Approximation Knob: Power Capping Meets Energy
Efficiency

Anil Kandurit, Mohammad-Hashem Haghbayan*, Amir M. Rahmani,
Pasi Lilieberg*, Axel Jantsch?, Nikil Dutt?, and Hannu Tenhunen'+
tUniversity of Turku, Finland, 2TU Wien, Austria
3University of California, Irvine, USA, *KTH Royal Institute of Technology, Sweden
{spakan, mohhag, amirah, pakrli}@utu.fi, axel.jantsch@tuwien.ac.at, dutt@ics.uci.edu, hannu@kth.se

ABSTRACT

Power Capping techniques are used to restrict power con-
sumption of computer systems to a thermally safe limit.
Current many-core systems employ dynamic voltage and fre-
quency scaling (DVFS), power gating (PG) and scheduling
methods as actuators for power capping. These knobs are
oriented towards power actuation, while the need for perfor-
mance and energy savings are increasing in the dark silicon
era. To address this, we propose approximation (APPX) as
another knob for close-looped power management, lending
performance and energy efficiency to existing power cap-
ping techniques. We use approximation in a pro-active way
for long-term performance-energy objectives, complement-
ing the short-term reactive power objectives. We implement
an approximation-enabled power management framework,
APPEND, that dynamically chooses an application with ap-
propriate level of approximation from a set of variable accu-
racy implementations. Subject to the system dynamics, our
power manager chooses an effective combination of knobs -
APPX, DVFS and PG, in a hierarchical way to ensure power
capping with performance and energy gains. Our proposed
approach yields 1.5% higher throughput, improved latency
upto 5X, better performance per energy and dark silicon
mitigation compared to state-of-the-art power management
techniques over a set of applications ranging from high to
no error resilience.

Keywords

Dynamic Power Management; Power Capping; Approximate
Computing

1. INTRODUCTION

Multi-core and many-core architectures have become con-
ventional to meet performance requirements of emerging ap-
plications. Building denser chips leads to high power den-
sity and thermal issues, given the limited cooling solutions.
The chip has to function within an upper bound on power
consumption, thermal design power (TDP) to ensure reli-
able operation and lower chip temperatures. Power Cap-
ping techniques are used to restrict the power consump-
tion below TDP, forcing a section of the chip to be pow-
ered off - the powered off area is known as Dark Silicon

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ICCAD ’16, November 07-10, 2016, Austin, TX, USA

(©) 2016 ACM. ISBN 978-1-4503-4466-1/16/11...$15.00

DOL: http://dx.doi.org/10.1145/2966986.2967002

DVFES/NTC,
PCPG _,, Processor->| Observel
I Schedulina

Approximation

(a)

Figure 1: Power Management Knobs

[5, 20]. Power Capping uses dynamic power management
(DPM) techniques such as adaptive Dynamic Voltage and
Frequency Scaling (DVFS) [24], Near Threshold Computing
(NTC) [25], (Per-core/cluster) Power Gating (PCPG/PG)
[13], scheduling techniques like controlled degree of paral-
lelism [12], thread packing [4], task mapping [11] and task
migration [15]. We refer to these different means for actuat-
ing power consumption as knobs. The hierarchy of different
power knobs in order of their simplicity and temporal ef-
fect on performance is shown in Figure 1(a). These knobs
are oriented at power actuation and are effective in power
capping, making orthogonal compromises on power and per-
formance. With the amount of simultaneously usable logic
decreasing under dark silicon regime, it is necessary to ex-
tract higher performance per energy. This creates a need
for energy knobs that can offer i) performance and energy
gains to complement the existing power knobs, ii) long-term
objectives and control.

Approximate Computing has emerged as an alternative
paradigm that can offer the required performance and en-
ergy gains, by trading off some accuracy. Approximation
leverages inherent error resilience of applications from sev-
eral domains such as streaming, image and video process-
ing, machine learning, big data analytics etc. Such ap-
plications can tolerate inaccurate results due to their NP-
hard and iterative nature, making approximation a better
choice to improve performance per energy in the dark sili-
con era. Recent works on approximation includes techniques
such as loop perforation [22], choice of variable accuracy al-
gorithms using logic simplification and task skipping[14, 2,
1], relaxed convergence [9] etc., with approximation at both
software and hardware levels. Most of these techniques are
open-looped (or closed looped with error tolerance as a con-
straint), compromising accuracy. In a similar vein, power
capping based on DVFS and PG knobs are closed-looped,
compromising performance or energy. Putting together the
existing power capping techniques with open-looped approx-
imation, we propose a closed-loop power management frame-
work that uses approximation, APPX, as another knob for
power capping with performance and energy gains. We use
loop perforation and relaxed convergence to provide multi-
ple versions of the same application with different accuracy
levels. For evaluation, we used machine learning algorithms
which run iteratively on input data sets. Under loop perfo-

