have events that occur in very regular
intervals. Thus, explicit representation of time is not necessary and in fact often inefficient. In contrast,
control dominated applications deal with events occurring at very irregular time instants. Consequently,
explicit representation of time is a necessity because the timing of events cannot be inferred. Difficulties
arise in systems that contain both elements. Unfortunately, these kind of systems become more common
since the average system complexity steadily increases. As a consequence, several attempts to integrate
dataflow and control dominated modeling concepts have emerged.

In the synchronous piggybacked dataflow model [24] control events are transported on dataflow
streams to represent a global state without breaking the locality principle of dataflow models.

The composite signal flow [25] distinguishes between control and dataflow processes and puts sig-
nificant effort to maintain the frame-oriented processing which is so common in dataflow and signal
processing applications for efficiency reasons. However, conflicts occur when irregular control events
must be synchronized with dataflow events inside frames. The composite signal flow addresses this prob-
lem by allowing an approximation of the synchronization and defines conditions when approximations
are safe and do not lead to erroneous behavior.

Time is divided up into time slots or clock cycles by various synchronous models. According to the
perfect synchrony assumption [26, 27] neither communication nor computation takes any noticeable
time and the time slots or evaluation cycles are completely determined by the arrival of input events. This
assumption is useful because designer and tools can concentrate solely on the functionality of the system
without mixing this activity with timing considerations. Optimization of performance can be done in
a separate step by means of static timing analysis and local retiming techniques. Even though timing
does not appear explicitly in synchronous models, the behavior is not independent of time. The model
constrains all implementations such that they must be fast enough to process input events properly and
to complete an evaluation cycle before the next events arrive. When no events occur in an evaluation
cycle, a special token called absent event is used to communicate the advance of time. In our framework
we use the same technique in Sections 4.2.4 and 4.2.5 for both the synchronous MoC and the fully
timed MoC.

Discrete timed models use a discrete set, usually integers or natural numbers, to assign a time stamp to
each event. Many discrete event models fall into this category [28–30] as well as most popular hardware
description languages, such as VHDL and Verilog. Timing behavior can be modeled most accurately, which
makes it the most general model we consider here and makes it applicable to problems such as detailed
performance simulation where synchronous and untimed models cannot be used. The price for this is
the intimate dependence of functional behavior on timing details and significantly higher computation
costs for analysis, simulation, and synthesis problems. Discrete timed models may be nondeterministic,
as mainly used in performance analysis and simulation (see e.g., Reference 30), or deterministic, as more
desirable for hardware description languages such as VHDL.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 8 — #8

4-8 Embedded Systems Handbook

The integration of these different timing models into a single framework is a difficult task. Many
attempts have been made on a practical level with a concrete design task, mostly simulation, in mind
[31–35]. On a conceptual level Lee and Sangiovanni-Vincentelli [36] have proposed a tagged time model
in which every event is assigned a time tag. Depending on the tag domain we obtain different MoCs.
If the tag domain is a partially ordered set, it results in an untimed model according to our definition.
Discrete, totally ordered sets lead to timed MoCs and continuous sets result in continuous time MoCs.
There are two main differences between the tagged time model and our proposed framework. First, in the
tagged time model processes do not know how much time has progressed when no events are received
since global time is only communicated via the time stamps of ordinary events. For instance, a process
cannot trigger a time-out if it has not received events for a particular amount of time. Our timed model
in Section 4.2.5 does not use time tags but absent events to globally order events. Since absent events are
communicated between processes whenever no other event occurs, processes are always informed about
the advance of global time. We chose this approach because it resembles better the situation in design
languages, such as VHDL, C, or SDL (Specification and Description Language) where processes always can
experience time-outs. Second, one of our main motivations was the separation of communication and
synchronization issues from the computation part of processes. Hence, we strictly distinguish between
process interfaces and process functionality. Only the interfaces determine to which MoC a process
belongs, while the core functionality is independent of the MoC. This feature is absent from the tagged
token model. This separation of concerns has been inspired by the concept of firing cycles in dataflow
process networks [37]. Our mechanism for consuming and emitting events based on signal partitionings
as described in Sections 4.2.2 and 4.2.3.1 is only slightly more general than the firing rules described by
Lee [37] but it allows a useful definition of process signatures based on the way processes consume and
emit events.

4.1.6 The Purpose of an MoC

As mentioned several times, the purpose of a computational model determines, how it is designed, what
properties it exposes, and what properties it suppresses.

We argue that MoCs for embedded systems should not address principal questions of computability or
feasibility, but should rather aid the design and validation of concrete systems. How this is accomplished
best remains a subject of debate, but for this chapter we assume that an MoC should support the following
properties:

Implementation independence. An abstract model should not expose too much details of a possible
implementation, for example, which kind of processor is used, how much parallel resources are available,
what kind of hardware implementation technology is used, details of the memory architecture, etc. Since
an MoC is a machine abstraction, it should, by definition, avoid unnecessary machine details. Practically
speaking, the benefits of an abstract model include that analysis and processing is faster and more efficient,
that analysis results are relevant for a larger set of implementations, and that the same abstract model
can be directed to different architectures and implementations. On the downside we note diminished
analysis accuracy and a lack of knowledge of the target architecture that can be exploited for modeling
and design. Hence, the right abstraction level is a fine line that is also changing over time. While many
embedded system designers could for long safely assume a purely sequential implementation, current
and future computational models should avoid such an assumption. Resource sharing and scheduling
strategies become more complex, and an MoC should thus either allow the explicit modeling of such a
strategy or restrict the implementations to follow a particular, well-defined strategy.

Composability. Since many parts and components are typically developed independently and integrated
into a system, it is important to avoid unexpected interferences. Thus, some kind of composability property
[38] is desirable. One step in this direction is to have a deterministic computational model such as Kahn
process networks that guarantee a particular behavior independent of the time or individual activities and
independent of the amount of available resources in general.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 9 — #9

Models of Embedded Computation 4-9

This is of course only a first step since, as argued earlier, time behavior is often an integral part of
the functional behavior. Thus, resource sharing strategies, that greatly influence timing, will still have
a major impact on the system behavior even for fully deterministic models. We can reconcile good system
composability with shared resources by allocating a minimum but guaranteed amount of resources for
each subsystem or task. For instance, two tasks get a fixed share of the communication bandwidth of
a bus. This approach allows for ideal composability but has to be based on worst case behavior. It is very
conservative and hence, does not utilize resources efficiently.

We can relax this approach by allocating abstract resource budgets as part of the computational model.
Then we require from the implementation to provide the requested resources, and at the same time to
minimize the abstract budgets and thus the required resources. As example consider two tasks that have
a particular communication need per abstract time slot, where the communication need may be different
for different slots. The implementation has to fulfill the communication requirements of all tasks by
providing the necessary bandwidth in each time slot, tuning the length of the individual time slots, or by
moving communication from one slot to another. These optimizations will also have to consider global
timing and resource constraints. In any case, in the abstract model we can deal with abstract budgets and
assume that they will be provided by any valid implementation.