ration [22], we skip some parts of the input data, reducing
the number of iterations, inducing error in the eventual re-
sult. The chosen algorithms produce a good enough result
with reduced computations, while further iterations try to
converge towards an optimal solution. Under relaxed con-
vergence [1], we terminate the computation early, compro-
mising the possibility of a more convergent solution. We
present a power management framework that dynamically
switches between accuracy levels of the application, choos-
ing from the set of implementations provided. Invocation
and actuation of the APPX knob determines the level of ac-
curacy selected. We design a power controller that monitors
instantaneous power consumption, workload intensity and
utilization metrics of the chip and decides on appropriate
actuation of DVFS, PG and APPX in a hierarchical man-
ner. Figure 1(b) shows a top level view of the approximation
knob (APPX) in conjunction with other power knobs. While
DVFS and PG are used as short-term power knobs, APPX
is used as a long-term energy knob, improving performance
and energy efficiency, simultaneously ensuring power cap-
ping. In this paper, we propose an approximation-enabled
power management approach, APPEND, for power capping
and throughput enhancement. To the best of our knowl-
edge, ours is the first approach to use approximation in the
context of a closed-loop power capping for network-on-chip
(NoC) based many-core systems. The contributions of this
paper are as follows.

e The approximation knob (APPX) that lends perfor-
mance and energy gains to power knobs by altering
accuracy level of applications from a set of variable
accuracy implementations

e A power management framework for power capping in
many-core systems with dynamic in-flow of applica-
tions using DVFS, PG and APPX knobs

e An accuracy-aware run-time mapping technique that
switches between levels of accuracy by mapping ap-
proximate tasks or replacing accurate tasks with them

e A run-time control algorithm for power, performance,
throughput and energy saving decisions by actuating
DVFS, PG and APPX in a hierarchical way.

2. BACKGROUND AND MOTIVATION

Power knobs based on voltage and frequency scaling such
as DVFS and NTC are simple, yet effective for power cap-
ping due to the dependence of power on V and F. Transis-
tor scaling results in increased leakage power, as the oper-
ational voltage approaches threshold voltage (V%), limiting
the scope of DVFS. A special case of voltage scaling is NTC,
where supply voltage is intentionally reduced beyond thresh-
old voltage for ultra low power operation. This compromises
performance heavily, replacing dark silicon with dim silicon
[25]. Power Gating (PG) reduces the static power at the
expense of performance, since only fewer cores are simulta-
neously powered up. DVFS and PG are triggered based on
a reactive strategy with short-term objective of power cap-
ping, consequently restricting performance and energy gains
to a short-term. As opposed to conventional power knobs,
approximation provides performance and energy gains for
loss of accuracy. We demonstrate the impact of different
power knobs on performance of many-core systems using
sparse vector multiplication as an example. With appli-
cations entering and leaving the system dynamically, per-
formance is determined by service time of an application,
which is the sum of wait time - the time elapsed between
application request and starting of the execution and run-
time - the time consumed in executing the application on
chip [12]. Dynamic workload characteristics contribute to

gAvg. WaitAvg. Run

Time Time

-=-Performance
9|l Energy

6

S o
; : :
DVFS 1
]
Normalized Gain
— [S]
ot (S ot

! |
+
g

8 22 i 510 20 30 40 50
© gE gEZ Workload Approximated (%)
(a) (b)

Figure 2: Performance and Accuracy trade-offs with
APPX knob. (a) Application Service Time. (b)
Accuracy-Energy trade-offs

power violations, forcing actuation of power knobs. We sim-
ulate the application for 4 different power knobs viz., DVFS,
PG, DVFS+PG [19], and DVFS4+PCPG+APPX, using the
experimental platform, detailed in Section 5. For APPX,
we used loop perforation to skip 10%-50% of input data to
generate variable accuracy versions of sparse vector multi-
plication. The average service time for different knob com-
binations is shown in Figure 2(a).

In case of using DVFS and PG knobs [7], per-application
run-time increases forcing the incoming applications to wait
longer, resulting in high service time. The combination of
DVFS and PG has relatively better service time using the
power management algorithm, as in [19]. With the APPX
knob in combination with DVFS and PG, the service time
is the lowest, indicating high performance and energy gain
within the given power budget. The APPX knob loads ap-
plications with relaxed accuracy that have lower workloads
and thus low run-time. Consequently, more resources are
available for incoming applications, improving the wait-time
and the overall service time. Despite effective power cap-
ping and possibility of increasing the number of simultane-
ously active cores, performance still suffers with DVFS and
PG when compared to that of APPX. Hence, we propose a
hierarchical management for effective combination of these
knobs to complement each other. The performance gains of
APPX knob come at the expense of accuracy, traded in loop
perforation. Figure 2(b) shows the gain in performance and
energy for amount of the workload relaxed. It is to be noted
that amount of workload traded is not the same as loss in
accuracy, which is subjective to input data sets.