Analyzability. A general tradeoff exists between the expressiveness of a model and its analyzability.
By restricting models in clever ways, one can apply powerful and efficient analysis and synthesis methods.
For instance, the SDF model allows all actors only a constant amount of input and output tokens in
each activation cycle. While this restricts the expressiveness of the model, it allows to efficiently compute
static schedules when they exist. For general dataflow graphs this may not be possible because it could be
impossible to ensure that the amount of input and output is always constant for all actors, even if they
are in a particular case. Since SDF covers a fairly large and important application domain, it has become
a very useful MoC. The key is to understand what are the important properties (finding static schedules,
finding memory bounds, finding maximum delays, etc.) and devising an MoC that allows to handle these
properties efficiently and does not restrict the modeling power too much.

In the following sections we discuss a framework to study different MoCs. The idea is to use different
types of process constructors to instantiate processes of different MoCs. Thus, one type of process con-
structors would yield only untimed processes, while another type results in timed processes. The elements
for process construction are simple functions and are in principle independent of a particular MoC.
However, the independence is not complete since some MoCs put specific constraints on the functions.
But still the separation of the process interfaces from the internal process behavior is fairly far reaching.
The interfaces determine the time representation, synchronization, and communication, hence the MoC.

In this chapter we will not elaborate all interesting and desirable properties of computational models.
Rather we will use the framework to introduce four different MoCs that only differ in their timing
abstraction. Since time plays a very prominent role in embedded systems, we focus on this aspect and
show how different time abstractions can serve different purposes and needs. Another defining aspect of
embedded systems is heterogeneity, which we address by allowing different MoCs to coexist in a model.
The common framework makes this integration semantically clean and simple. We study two particular
aspects of this coexistence, namely the interfaces between two different MoCs and the refinement of one
MoC into another.

Other central issues of embedded systems, such as power consumption, global analysis and
optimization, are not covered, mostly because they are not very well understood in this context and
few advanced proposals exist on how to deal with them from an MoC perspective.

4.2 The MoC Framework

In the remainder of this chapter we discuss a framework that accommodates MoCs with different timing
abstractions. It is based on process constructor, which is a mechanism to instantiate processes. A process
constructor takes one or more pure functions as arguments and creates a process. The functions represent

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 10 — #10

4-10 Embedded Systems Handbook

the process behavior and have no notion of time or concurrency. They simply take arguments and produce
results. The process constructor is responsible for establishing communication with other processes.
It defines the time representation, the communication, and synchronization semantics. A set of process
constructors determines a particular MoC. This leads to a systematic and clean separation of computation
and communication. A function, that defines the computation of a process, can in principle be used
to instantiate processes in different computational models. However, a computational model may put
constraints on functions. For instance, the synchronous MoC requires a function to take exactly one event
on each input and produce exactly one event for each output. The untimed MoC does not have a similar
requirement.

After some preliminary definitions in this section, we introduce the untimed processes, give a formal
definition of an MoC, and define the untimed MoC (Section 4.2.3) the perfectly synchronous and the
clocked synchronous MoC (Section 4.2.4), and the discrete time MoC (Section 4.2.5). Based on this
we introduce interfaces between MoCs and present an interface refinement procedure in the next section.
Furthermore, we discuss the refinement from an untimed MoC to a synchronous MoC and to a timed MoC.

4.2.1 Processes and Signals

Processes communicate with each other by writing to and reading from signals. Given is a set of values V ,
which represents the data communicated over the signals. Events, which are the basic elements of signals,
are or contain values. We distinguish among three different kinds of events.

Untimed events Ė are just values without further information, Ė = V . Synchronous events Ē include
a pseudo-value ⊥ in addition to the normal values, hence Ē = V ∪ {⊥}. Timed events Ê are identical
to synchronous events, Ê = Ē . However, since it is often useful to distinguish them, we use different
symbols. Intuitively, timed events occur at much finer granularity than synchronous events and they would
usually represent physical time units, such as a nanosecond. In contrast, synchronous events represent
abstract time slots or clock cycles. This model of events and time can only accommodate discrete time
models. Continuous time would require a different representation of time and events. We use the symbols
ė, ē, and ê to denote individual untimed, synchronous, and timed events, respectively. We use E = Ė∪Ē∪Ê
and e ∈ E to denote any kind of event.

Signals are sequences of events. Sequences are ordered and we use subscripts as in ei to denote the
ith event in a signal. For example, a signal may be written as 〈e0, e1, e2〉. In general, signals can be finite
or infinite sequences of events and S is the set of all signals. We also distinguish among three kinds of
signals and Ṡ, S̄, and Ŝ denote the untimed, synchronous, and timed signal sets, respectively, and ṡ, s̄, and
ŝ designate individual untimed, synchronous, and timed signals.
〈〉 is the empty signal and ⊕ concatenates two signals. Concatenation is associative and has the empty

signal as its neutral element: s1 ⊕ (s2 ⊕ s3) = (s1 ⊕ s2) ⊕ s3, 〈〉 ⊕ s = s ⊕ 〈〉 = s. To keep the notation
simple we often treat individual events as one-event sequences, for example, we may write e ⊕ s to denote
〈e〉 ⊕ s.

We use angle brackets, “〈” and “〉”not only to denote ordered sets or sequences of events, but also to
denote sequences of signals if we impose an order on a set of signals.

#s gives the length of signal s. Infinite signals have infinite length and #〈〉 = 0.
[] is an index operation to extract an event on a particular position from a signal.

For example, s[2] = e2 if s = 〈e1, e2, e3〉.
Processes are defined as functions on signals

p : S → S.

Processes are functions in the sense that for a given input signal we always get the same output signal,
that is, s = s ′ ⇒ p(s) = p(s ′). Note, that this still allows processes to have an internal state. Thus,
a process does not necessarily react identical to the same event applied at different times. But it will

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 11 — #11

Models of Embedded Computation 4-11

s = �r0,r1, ...� = ��e0, e1, e2�,�e3, e4, e5�, ...�
pn(s) = �ri� for n(i) = 3 for all i

s�= �r �0, r �1, ...� = ��e�0, e�1�, �e�2 ,e�3�, ...�
�n�(s�) = �r �i� for n�(i) = 2 for all i

p

FIGURE 4.2 The input signal of process p is partitioned into an infinite sequence of subsignals each of which
contains three events, while the output signal is partitioned into subsignals of lengths 2.

produce the same, possibly infinite, output signal when confronted with identical, possibly infinite, input
signals provided it starts with the same initial state.

4.2.2 Signal Partitioning

We shall use the partitioning of signals into subsequences to define the portions of a signal that is consumed
or emitted by a process in each evaluation cycle.

A partitionπ(ν, s) of a signal s defines an ordered set of signals, 〈ri〉, which, when concatenated together,
form “almost” the original signal s. The function ν : N0 → N0 defines the lengths of all elements in the
partition. ν(0) = #r0 gives the length of the first element in the partition, ν(1) = #r1 gives the length of
the second element, etc.

Example 4.1 Let s1 = 〈1, 2, 3, 4, 5, 6, 7, 8, 9, 10〉 and ν1(0) = ν1(1) = 3, ν1(2) = 4. Then we get the
partition π(ν1, s1) = 〈〈1, 2, 3〉, 〈4, 5, 6〉, 〈7, 8, 9, 10〉〉.

Let s2 = 〈1, 2, 3, . . .〉 be the infinite signal with ascending integers. Let ν2(i) = 2 for all i ≥ 0.
The resulting partition is infinite: π(ν2, s2) = 〈〈1, 2〉, 〈3, 4〉, . . .〉.

The function ν(i) defines the length of the subsignals ri . If it is constant for all i we usually omit the
argument and write ν. Figure 4.2 illustrates a process with an input signal s and an output signal s ′. s is
partitioned into subsignals of length 3 and s ′ into subsignals of length 2.

4.2.3 Untimed MoCs

4.2.3.1 Process Constructors

Our aim is to relate functions of events to processes, which are functions of signals. Therefore we introduce
process constructors that can be considered as higher-order functions. They take functions on events as
arguments and return processes. We define only a few basic process constructors that can be used to
compose more complex processes and process networks. All untimed process constructors and processes
operate exclusively on untimed signals.

Processes with arbitrary number of input and output signals are cumbersome to deal with in a formal
way. To avoid this inconvenience we mostly deal with processes with one input and one output. To handle
arbitrary processes also, we introduce“zip”and“unzip”processes that merge two input signals into one and
split one input signal into two output signals, respectively. These processes together with appropriate
process composition allows us to express arbitrary behavior.

Processes instantiated with the mealyU constructor resemble Mealy state machines in that they have a
next state function and an output encoding function that depend on both the input and the current state.

Definition 4.1 Let V be an arbitrary set of values, let g , f : (V × Ṡ)→ Ṡ the next state and output encoding
functions, let γ : V → N be a function defining the input partitioning, and let w0 ∈ V be an initial state.
mealyU is a process constructor which, given γ , f , g , and w0 as arguments, instantiates a process p : Ṡ → Ṡ.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 12 — #12

4-12 Embedded Systems Handbook

The function γ determines the number of events consumed by the process in the current evaluation cycle. γ is
dependent on the current state. p repeatedly applies g on the current state and the input events to compute
the next state. Further, it applies f repeatedly on the current state and the input events, to compute the output
events.

Processes instantiated by mealyU are general state machines with one input and one output. To create
processes with arbitrary inputs and outputs, we also use the following constructors:

• zipU instantiates a process with two inputs and one output. In every evaluation cycle this process
takes one event from the left input and one event from the right input and packs them into an event
pair that is emitted at the output.
• unzipU instantiates a process with one input and two outputs. In every evaluation cycle this

process takes one event from the input. It requires it to be an event pair. The first event of this pair
is emitted to the left output, the second event of the event pair is emitted to the right output.

For truly general process networks we would in fact need more complex zip processes, but for the
purpose of this chapter the simple constructors are sufficient and we refer the reader for details to
Reference 39.

4.2.3.2 Composition Operators

We consider only three basic composition operators, namely sequential composition, parallel composition,
and feedback.

We give the definitions only for processes with one or two input and output signals, because the
generalization to arbitrary numbers of inputs and outputs is straightforward.

Definition 4.2 Let p1, p2 : Ṡ → Ṡ be two processes with one input and one output each, and let s1, s2 ∈ Ṡ be
two signals. Their parallel composition, denoted as p1 ‖ p2, is defined as follows.

(p1 ‖ p2)(〈s1, s2〉) = 〈p1(s1), p2(s2)〉.

Since processes are functions we can easily define sequential composition in terms of functional
composition.

Definition 4.3 Let again p1, p2 : Ṡ → Ṡ be two processes and let s ∈ Ṡ be a signal. The sequential composition,
denoted as p1 ◦ p2, is defined as follows.

(p2 ◦ p1)(s) = p2(p1(s)).

Definition 4.4 Given a process p : (S × S) → (S × S) with two input signals and two output signals we
define the process µp : S → S by the equation

(µp)(s1) = s2 where p(s1, s3) = (s2, s3).

The behavior of the process µp is defined by the least fixed point semantics based on the prefix order of signals.

The µ operator gives feedback loops (Figure 4.3) a well-defined semantics. Moreover, the value of the
feedback signal can be constructed by repeatedly simulating the process network starting with the empty
signal until the values on all feedback signals stabilize and do not change any more [39].

Now we are in a position to define precisely what we mean with an MoC.

Definition 4.5 An MoC is a 2-tuple MoC = (C , O), where C is a set of process constructors, each of which,
when given constructor specific parameters, instantiates a process. O is a set of process composition operators,
each of which, when given processes as arguments, instantiates a new process.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 13 — #13

Models of Embedded Computation 4-13

p

s1

s3

s2

mp

FIGURE 4.3 Feedback composition of a process.

Definition 4.6 The untimed MoC is defined as untimed MoC = (C , O), where

C = {mealyU,zipU,unzipU}
O = {‖, ◦,µ}.

In other words, a process or a process network belongs to the untimed MoC domain iff all its processes
and process compositions are constructed either by one of the named process constructors or by one of the
composition operators. We call such processes U-MoC processes.

Because the process interface is separated from the functionality of the process, interesting transforma-
tions can be done. For instance, a process can be mechanically transformed into a process that consumes
and produces a multiple number of events of the original process. Processes can be easily merged into
more complex processes. Moreover, there may be the opportunity to move functionality from one process
to another. For more details on this kind of transformations see Reference 39.

4.2.4 The Synchronous MoC

The synchronous languages StateCharts [40], Esterel [41], Signal [42], Argos, Lustre [43], and some others
have been developed on the basis of the perfect synchrony assumption.

Perfect synchrony hypothesis. Neither computation nor communication takes time.

Timing is entirely determined by the arriving of input events because the system processes input
samples in zero time and then waits until the next input arrives. If the implementation of the system is
fast enough to process all inputs before the next sample arrives, it will behave exactly as the specification
in the synchronous language.

4.2.4.1 Process Constructors

Formally, we develop synchronous processes as a special case of untimed processes. This will allow us later
to easily connect different domains.