3. KNOB ACTUATION SCENARIOS

In our work, we primarily monitor power consumption
and workload intensity, along with utilization and network
intensities, to make knob actuation decisions. We use ac-
cumulated wait-time (AWT) of application requests made,
for monitoring the workload. For a set of applications App;,
Appa,..Appn with wait-times w1, wa, ..wn, AWT is:

N
AWT = " w; (1)
=1

The longer an application waits before being serviced, the
higher the workload intensity. The power-objective is to re-
strict the power consumption to below TDP and workload-
objective is to restrict the AWT to a parameterizable thresh-
old AWT;,. We demonstrate possible scenarios that re-
quire knob(s) actuation under diverse power consumption
and workload intensities. Figure 3 summarizes these sce-
narios, representing power consumption, workload intensity
and knob actuations employed over a span of execution.
Each scenario (a-f) shows power consumption with respect
to TDP, applications waiting in the queue, applications that
are mapped on the chip with their respective voltage and fre-
quency levels. Voltage and frequency levels of each mapped

[Appy - Appz, - [App2,
AWT>AW Tinreshora (sz I8) AWT>AW Tiwreshoid (7] AWT>AW Tinreshold (7 /)
App+
--12B > App; App+ --IDP
........... Appx-L1
Powerﬂ ', £l I?rc;v;e AD) Apps Powel (‘ZE’,) Apps
Time & " Time b Appx-11 Time & 1 Appx-L1
Power>TDP | TDP>Power>TDPy, | (v, fr) Power>TDP (v, 1)
DVFS is applied in t;. App and App; are in App1, App2, and Apps are
Appz maps in t,. lowest VF mode. in lowest VF mode.
(a) (b) (c)
2'pe %) Appx-L1
AWT>AW Tinreshord (78] AWT>AW Tipreshold AWT>AW Tipreshoid Vi 1) Appg
Aop; S0P, (he LTDB ... (', fu)
= == Appx-L1 Power] Appx-L1 Powe
Power| A Ap 1 f1 Apps
W8 | a2 W) AppxeLt pp1o
Time f3t o Time I ppX-L Time 7 i £47)
Power>TDP | v,) Power<TDP (v, i) Power<TDP M, fu P11
App1, Appz, and Apps are DVFS/Approximation can All Apps are in highest VF (', ")
in lowest VF mode. L be applied. mode.

(d)

(e)

(f)

Figure 3: Knob Actuation Scenarios

application (Appl, App2,..Appn) are represented as ((v*,f!),
(w2, £?), ...(v™,f™)), with (vr,fr) being lowest and (var,far)
being the maximum levels of voltage and frequency respec-
tively. Primary criteria for knob actuation are TDP viola-
tion (i.e., power > TDP) and high request rate of incoming
applications (i.e., AWT > AW Tip).

Scenario (a): Two applications Appl (v',f!) and App2
(v?,£?) are currently on the system at their respective volt-
age and frequencies. At time instance t;, a power viola-
tion (power > TDP) occurs, along with high request rate
(AWT > AWTyp). The power manager employs the DVFS
knob at first to stay within the power budget. The remain-
ing un-occupied cores are power gated using the PG knob.
Power-gated cores represent the amount of dark silicon ac-
cumulated on the chip. Scenario (b): Appl and App2
are now running at their lowest voltage and frequency levels
(vi,ft) and (vi,f?) due to triggering of DVFS at ¢;. At this
stage, power consumption is approaching TDP, indicating a
potential violation of power budget. Also, the request rate
of applications is high. Anticipating the possibility of TDP
violation, the power manager decides to switch the mode
of incoming applications to approximate. Since Appl and
App2 are already down-scaled in terms of DVFS and re-
maining cores are power gated, the power manager triggers
APPX knob. At time instance t2, a new application App3
arrives and is hence mapped onto the system in approxi-
mate mode as App3-Appx-L1 (shown in plum). As App3
is directly mapped in its approximate version, there is no
overhead of mode switching. Scenario (c¢): At time in-
stance t3, power violation occurs along with a high request
rate of applications. All the applications are operating at
their lowest possible voltage and frequencies and rest of the
cores are power gated. App3 is already being executed at
Appx-L1 while Appl is in accurate mode. Since DVFS and
PG are used, the power manager now switches the mode
of execution of Appl, whereas App2 is not approximable.
Appl is switched to approximate mode, resulting in Appl-
Appx-L1, with some overhead (indicated in blue). These
actuations may restrict the power within TDP, as shown
at t4. Scenario (d): Contradictorily to the previous sce-
nario, the actuations may still not be able to prevent the
power violation nor address the high request rate, as shown
at instance tj. In this case, we further switch the mode of
execution to another level of approximation. Since Appl is
already executing at Appx-L1, App3-Appx-L1 is switched
to App3-Appx-L2, the next level of approximation. This in-
curs a marginal overhead (indicated in blue) in switching be-

tween modes of execution . Scenario (e): With preceding
knob actuations, power consumption at instance tg is well
below TDP. This gives enough budget to utilize, prompting
an increase in voltage and frequency levels and/or increase
in accuracy of computations. We make this a user-defined
quality of service (QoS) design parameter, where one can
prioritize either throughput or accuracy. Accordingly, ei-
ther voltage and frequency levels are up-scaled or accuracy
level of the approximate application is switched one level
ahead. In this scenario, we show App2 being up-scaled to
(v'2,f'%) and App-3-Appx-L2 being switched to level-1 of
approximation, App-3-Appx-L1. Scenario (f): Power con-
sumption is well below TDP, leaving ample budget to utilize.
This allows cranking up voltage and frequency levels of ap-
plications, hence all the applications are operating at their
maximum required voltage and frequency levels (var,far).
However, at instance t7, the request rate is high, although
TDP is honored. In this case, to decrease the AWT, App-8
is switched to approximate mode at level-1, App8-Appx-L1.