Synchronous processes have two specific characteristics. First, all synchronous processes consume and
produce exactly one event on each input or output in each evaluation cycle, that is, the signature is
always 〈{1, . . .}, {1, . . .}〉. Second, in addition to the value set V events can carry the special value ⊥,
which denotes the absence of an event; this is the way we defined synchronous events Ē and signals S̄ in
Section 4.2.1. Both, the processes and their contained functions must be able to deal with these events.

All synchronous process constructors and processes operate exclusively on synchronous signals.

Definition 4.7 Let V be an arbitrary set of values, Ē = V ∪ {⊥}, let g , f : (Ē × S̄)→ S̄ and let w0 ∈ V be
an initial state. mealyS is a process constructor which, given f , g , and w0 as arguments, instantiates a process
p : S̄ → S̄. p repeatedly applies g on the current state and the input event to compute the next state. Further it

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 14 — #14

4-14 Embedded Systems Handbook

applies repeatedly f on the current state and the input event to compute the output event. p consumes exactly
one input event in each evaluation cycle and emits exactly one output event.

We only require that g and f are defined for absent input events and that the output signal partitioning is
the constant 1.

When we merge two signals into one we have to decide how to represent the absence of an event in one
input signal in the compound signal. We choose to use the⊥ symbol for this purpose also, which has the
consequence, that⊥ appears also in tuples together with normal values. Thus, it is essentially used for two
different purposes. Having clarified this, the definition for zipS and unzipS is straightforward. zipS-
based processes pack two events from the two inputs into an event pair at the output, while unzipS
performs the inverse operation.

4.2.4.2 The Perfectly Synchronous MoC

Again, we can now make precise what we mean by synchronous MoC.

Definition 4.8 The synchronous MoC is defined as synchronous MoC = (C , O), where

C = {mealyS,zipS,unzipS}
O = {‖, ◦,µS}.

In other words, a process or a process network belongs to the synchronous MoC domain iff all its processes
and process compositions are constructed either by one of the named process constructors or by one of the
composition operators. We call such processes S-MoC processes.

Note, that we do not use the same feedback operator for the synchronous MoC.µS defines the semantics
of the feedback loop based on the Scott order of the values in Ē . It is also based on a fixed point semantics
but it is resolved for each event and not over a complete signal. We have adopted µS to be consistent with
the zero-delay feedback loop semantics of most synchronous languages. For our purpose here this is not
significant and we do not need to go into more details. For precise definitions and a thorough motivation
the reader is referred to Reference 39.

Merging of processes and other related transformations are very simple in the synchronous MoC
because all processes have essentially identical interfaces. For instance, the merge of two mealyS-based
processes can be formulated as follows.

mealyS(g1, f1, v0) ◦ mealyS(g2, f2, w0) = mealyS(g , f , (v0, w0))

where g ((v , w), ē) = (g1(v , f2(w , ē)), g2(w , ē)) f ((v , w), ē) = f1(v , f2(w , ē)).

4.2.4.3 The Clocked Synchronous MoC

It is useful to define a variant of the perfectly synchronous MoC, the clocked synchronous MoC that is
based on the following hypothesis.

Clocked synchronous hypothesis. There is a global clock signal controlling the start of each computation in
the system. Communication takes no time and computation takes one clock cycle.

First, we define a delay process� that delays all inputs by one evaluation cycle.

� = mealyS(f , g ,⊥)
where g (w , ē) = ē, f (w , ē) = w .

Based on this delay process we define the constructors for the clocked synchronous model.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 15 — #15

Models of Embedded Computation 4-15

Definition 4.9

mealyCS(g , f , w0) = mealyS(g , f , w0) ◦�
zipCS()(s̄1, s̄2) = zipS()(�(s̄1),�(s̄2))

unzipCS() = unzipS() ◦�.
(4.1)

Thus, elementary processes are composed of a combinatorial function and a delay function that essentially
represents a latch at the inputs.

Definition 4.10 The clocked synchronous MoC is defined as clocked synchronous MoC = (C , O), where

C = {mealyCS,zipCS,unzipCS}
O = {‖, ◦,µ}.

In other words, a process or a process network belongs to the clocked synchronous MoC Domain iff all its
processes and process compositions are constructed either by one of the named process constructors or by one
of the composition operators. We call such processes CS-MoC processes.

4.2.5 Discrete Timed MoCs

Timed processes are a blend of untimed and synchronous processes in that they can consume and produce
more than one event per cycle and they also deal with absent events. In addition, they have to comply
with the constraint that output events cannot occur before the input events of the same evaluation cycle.
This is achieved by enforcing an equal number of input and output events for each evaluation cycle, and
by prepending an initial sequence of absent events. Since the signals also represent the progression of
time, the prefix of absent events at the outputs corresponds to an initial delay of the process in reacting
to the inputs. Moreover, the partitioning of input and output signals corresponds to the duration of each
evaluation cycle.

Definition 4.11 mealyT is a process constructor which, given γ , f , g , and w0 as arguments, instantiates
a process p : Ŝ → Ŝ. Again, γ is a function of the current state and determines the number of input events
consumed in a particular evaluation cycle. Function g computes the next state and f computes the output
events with the constraint that the output events do not occur earlier than the input events on which they
depend.

This constraint is necessary because in the timed MoC each event corresponds to a time stamp and we
have a globally total order of time, relating all events in all signals to each other. To avoid causality flaws
every process has to abide by this constraint.

Similarly zipT-based processes consume events from their two inputs and pack them into tuples of
events emitted at the output. unzipT performs the inverse operation. Both have also to comply with the
causality constraint.

Again, we can now make precise what we mean by timed MoC.

Definition 4.12 The timed MoC is defined as timed MoC = (C , O), where

C = {mealyT,zipT,unzipT}
O = {‖, ◦,µ}.

In other words, a process or a process network belongs to the timed MoC domain iff all its processes and process
compositions are constructed either by one of the named process constructors or by one of the composition
operators. We call such processes T-MoC processes.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 16 — #16

4-16 Embedded Systems Handbook

Merging other transformations as well as analysis of time process networks is more complicated than
for synchronous or untimed MoCs, because the timing may interfere with the pure functional behavior.
However, we can further restrict the functions used in constructing the processes, to more or less separate
behavior from timing also in the timed MoC. To illustrate this we discuss a few variants of the Mealy
process constructor.

mealyPT. In mealyPT (γ , f , g , w0) based processes the functions f and g are not exposed to absent
events and they are only defined on untimed sequences. The interface of the process strips-off all absent
events of the input signal, hands over the result to f and g , and inserts absent events at the output as
appropriate to provide proper timing for the output signal. The function γ , which may depend on the
process state as usual, defines how many events are consumed. Essentially, it represents a timer and
determines when the input should be checked the next time.
mealyST. In mealyST (γ , f , g , w0) based processes γ determines the number of nonabsent events

that should be handed over to f and g for processing. Again, f and g never see or produce absent
events and the process interface is responsible for providing them with the appropriate input data and
for synchronization and timing issues on inputs and outputs. Unlike mealyPT processes, functions f
and g in mealyST processes have no influence on when they are invoked. They only control how many
nonabsent events have appeared before their invocation. f and g in mealyPT processes on the other
hand determine the time instant of their next invocation independent of the number of nonabsent events.
mealyTT. However, a combination of these two process constructors is mealyTT, which allows to

control the number of nonabsent input events and a maximum time period, after which the process is
activated in any case independent of the number of nonabsent input events received. This allows to model
processes that wait for input events but can set internal timers to provide time-outs.