4. SYSTEM DESIGN

Fulfilling the objectives of power capping while maintain-
ing better throughput requires a power management frame-
work that monitors critical chip parameters of power con-
sumption, performance, utilization and network intensity,
decides on required optimization and acts upon the opti-
mization in an observe-decide-act (ODA) loop. We design
our power management framework in such an ODA loop
fashion for a NoC-based many-core systems. Subject to ap-
plication requests, the workload, power consumption, uti-
lization, network intensity of the chip varies. Our power
management framework monitors these metrics and in case
of power violations and higher workload intensities, it de-
cides on actuation of different knobs. The system architec-
ture is shown in Figure 4, and detailed below.

4.1 System Architecture

We present our power management framework for NoC
based many-core system that supports dynamic arrival and
servicing of applications. We use applications that are mod-
eled as directed task graphs, where each task runs con-
currently with other tasks. Each task has its computa-
tional intensity and its communication volume with other
tasks. Applications are classified as approximable and non-
approximable. Approximable applications are those that are
modeled as compound task graphs, such that one or more
tasks of the application can be replaced by their approximate
versions. Incoming applications arrive at the application

NoC-based Many-core System

Task Bank
E Zg; Appx Tasks: : | core
< Run-Time Application _,, / V-Gate
ot Mapping and Mapping /
Application el Appx Mode | / PLL
g Request Invokation
N APPX ECPG > ~ =
DVFS > N
[i V-Gate: Voltage
3 AWT]. Load Knob PID Power Gate to apply
& - Analyzer Setting Consumption power gating
W .
PLL: Phase
Y Threshold Power Controller] TDP Locked Loop
Application Network Characteristics | [PLL and VRM are used o VRM: Voltage
arrivals Per-core Utilization Info. apply DVFS Regulator Module

Figure 4: Power Management Framework

repository and make an application request to be serviced.
The run-time mapping and mode selection unit (RMSU) is
responsible for servicing these requests by allocating on-chip
resources per application. RMSU handles application map-
ping, a one-to-one function of allocating a core-per-task for
all tasks of the application. In our framework, we use pro-
active application mapping MapPro, presented in [8]. Par-
allel execution of multiple incoming applications is possible
with RMSU support. RMSU communicates with power con-
troller to send mapping information of current set of applica-
tions running on-chip and for actuation decisions, described
in sections below.

4.1.1 Power Manager

Power Manager is the central controller that monitors sys-
tem metrics and decides of actuation of different knobs. Ac-
tuation decisions of the power manager are based on per-
core power consumption from power meters, per-core uti-
lization from performance counters, network intensity from
router buffers, amount of workload and their characteris-
tics from application repository (i.e., approximable or non-
approximable). Each core on the network is equipped with
per-core power and utilization meters and we trace network
intensity as a moving average of packet flow through the
buffers at each router. These metrics are sent to the power
manager, forming the power monitoring phase. We accu-
mulate wait-time of all the applications that have made an
execution request and are currently waiting in the queue to
be serviced. We send the accumulated wait-time (AWT), as
in Equation 1, to the power manager, forming the workload
monitoring phase. We set another parameterizable thresh-
old T'D P.p, a metric that indicates potential TDP violation,
such that 0.66 x TDP < TDP;;, < TDP. Actuation deci-
sions of our power manager for DVFS and PG knobs are
based on power controller presented in [19]. DVFS and PG
actuations are applied to the chip, as shown in Figure 4. In
case of high workload (AWT > AWT,,), the power manager
invokes APPX knob, and chooses the application(s) that can
be switched to approximate mode. The difference between
AWT and the threshold AW Ty, determines the level of ap-
proximation. The power manager sends the APPX knob
invocation, the application chosen to be approximated and
the level of approximation to the RMSU. For evaluation, we
currently use two levels of approximation in increasing or-
der of accuracy trade-offs. Alternatively, several fine-grained
levels of accuracy trade-offs could be used.

Mode Switching: When the current mode of execution
is accurate, the RMSU originally maps the accurate version
of the task graph. If the application is approximable, the
RMSU buffers approximate tasks of the application into the
Task Buffer. Formulation of the compound task graphs is
shown in Figure 5. We generate compound task graphs that
include multiple versions of tasks that are approximable,
shown in dotted lines. Depending on APPX knob setting,

O/O\o Approximation Power
Technique Management
Framework
Application Task Compound Task
Graph Graph