These examples illustrate that process constructors and MoCs could be defined, which allow us to
precisely define to which extent communication issues are separated from the purely functional behavior
of the processes. Obviously, a stricter separation greatly facilitates verification and synthesis but may
restrict expressiveness.

4.3 Integration of MoCs

4.3.1 MoC Interfaces

Interfaces between different MoCs determine the relation of the time structure in the different domains
and they influence the way a domain is triggered to evaluate inputs and produce outputs. If an MoC
domain is time triggered, the time signal is made available through the interface. Other domains are
triggered when input data is available. Again, the input data appears through the interfaces.

We introduce a few simple interfaces for the MoCs of the previous sections, in order to be able to discuss
concrete examples.

Definition 4.13 A stripS2U process constructor takes no arguments and instantiates a process p : S̄ → Ṡ,
which takes a synchronous signal as input and generates an untimed signal as output. It reproduces all data
from the input in the output in the same order with the exception of the absent event, which is translated into
the value 0.

Definition 4.14 An insertU2S process constructor takes no arguments and instantiates a process
p : Ṡ → S̄, which takes an untimed signal as input and generates a synchronous signal as output. It reproduces
all data from the input in the output in the same order without any change.

These interface processes between the synchronous and the untimed MoCs are very simple. However, they
establish a strict and explicit time relation between two connected domains.

Connecting processes from different MoCs also requires a proper semantic basis, which we provide by
defining a hierarchical MoC.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 17 — #17

Models of Embedded Computation 4-17

Definition 4.15 A hierarchical model of computation (HMoC) is a 3-tuple HMoC = (M , C , O), where M
is a set of HMoCs or simple MoCs, each capable of instantiating processes or process networks; C is a set of
process constructors; O is a set of process composition operators that governs the process composition at the
highest hierarchy level but not inside process networks instantiated by any of the HMoCs of M.

In the following examples and discussion we will use a specific but rather simple HMoC.

Definition 4.16 H = (M , C , O) with

M = {U-MoC, S-MoC}
C = {stripS2U,insertU2S}
O = {‖, ◦,µ}.

Example 4.2 As example, consider the equalizer system of Figure 4.4 [39]. The control part consists of two
synchronous MoC processes and the dataflow part, modeled as untimed MoC processes, filter and analyze
an audio stream. Depending on the analysis results of the Analyzer process, the Distortion control will
modify the filter parameters. The Button control takes also user input into account to steer the filter. The
purpose of Analyzer and Distortion control are to avoid dangerously strong signals that could jeopardize
the loud speakers.

Control and dataflow parts are connected via two interface processes. The dataflow processes can be

AQ: Please
provide the
publisher
location for the
reference.

developed and verified separately in the untimed MoC domain, but as soon as they are connected to the
synchronous MoC control part, the time structure of the synchronous MoC domain gets imposed on all
the untimed MoC processes. With the simple interfaces of Figure 4.4, the Filter process consumes 4096
data tokens from the primary input, 1 token from the stripS2U process, and it emits 4096 tokens in
every synchronous MoC time slot. Similarly, the activity of the Analyzer is precisely defined for every
synchronous MoC time slot. Also, the activities of the two control processes are related precisely to the
activities of the dataflow processes in every time slot. Moreover, the timing of the two primary inputs
and the primary outputs are now related timewise. Their timing must be consistent because the timing
of the primary input data determines the timing of the entire system. For example, if the input signal to

U-MoC

S-MoC

insertU2S

4096 4096

1

1

1

11

1

1

1

1

1

1

4096
Filter

Button
control }

Distortion
control

stripS2U

Analyzer

FIGURE 4.4 A digital equalizer consisting of a dataflow part and control. The numbers annotating process inputs and
outputs denote the number of tokens consumed and produced in each evaluation cycle. (From A. Jantsch. Modeling
Embedded Systems and SoCs. Morgan Kaufmann Publishers, 2004. With permission.)

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 18 — #18

4-18 Embedded Systems Handbook

the Button control process assumes that each time slot has the same time duration, the 4096 data samples
of the Filter input in each evaluation cycle must correspond to the same constant time period. It is the
responsibility of the domain interfaces to correctly relate the timing of the different domains to each other.
It is required that the time relation established by all interfaces is consistent with each other and with the
timing of the primary inputs. For instance if the stripS2U takes 1 token as input and emits 1 token
as output in each evaluation cycle, the insertU2S process cannot take 1 token as input and produce 2
tokens as output.

The interfaces in Figure 4.4 are very simple and lead to a strict coupling between the two MoC domains.
Could more sophisticated or nondeterministic interfaces avoid this coupling effect? The answer is no
because even if the input and output tokens of the interfaces vary from evaluation cycle to evaluation
cycle in complex or nondeterministic ways, we still have a very precise timing relation in each and every
time slot. Since in every evaluation cycle all interface processes must consume and produce a particular
number of tokens, this determines the time relation in that particular cycle. Even though this relation
may vary from cycle to cycle, it is still well defined for all cycles and hence for the entire execution of the
system.

The possibly nondeterministic communication delay between MoC domains, as well as between any
other processes, can be modeled, but this should not be confused with establishing a time relation between
two MoC domains.

4.3.2 Interface Refinement

In order to show this difference and to illustrate how abstract interfaces can be gradually refined to
accommodate channel delay information and detailed protocols, we propose an interface refinement
procedure, given below:

1. Add a time interface. When we connect two different MoC domains, we always have to define the
time relation between the two. This is the case even if the two domains are of the same type, for example,
both are synchronous MoC domains, because the basic time unit may or may not be identical in the two
domains.

In our MoC framework the occurrence of events also represent time in both the synchronous MoC
and timed MoC domains. Thus, setting the time relation means to determine the number of events in
one domain that correspond to one event in the other domain. For example, in Figure 4.4 the interfaces
establish a one-to-one relation while the interface in Figure 4.5 represents a 3/2 relation.

MoC B
I1

MoC A

MoC A MoC B

Q
3 2

P

P Q

FIGURE 4.5 Determining the time relation between two MoC domains. (From A. Jantsch. Modeling Embedded
Systems and SoCs. Morgan Kaufmann Publishers, 2004. With permission.)