Figure 5: Compound Task Graph - Workflow

data12 data23 data12 /task2\data23
_apx
) S

~

Wait until current iteration ends Replace task 2 with task2_apx

Figure 6: Mode Switching

RMSU chooses the version of task to be included in the
application mapping, while the other versions are buffered.
With the invocation of APPX knob, there are two possible
scenarios for mode switching viz., i) mapping approximate
task graphs and ii) switching mode of execution of applica-
tions currently running by task replacement. In the former
case, the RMSU maps every incoming application in its ap-
proximate version by including the approximable tasks in-
stead of accurate tasks, until the mode is switched back to
accurate. In the latter case, power manager chooses the ap-
plication(s) and level of approximation to switch to. Based
on these, RMSU identifies the corresponding approximate
task from the Task Buffer and replaces the accurate task
with the approximate task. We modeled applications for
evaluation as data dependent concurrent tasks that execute
periodically. The computational process repeats until the
end of execution with a specified periodicity. Streaming and
signal processing applications are good examples which exe-
cute periodically over incoming samples of data, where it is
possible to relax certain aspects of computation when new
data arrives every period. When RMSU has to replace an
accurate task with approximate, it lets the current iteration
of accurate task’s computation to finish execution. It waits
until data from the accurate task is received at its destina-
tion end task (if any). Once the data transfer is completed,
the RMSU loads the approximate task on to the chip, re-
placing the accurate task. Figure 6 shows the process of task
replacement during mode switching. The example has three
tasks 1, 2 and 3 out of which task2 is approximable. On
invocation of APPX knob, the switching happens in the fol-
lowing sequence. i) The RMSU finds the approximate task
task2_appz from the Task Buffer. ii) It waits until data from
task2 (data23) is received at task3. iii) task2_appz is loaded
by fetching the instruction stream into the cache. iv) Af-
ter the data is received at task3, the execution of task2 will
now start from new instruction stream of task2_appx. De-
pending on size of the instruction cache used, instructions
of task2 may require flushing, however this is subject to

Power Manager

APPX ® PG DVFS Many-core
1 Controller Controller ? Controller ™ System i

Figure 7: Hierarchy of Knobs

Algorithm 1 Power Management Algorithm

Inputs: P: Instantaneous Power, AWT: Accumulated Waiting
Time;

Outputs: RMSU.inMode, RMSU.runMode, RMSU.level:
Mode switching commands for RMSU;

Constants: T'DP: Power budget, AWT;,: AWT Threshold
Global Variables: Appgr: Applications currently running,
Appx: Applications approximable, Appy: Applications running
in approximate mode;

Body:

1: while AWT > AWT,;, do

while P > TDP do
DVFSdown(AppsR)§
if success then break;
PCPG(coresyn);
if success then break;

RMSU.inMode = APPX;

for Appx do
RMSU.runMode(Appx, level-1);

:if (success) then break;

10: for Appy do

11: RMSU.runMode(Appy-, level-2);

12: if success then break;

13: while AWT < AWTyy, do

14: while P < TDP do

15: DV F Syp(Appsgr);
16: if fail then break;
17: powerup(coresyy);
18: if fail then break;

19: RMSU.inMode = ACC;
20: if fail then break;

hardware platform. Since the computational process of the
application is periodic in nature, data is not changed with
mode switching and moving the data or flushing the data
cache is not needed. The state of the application is hence
preserved at the end of the period. It is to be noted that
task migration [15] has an appreciable overhead in moving
both instructions and data, which is a widely used approach
in dynamic power and thermal management. In compar-
ison, the mode switching overhead is lesser, as it involves
insertion of new instructions alone and does not need any
data accesses. The overhead incurred in mode switching is
elaborated in Section 5.

Mode Switching Vs Dynamic Knobs: Hoffman et al.
[9] have used dynamic knobs that reside in program space
to scale accuracy of applications. However, this restricts
accuracy trade-offs only to applications with possibility of
specific relaxed execution that do not require compile time
support. Approximation techniques that use logic simpli-
fication and minimization with a different implementation
need compile time support, and cannot take advantage of
dynamic knobs approach. Mode switching overcomes this
limitation, widening the scope to several application do-
mains and approximation techniques. Dynamic knobs can
be treated as a best case sub-set of mode switching.

4.2 Power Management Algorithm

We employ the DVFS and PG knobs synergistically with
APPX in a hierarchical way, as shown in Figure 7. Trig-
gering and disciplined tuning of these knobs together for
power capping is handled by a power management and mode
switching algorithms. Our hierarchical power management
algorithm is presented in Algorithm 1. In cases of power
violation, it first applies DVFS knob to downscale the volt-

Algorithm 2 Mode Switching Algorithm

Inputs: inMode: Execution mode for incoming applications,
runMode: Execution mode of currently running applications;
Appin: Incoming applications,App/;n: Approximate version of
incoming application, Appr: Application currently running;
Outputs: Map: Mapping configuration of incoming application;
Constants: T'DP: Power budget, AW Ty, : AWT Threshold

Body:
1: if newApp then

2 taskBuf fer.push(App.T', App.T");

3 if inMode = APPX then

4 Map(Appl,);

5. else

6: Map(Appin);

7: for Appr do

8 if Appgr.runMode = level-1 then

9: wait until current iteration of T finishes;
10: switch(T taskBuffer(T”));

11: else if Appr.runMode = level-2 then
12: wait until 7" finishes;