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 19 — #19

Models of Embedded Computation 4-19

In other frameworks the establishing of a time relation will take a different form. For instance, if
languages such as SystemC or VHDL are used, the time of the different domains have to be related to the
common time base of the simulator.

2. Refine the protocol. When the time relation between the two domains is established, we have to
provide a protocol that is able to communicate over the final interface at that point. The two domains
may represent different clocking regimes on the same chip, or one may end up as software while the other
is implemented as hardware, or both may be implemented as software on different chips or cores, etc.
Depending on the final implementations we have to develop a protocol fulfilling the requirements of the
interface, such as buffering and error control.

In our example in Figure 4.6 we have selected a simple handshake protocol with limited buffering
capability. Note, however, that this assumes that for every three events arriving from MoC A there are only
two useful events to be delivered to MoC B. The interface processes I1 and I2, and the protocol processes
P1, P2, Q1, and Q2 must be designed carefully to avoid both losing data and deadlock.

3. Model the channel delay. In order to have a realistic channel behavior, the delay can be modeled
deterministically or stochastically. In Figure 4.7 we have added a stochastic delay varying between 2 and 5
MoC B cycles. The protocol will require more buffering to accommodate the varying delays. To dimension
the buffers correctly we have to identify the average and the worst-case behavior that we should be able to
handle.

This refinement procedure proposed here is consistent with and complementary to other techniques
proposed, for example, in the context of SystemC [44]. We only want to emphasize here that the time
relation between domains from channel delay and protocol design have to be separated. Often these issues

MoC A MoC B

P1

P2
I1

I2

Q2 Q1

FIGURE 4.6 A simple handshake protocol. (From A. Jantsch. Modeling Embedded Systems and SoCs. Morgan
Kaufmann Publishers, 2004. With permission.)

MoC B MoC A

Q2 Q1

P2

P2
I1

I2

D[2,5]

D[2,5]

FIGURE 4.7 The channel delay can vary between 2 and 5 cycles measured in MoC B cycles. (From A. Jantsch.
Modeling Embedded Systems and SoCs. Morgan Kaufmann Publishers, 2004. With permission.)

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 20 — #20

4-20 Embedded Systems Handbook

are not separated clearly making interface design more complicated than necessary. More details about
this procedure and the example can be found in Reference 39.

4.3.3 MoC Refinement

The three introduced MoCs represent three time abstractions and, naturally, design often starts with higher
time abstractions and gradually leads to lower abstractions. It is not always appropriate to start with an
untimed MoC because when timing properties are an inherent and crucial part of the functionality, a
synchronous model is more appropriate to start with. But if we start with an untimed model, we need
to map it onto an architecture with concrete timing properties. Frequently, resource sharing makes the
consideration of time functionally relevant, because of deadlock problems and complicated interaction
patterns. All the three phenomenon discussed in Section 4.1.4, priority inversion, performance inversion,
and over-synchronization, emerged due to resource sharing.

Example 4.3 We discuss therefore an example for MoC refinement from the untimed through the syn-
chronous to the timed MoC, which is driven by resource sharing. In Figure 4.8 we have two unlimited MoC
process pairs, which are functionally independent from each other. At this level, under the assumption of
infinite buffers and unlimited resources, we can analyze and develop the core functionality embodied by
the process internal functions f and g .

In the first refinement step, shown in Figure 4.9, we introduce finite buffers between the processes. Bn,2

and BM ,2 represent buffers of size n and m, respectively. Since the untimed MoC assumes implicitly infinite
buffers between two communicating processes, there is no point in modeling finite buffers in the untimed
MoC domain. We just would not see any effect. In the synchronous MoC domain, however, we can analyze

S1
R1

P1 Q1
P1=mealyU (1, f P

1, gP
1, w P

1)

Q1=mealyU (1, f Q
1, gQ

1, wQ
1)

R1=mealyU (1, f R
1, gR

1, w R
1)

S2=mealyU (1, f S
1, gS

1, wS
1)

FIGURE 4.8 Two independent process pairs.

Bm,2

Bn,2P2 Q2

S2R2

 P2=mealyS: 2:1(f P
2, g P

2, w P
2)

 Q2=mealyS(f2
Q, g2

Q, w2
Q)

Bn,2=mealyS(f2
Bn, g2

Bn, w2
Bn)

 R2=mealyS:2:1(f R
2, g R

2, w R
2)

 S2=mealyS(f2
S, g2

S, w S
2)

Bm,2=mealyS(f2
Bm, g2

Bm, w2
Bm)

FIGURE 4.9 Two independent process pairs with explicit buffers.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 21 — #21

Models of Embedded Computation 4-21

the consequences of finite buffers. The processes need to be refined. Processes P2 and R2 have to be able to
handle full buffers while processes Q2 and S2 have to handle empty buffers. In the untimed MoC, processes
always block on empty input buffers. This behavior can also be modeled in synchronous MoC processes
easily. In addition more complicated behavior such as time-outs can be modeled and analyzed. To find
the minimum buffer sizes while avoiding deadlock and ensuring the original system behavior is by itself
a challenging task. Basten and Hoogerbrugge [45] propose a technique to address this. More frequently,
the buffer minimization problem is formulated as part of the process scheduling problem [46,47].

The communication infrastructure is typically shared among many communicating actors.
In Figure 4.10 we map the communication links onto one bus, represented as process I3. It contains
an arbiter that resolves conflicts when both processes Bn,3 and Bm,3 try to access the bus at the same
time. It also implements a bus access protocol, that has to be followed by connecting processes. The
synchronous MoC model in Figure 4.10 is cycle true and the effect of bus sharing on system behavior
and performance can be analyzed. A model checker can use the soundness and fairness of the arbitration
algorithm and performance requirements on the individual processes can be derived to achieve a desirable
system performance.

Sometimes, it is a feasible option to synthesize the model of Figure 4.10 directly into a hardware or
software implementation, provided we can use standard templates for the process interfaces. Alternatively
we can refine the model into a fully timed model. However, we still have various options depending
on what exactly we would like to model and analyze. For each process we can decide how much of the
timing and synchronization details should be explicitly taken care of by the process and how much can be
handled implicitly by the process interfaces. For instance in Section 4.2.5 we have introduced constructors
mealyST and mealyPT. The first provides a process interface that strips-off all absent events and
inserts absent events at the output as needed. The internal functions have only to deal with the functional
events but they have no access to timing information. This means that an untimed mealyU process can be
directly refined into a timed mealyST process with exactly the same functions f and g . Alternatively, the
constructor mealyPT provides an interface that invokes the internal functions at regular time intervals.
If this interval corresponds to a synchronous time slot, a synchronous MoC process can be easily mapped
onto a mealyPT type of process, with the only difference, that the functions in a mealyPT process may
receive several nonabsent events in each cycle. But in both cases the processes experience a notion of time
based on cycles.