13: switch(T”, taskBuffer(T"));

age and frequency of applications that are currently running
on the chip. For voltage down/up scaling (in Algorithm 1
lines 3-4, 12-14), we use the approach presented in [19]. If
power violation persists, the PG knob is used to power gate
all the cores that are currently un-occupied by any tasks
on the chip. Although, this leads to increase in dark sili-
con, and further accumulation of the same happens when
workload intensity is higher. In case of AWT exceeding the
threshold, APPX knob is invoked by switching the mode to
approximate execution. A decision to map any incoming
applications in their approximate mode is indicated to the
RMSU. The applications currently running on the chip that
are approximable are switched to their approximate mode.
A mapping command is sent to the RMSU indicating the
application(s) to be switched and level of approximation. If
AWT is still violated, applications that are already running
in level-1 approximation are further switched to level-2 of
approximation. The level of approximation can be set in a
fine-grained manner by using N-levels of accuracy trade-offs.
For instance, Palomino et. al have used a 4-level approxima-
tion in video encoding to optimize chip’s temperature [17].
In this work, we use two levels of approximation to demon-
strate energy gains. If TDP is honored, voltage and fre-
quency levels of applications that are currently down-scaled
are cranked up. If the TDP is still honored after voltage
upscaling, un-occupied cores that are power gated are pow-
ered up. While AWT is honored, mode of incoming appli-
cations is changed back to accurate. If AWT is honored
further, a mapping command indicating the application and
new level of approximation (i.e., more accurate level) is sent
to the RMSU. Mapping and mode switching decisions made
by RMSU are presented in Algorithm 2. The RMSU receives
mode of execution for incoming applications from the power
manager. Upon arrival of a new application, the RMSU
buffers approximate tasks of the application (if any) into
the Task Buffer. By default, RMSU maps accurate version
of an application on to the chip if the inMode is ACC, while
the approximate mode is mapped when inMode is APPX.
RMSU receives mode switching commands for current set of
applications running on the chip. The runMode command
indicates the application whose task has to be replaced and
the level of approximation. When runMode of a specified ap-
plication is set to level-1, the RMSU fetches corresponding
approximate task (T') from the Task Buffer and replaces the
accurate task with approximate task. In case of runMode of
an application being set to level-2, RMSU repeats the afore-
mentioned switching process, with an approximate task of
level-2. When the power and workload intensity are manage-
able within their thresholds, we switch back to ACC mode

by indicating the same to the RMSU. Inspired by the tech-
nique presented in [18], we avoid oscillating between ACC
and APPX by setting intermediary thresholds T'DP;;, and
AWTyn. We switch from ACC to APPX mode when the
power and workload are approaching their thresholds, while
switching back to ACC mode is invoked only when these
parameters approach intermediary thresholds. This ensures
that switching back to ACC mode is done when power and
workloads are maintained well under their thresholds and
minimizes the chance of oscillating between the two modes
frequently. Setting intermediary thresholds is a designer’s
decision, with a choice between quality and throughput.

S. EVALUATION

We assess the efficiency of our approximation-enabled power

management approach, APPEND, against state-of-the-art

dynamic power management/capping techniques PG [7] (based

on PCPG) and and MOC [19] (based on per-core DVFS and
PG). We chose widely used data-triggered on-line learning
applications that fall under classification and estimation.
They are inter-disciplinary, being used in a range of peri-
odic applications like recognition, mining and automation
that are performance and energy demanding. These work-
loads are based on iterative methods of computation, mean-
ing that the accuracy of result converges towards optimal
solution with more number of iterations. Since an accurate
solution may not exist and lower convergence could still offer
an acceptable result, they become candidates for approxima-
tion. The list of applications used for evaluation is presented
in Table 1. We normalize the performance gain of approxi-
mate tasks of level-1 (AP-1) and level-2 (AP-2) in compar-
ison with their accurate versions. For level-1 and level-2
of approximation with loop perforation (LP) for linear re-
gression and least squares, we skip 10% and 25% of compu-
tations on input data respectively. For k-means clustering
and k-nearest neighbors, we use relaxed convergence (RC).
We compromise on number of flips, coverage of neighbors
and training data sets respectively for these applications.
We set the limits of relaxation on convergence to 1% and
5% respectively for two levels of approximation. For each
application and level of approximation, we present normal-
ized energy gain when compared to accurate tasks. It can
observed that performance and energy gain increases with
amount of accuracy traded. These gains come at the loss
of accuracy, ranging from 3% to 13% over different appli-
cations and data sets. Accuracy trade-offs and overheads
incurred in switching mode of execution from accurate to
approximate are reasoned in Section 5.2.1.

5.1 Simulation Environment

Applications are modeled as task graphs, as described in
Section 4. We implement each application on interval-core
based Sniper simulator, annexed with McPAT for model-
ing power [23]. We used Nehalem-like processing elements
with 32KB of instruction and data caches. We model each
application as a combination of concurrent tasks, preserv-
ing data flow nature. We use loop perforation and relaxed
convergence in case of approximate tasks. We extract execu-
tion time, average power and energy consumption per each
task. We normalize these values as compute factor met-
ric for each node in the task graph, along with amount of
data flow as the communication volume between tasks. The
task graph for each application is thus a directed network
of nodes that holds execution time, communication volume,
average static and dynamic power consumption for accurate
and approximate tasks. We use our in-house cycle accurate
simulator implemented in SystemC to evaluate the proposed
power management framework. We extended Noxim [6] NoC
simulator using its network infrastructure for interconnects.