In Figure 4.11 we have chosen to refine processes P , Q, R, and S into mealyST-based processes to
keep them as similar to the original untimed processes. Thus, the original f and g functions can be used
without major modification. The process interfaces are responsible to collect the inputs, present them to
the f and g functions and emit properly synchronized output.

The buffer and the bus processes however have been mapped onto mealyPT processes. The constants
λ and λ/2 represent the cycle time for the processes. Process Bm,4 operates with half the cycle time of

Bn,3P3

R3 Bm,3

I3

S3

I3=mealyS:4:2(f3
I, g3

I, w3
I)

Q3

 P3=mealyS(f P
3, gP

3, w P
3)

 Q2=mealyS(f3
Q, g3

Q, w3
Q)

Bn,3=mealyS:2:1(f3
Bn, g3

Bn, w3
Bn)

 P3=mealyS(f R
3, g R

3, w R
3)

 S3=mealyS(f3
S, g3

S, w3
S)

Bn,3=mealyS:2:1(f3
Bm, g3

Bm, w3
Bm)

FIGURE 4.10 Two independent process pairs with explicit buffers.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 22 — #22

4-22 Embedded Systems Handbook

Bn,3P3

R3 Bm,3

I3

S3

I4=mealyPT:4:2 (l, f4
I, g4

I, w4
I)

Q3

 P4=mealyST (1, f P
4, gP

4, w P
4)

 Q2=mealyST (f4
Q, g4

Q, w4
Q)

Bn,4=mealyPT:2:1 (l,f4
Bn, g4

Bn, w4
Bn)

 R4=mealyST (1, f R
4, g R

4, w R
4)

 S4=mealyS (1, f4
S, g4

S, w4
S)

Bm,4=mealyPT:2:1(,f4
Bm, g4

Bm, w4
Bm)l

2

FIGURE 4.11 All processes are refined into the timed MoC but with different synchronization interfaces.

the other processes, which illustrates that the modeling accuracy can be arbitrarily selected. We can also
choose other process constructors and hence interfaces if desirable. For instance, some processes can be
mapped onto mealyT-type processes in a further refinement step to expose them to even more timing
information.

4.4 Conclusion

We tried to motivate that MoC for embedded systems should be different from the many computational
models developed in the past. The purpose of model of embedded computation should be to support
analysis and design of concrete systems. Thus, it needs to deal with salient and critical features of embed-
ded systems in a systematic way. These features include real-time requirements, power consumption,
architecture heterogeneity, application heterogeneity, and real-world interaction.

We have proposed a framework to study different MoCs that allow us to appropriately capture
some, but unfortunately not all, of these features. In particular power consumption and other non-
functional properties are not covered. Time is of central focus in the framework but continuous
time models are not included in spite of their relevance for the sensors and actuators in embedded
systems.

Despite the deficiencies of this framework we hope that we were able to argue well for a few important
points:

• Different computational models should and will continue to coexist for a variety of technical and
nontechnical reasons.
• To use the “right” computational model in a design and for a particular design task can greatly

facilitate the design process and the quality of the result. What is the “right” model depends on the
purpose and objectives of a design task.
• Time is of central importance and computational models with different timing abstractions should

be used during system development.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 23 — #23

Models of Embedded Computation 4-23

From an MoC perspective, several important issues are open research topics and should be addressed
urgently to improve the design process for embedded systems:

• We need to identify efficient ways to capture a few important nonfunctional properties in MoCs.
At least power and energy consumption and perhaps signal noise issues should be attended to.
• The effective integration of different MoCs will require (1) the systematic manipulation and

refinement of MoC interfaces and interdomain protocols; (2) the crossdomain analysis of function-
ality, performance, and power consumption; (3) the global optimization and synthesis including
migration of tasks and processes across MoC domain boundaries.
• In order to make the benefits and the potential of well-defined MoCs available in the practical

design work, we need to project MoCs into design languages, such as VHDL, Verilog, SystemC,
C++, etc. This should be done by properly subsetting a language and by developing pragmatics to
restrict the use of a language. If accompanied by tools to enforce the restrictions and to exploit the
properties of the underlying MoC, this will be accepted quickly by designers.

In the future we foresee a continuous and steady further development of MoCs to match future
theoretical objectives and practical design purposes. But we also hope that they become better accepted
as practically useful devices for supporting the design process just like design languages, tools, and
methodologies.

References

[1] Ralph Gregory Taylor. Models of Computation and Formal Language. Oxford University Press,
New York, 1998.

[2] Peter van Embde Boas. Machine models and simulation. In J. van Leeuwen, Ed., Handbook of
AQ: Please
provide place of
publication for
Refs. [2, 11, 14,
34, and 39].

Theoretical Computer Science, Vol. A: Algorithms and Complexity. Elsevier Science Publishers B.V.,
1990, chap. 1, pp. 1–66.

[3] S. Cook and R. Reckhow. Time bounded random access machines. Journal of Computer and System
Sciences, 7:354–375, 1973.

[4] B.M. Maggs, L.R. Matheson, and R.E. Tarjan. Models of parallel computation: a survey and
synthesis. In Proceedings of the 28th Hawaii International Conference on System Sciences (HICSS),
Vol. 2, 1995, pp. 61–70.

[5] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proceedings of the 10th Annual
Symposium on Theory of Computing, San Diego, CA, 1978.

[6] Alok Aggarwal, Ashok K. Chandra, and Marc Snir. Communication complexity of PRAMs.
Theoretical Computer Science, 71:3–28, 1990.

[7] Phillip B. Gibbons, Yossi Matias, and Vijaya Ramachandran. The QRQW PRAM: accounting for
contention in parallel algorithms. In Proceedings of the 5th Annual ACM-SIAM Symposium on
Discrete Algorithms, Arlington, VA, January 1994, pp. 638–648.

[8] Eli Upfal. Efficient schemes for parallel communication. Journal of the ACM, 31:507–517, 1984.
[9] A. Aggarwal, B. Alpern, A.K. Chandra, and M. Snir. A model for hierarchical memory.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing, May 1987, pp. 305–314.
[10] Bowen Alpern, Larry Carter, Ephraim Feig, and Ted Selker. The uniform memory hierarchy model

of computation. Algorithmica, 12:72–109, 1994.
[11] Thomas Lengauer. VLSI theory. In J. van Leeuwen, Ed., Handbook of Theoretical Computer

Science, Vol. A: Algorithms and Complexity, 2nd ed., Elsevier Science Publishers, 1990, chap. 16,
pp. 835–868.

[12] Johan Eker, Jörn W. Janneck, Edward A. Lee, Jie Liu, Xiaojun Liu, Jozsef Ludvig,
Stephen Neuendorffer, Sonia Sachs, and Yuhong Xiong. Taming heterogeneity? The ptolemy
approach. Proceedings of the IEEE, 91:127–144, 2003.