Table 1: Applications’ Energy-Accuracy Trade-offs
Norm. Perf

Norm. Energy [% Error

App APPX R T T AP [AP-I | AP [AD-I [AP
Linear

Regression | LP 1.1 1.2 1.16 1.27 6 13

K-Means RC 1.93 5.6 1.9 5.27 1 5

K-NN RC 1.11 1.33 1.09 1.22 3 8
Least

Squares LP 1.07 1.26 1.11 1.25 5 12

The power characteristics of processing elements (PE) are
modeled based on metrics extracted from McPAT and Lu-
mos [25]. Lumos is an analytical framework that quanti-
fies power-performance characteristics with technology node
scaling for many-core systems. We used Lumos for physi-
cal scaling parameters, voltage scaling and TDP metric for
different network sizes. We added the support for dynamic
arrival and servicing of applications through the run-time
mapping unit. The mapping unit receives commands from
power controller, implemented as a software module. The
test-bed is a rectangular network with X-Y routing. The
tile(o,0) of the mesh acts as the central manager that is re-
sponsible for keeping track of mapping information. The
network size is 12x12 and the chip area is 138mm?. For the
first node selection in the runtime mapping process, we use
MapPro [8] method. For the DVFS purpose, we use 15 VF
levels with voltage in the range of 0.8V-1.2V. The frequency
of the on-chip communication network (e.g., routers) is set
to the maximum level (similar to [7] and [19]). The TDP
value is set to 90W, based on the chip’s power density.

5.2 Evaluation Metrics and Results

For evaluation purposes, we simulate the system over a
period in which 200 applications are serviced. The evalua-
tion metrics are: i) Power Consumption: Power consump-
tion of the system over the period of execution, honoring
TDP by capping the power, ii) Accumulated Wait-time: Ac-
cumulated value of wait-time of applications before the ap-
plication request is serviced, and iii) Throughput: Time con-
sumed to service 200 applications Our pre-requisite objective
is to cap the power consumption such that TDP constraint is
honored throughout the period of execution. Figure 8 shows
the power consumption of DVFS, PG, MOC and APPEND,
along with TDP constraint, over the execution time for ser-
vicing 200 applications. TDP violation is more frequent with
PG and DVFS knobs, while TDP is honored for most of the
execution period with MOC and APPEND, with APPEND
being better of the two. Noticeable issue is that while honor-
ing TDP, APPEND maintains power consumption closest to
TDP when compared to other knob combinations, reflecting
better utilization of available power budget. This indicates
mitigation of dark silicon and can be attributed to hierar-
chical usage of power knobs in APPEND’s power controller.
Moreover, we actuate power knobs - DVFS and PG by mon-
itoring power consumption over an epoch e; and trigger the
approximation knob pro-actively over epoch es with e2 being
five times longer than e;. This eliminates possible random
actuations or oscillations between different modes of execu-
tion. With better utilization, APPEND is able to service
applications faster, reducing the run-time and consequently
wait-time of incoming applications. Figure 9 shows the ac-
cumulated wait-time (AWT) for different power capping ac-
tuators over the period of execution. We present AWT as
a function that is directly related to rate of application re-
quests made. Similar to power capping, APPEND has the
best AWT, preceded by MOC, PG and DVFS. DVFS and
PG based actuations have higher AWTs already when the
application request rate reaches 3 per second. MOC has a
relatively high AWT when application request rate is 5 per
second. However, APPEND has a near-zero AWT for as
long as 5x more than DVFS and PG and 3X more than
that of MOC. This demonstrates the ability of APPEND

g0 o APPEND ——TDP (a)
= 90 <=
g 70
& 50 : : : : :
a 0 50 100 150 200 250
Time (s)
110 9 o -
< s MOC [16] TDP (b)
o = 7 Nee'
5 70
g 50 : : : ' |
o 0 50 150 200 250
Time (s)
< 1;8 1 A - DVFS TOP ()
AR SARw 2 ST SET i
5 70 4
g 50 ; . . : ‘
o 0 50 100 . 150 200 250
Time (s)
110 4 ---z--PG[17] ——TDP (d)
—_ A 1 2.
S 38 \ \l,'\'l‘_l' ““,\," ‘l‘ ~ ,': AN ‘\‘__I’ _/"\‘Il’“u."V\J"\‘ /l\\
— T LY
g 50 : : : : :
o 0 50 100 150 200 250
Time (s)

Figure 8: Instantaneous Power Consumption

—=— PG [7] —— MOC [19]
—+— DVFS —— APPEND

50 — T T
s 40
92}
-~ 30
S
<
10
0 N
1 5 10

Application Arrival Rate (#apps/sec)

Figure 9: Accumulated waiting time

to service applications faster despite high workloads, when
compared to the other knobs. APPEND has AWT greater
than zero when the application request rate reaches 14 per
second. Also, AWT accumulation is more steeper in case of
other knobs than that of APPEND, indicating a substantial
rise in their wait-times with high request rates. The min-
imal AWT and high service rate of APPEND also results
in high throughput and energy efficiency. Normalized gain
in throughput for all knob combinations is shown in Figure
10. APPEND has a throughput that is 1.5X better than
PG and 1.2x better than MOC, showing a significant gain
in performance and energy while power capping is strictly
maintained. Employing APPX knob allows APPEND to
minimize execution time of applications running on the chip.
With applications leaving the system faster, more resources
(cores) become available for incoming applications and re-
duces their wait-time. APPEND benefits from AWT and
throughput mutually improving each other.