[13] Rolf Ernst. Mpsoc Performance Modeling and Analysis. Paper Presented at the 3rd International
Seminar on Application-Specific Multi-Processor SoC, Chamonix, France, 2003.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 24 — #24

4-24 Embedded Systems Handbook

[14] Gilles Kahn. The semantics of a simple language for parallel programming. In Proceedings of the
IFIP Congress 74. North-Holland, 1974.

[15] Edward A. Lee and T.M. Parks. Dataflow process networks. Proceedings of the IEEE, 1995.
AQ: Please provide
the volume and page
number for
Ref. [15].

[16] Jarvis Dean Brock. A Formal Model for Non-Deterministic Dataflow Computation. Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA, 1983.

[17] J. Dean Brock and William B. Ackerman. Scenarios: a model of nondeterminate computation.
In J. Diaz and I. Ramos, Eds., Formalism of Programming Concepts, Vol. 107 of Lecture Notes in
Computer Science. Springer Verlag, Heidelberg, 1981, pp. 252–259.

[18] Paul R. Kosinski. A straight forward denotational semantics for nondeterminate data flow
programs. In Proceedings of the 5th ACM Symposium on Principles of Programming Languages,
1978, pp. 214–219.

[19] David Park. The ‘fairness’ problem and nondeterministic computing networks. In J.W. De Baker
and J. van Leeuwen, Eds., Foundations of Computer Science IV, Part 2: Semantics and Logic.
Mathematical Centre Tracts, Amsterdam, The Netherlands, 1983, Vol. 159, pp. 133–161.

[20] Robin Milner. Communication and Concurrency. International Series in Computer Science.
Prentice Hall, New York, 1989.

[21] C.A.R. Hoare. Communicating sequential processes. Communications of the ACM,
21:666–676, 1978.

[22] Axel Jantsch, Ingo Sander, and Wenbiao Wu. The usage of stochastic processes in embedded
system specifications. In Proceedings of the Ninth International Symposium on Hardware/Software
Codesign, April 2001.

[23] Edward Ashford Lee and David G. Messerschmitt. Static scheduling of synchronous data flow
programs for digital signal processing. IEEE Transactions on Computers, C-36:24–35, 1987.

[24] Chanik Park, Jaewoong Jung, and Soonhoi Ha. Extended synchronous dataflow for efficient DSP
system prototyping. Design Automation for Embedded Systems, 6:295–322, 2002.

[25] Axel Jantsch and Per Bjuréus. Composite signal flow: a computational model combining
events, sampled streams, and vectors. In Proceedings of the Design and Test Europe Conference
(DATE), 2000.

[26] Nicolas Halbwachs. Synchronous programming of reactive systems. In Proceedings of Computer
Aided Verification (CAV), 2000.

[27] Albert Benveniste and Gérard Berry. The synchronous approach to reactive and real-time systems.
Proceedings of the IEEE, 79:1270–1282, 1991.

[28] Frank L. Severance. System Modeling and Simulation. John Wiley & Sons, New York, 2001.
[29] Averill M. Law and W. David Kelton. Simulation, Modeling and Analsysis, 3rd ed., Industrial

Engineering Series. McGraw Hill, New York, 2000.
[30] Christos G. Cassandras. Discrete Event Systems. Aksen Associates, Boston, MA, 1993.
[31] Per Bjuréus and Axel Jantsch. Modeling of mixed control and dataflow systems in MASCOT. IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 9:690–704, 2001.
[32] Peeter Ellervee, Shashi Kumar, Axel Jantsch, Bengt Svantesson, Thomas Meincke, and Ahmed

Hemani. IRSYD: an internal representation for heterogeneous embedded systems. In Proceedings
of the 16th NORCHIP Conference, 1998.

[33] P. Le Marrec, C.A. Valderrama, F. Hessel, A.A. Jerraya, M. Attia, and O. Cayrol. Hardware,
software and mechanical cosimulation for auto-motive applications. In Proceedings of the Ninth
International Workshop on Rapid System Prototyping, 1998, pp. 202–206.

[34] Ahmed A. Jerraya and K. O’Brien. Solar: an intermediate format for system-level modeling
and synthesis. In Jerzy Rozenblit and Klaus Buchenrieder, Eds., Codesign: Computer-Aided
Software/Hardware Engineering. IEEE Press, 1995, chap. 7, pp. 145–175.

[35] Edward A. Lee and David G. Messerschmitt. An Overview of the Ptolemy Project. Report from
Department of Electrical Engineering and Computer Science, University of California, Berkeley,
January 1993.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 25 — #25

Models of Embedded Computation 4-25

[36] Edward A. Lee and Alberto Sangiovanni-Vincentelli. A framework for comparing models of
computation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
17:1217–1229, 1998.

[37] Edward A. Lee. A Denotational Semantics for Dataflow with Firing. Technical report UCB/ERL
M97/3, Department of Electrical Engineering and Computer Science, University of California,
Berkeley, January 1997.

[38] Axel Jantsch and Hannu Tenhunen. Will networks on chip close the productivity gap? In Axel
Jantsch and Hannu Tenhunen, Eds., Networks on Chip, Kluwer Academic Publishers, Dordrecht,
2003, chap. 1, pp. 3–18.

[39] Axel Jantsch. Modeling Embedded Systems and SoCs — Concurrency and Time in Models of
Computation. Systems on Silicon. Morgan Kaufmann Publishers, 2003.

[40] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8:231–274, 1987.

[41] G. Berry, P. Couronne, and G. Gonthier. Synchronous programming of reactive systems: an
introduction to Esterel. In Kazuhiro Fuchi and M. Nivat, Eds., Programming of Future Generation
Computers, Elsevier, New York, 1988, pp. 35–55.

[42] Paul le Guernic, Thierry Gautier, Michel le Borgne, and Claude le Maire. Programming real-time
applications with SIGNAL. Proceedings of the IEEE, 79:1321–1336, 1991.

[43] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming
language LUSTRE. Proceedings of the IEEE, 79:1305–1320, 1991.

[44] Thorsten Grötker, Stan Liao, Grant Martin, and Stuart Swan. System Design with SystemC. Kluwer
Academic Publishers, Dordrecht, 2002.

[45] Twan Basten and Jan Hoogerbrugge. Efficient execution of process networks. In Alan Chalmers,
AQ: Please
provide place of
publisher for
Ref. [45].

Majid Mirmehdi, and Henk Muller, Eds., Communicating Process Architectures. IOS Press, 2001.
[46] Sundararajan Sriram and Shuvra S. Bhattacharyya. Embedded Multiprocessors: Scheduling and

Synchronization. Marcel Dekker, New York, 2000.
[47] Shuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. Software Synthesis from Dataflow

Graphs. Kluwer Academic Publishers, Dordrecht, 1996.

ZURA: “2824_C004” — 2005/4/6 — 17:26 — page 26 — #26