5.2.1 Error and Overhead Analysis

Behavioral patterns of accurate (Acc) and approximate
(Appx) versions of each application are shown in Table 2.
The number of instructions of each applications (Instruc-

o Normalized
|_ Throughput T 1.53
1.5

aiil

PG[17] DVFS MOC[16] APPEND

Figure 10: Normalized throughput

Table 2: Applications - Behavior and Overhead

Instr. LI-I
A Instr. Sim (M) Accesses (M) | Overhead
bp Acc | Appx | Acc | Appx | Acc | Appx | % (Norm.)
Linear
Regression | 1105 | 1150 93 75 9 7 1.2
K-Means 1018 | 1021 | 449 102 57 14 0.3
K-NN 1457 | 1513 | 140 105 37 24.7 0.3
Least
Squares 770 815 53 50 5 3.7 1.2

tions), number of instructions simulated (Instr. Sim (M)
in million), number of Ll-instruction cache accesses (L1-I
Accesses (M)) (in million), and normalized overhead (in %)
are presented in Table 2. Number of instructions are slightly
higher for approximate tasks due to conditional branching
involved. However, these instructions eventually result in
reduced overall workload and hence improve performance.
For each application, we used 1 million elements in train-
ing set in increasing steps of 100000 data points per period.
Number of simulated instructions depend on training and
test data sets used, and are variable in case of different sizes
of data used. With loop perforation and relaxed conver-
gence, input data elements are skipped, resulting in fewer
instructions required to be simulated. Normalized energy
savings, performance gain and loss in accuracy for each ap-
plication are shown in Table 1. For loop perforated (LP)
applications, we used squared distance from accurate solu-
tion to calculate the error and for relaxed convergence (RC),
we set 1% and 5% as limits for convergence. Switching ex-
ecution from accurate to approximate version incurs some
overhead due to monitoring and triggering the approximate
version. For every approximate task, the switching of exe-
cution mode involves a conditional branching instruction(s).
The overhead incurred during this transformation included
in the approximate task’s compute factor. For the appli-
cations we used, the normalized overhead penalty incurred
ranged between 0.3% up to 1.2%. This overhead is negligible
when compared to the workload reduced by approximation
and thus levies no significant performance penalty. Further,
loading an approximate task involves moving new instruc-
tion stream to the instruction cache, with a possibility of
increase in the number of DRAM accesses. However, this
depends on the number of application instructions and the
size of Ll-instruction cache. For instance, a larger appli-
cation coupled with smaller L1-instruction cache presents a
worst case scenario that would force the system to evict ac-
curate task and fetch the approximate task from main mem-
ory. Although, in our testbed, we used L1-I cache of 32KB
and all the applications have instructions up to as many as
1500. The worst case penalty in terms of communication for
switching from accurate version of a task to the approximate
version can be calculated as follows:

penalty = HECapp o (PL+(nxrp)+MCrL+DRAML) (2)
Stzepkt

where sizeqpp and sizepr: are application and packet sizes,
Pr, is packetizing latency i.e., time consumed to packetize
data, access the network interface and inject packets into
the network, n is the number of hops from a core to nearest
memory controller, rz, is router channel latency, M Cr and
DRAM;, are access latencies of memory controller and off-
chip memory. We demonstrate worst case overhead penalty
of mode switching for a video encoding application which
was used by Holmbacka et al. as an example that they
used to demonstrate overhead for task migration [10]. For
experimental many-core platform Intel SCC, the core, net-
work and off-chip memory frequencies are 533MHz, 800MHz
and 400MHz, respectively. The worst case mode switching
penalty using SCC for the video encoding application of size
6KB is 1.5ms. For the same application, penalty in task mi-
gration is 10.6ms, 7X more than the mode switching over-

head, to move both instructions of 6KB and data of 16KB.
Task migration overhead can still be higher when more data
is to be moved, while mode switching needs no movement
of data. It should be noted that these values are subjective
to the platform on which they are executed, while the rel-
ative difference in overheads between mode switching and
task migration might hold good.

6. RELATED WORK

Power Capping: Adaptive Power capping techniques
monitor the power consumption and actuate power knobs
in a closed loop, in case of TDP violation. A PID controller
based power management is presented in [7], where knob
settings are actuated for power capping as per normalized
gain of PID. Vega et. al propose a power capping algo-
rithm using DVFS, PCPG and core folding, with all power
knobs tightly coupled [24]. They suggest that combinatorial
usage of different power knobs is effective for system level
power capping decisions. Cochran et al. have used thread
packing i.e., allocation of threads per core as a power knob
along with adaptive DVFS [4]. PGCapping was presented
in [13] that uses PCPG and DVFS in a hierarchical way
for power capping and life time balancing. Kapadia et al.
have used Degree-of-parallelism (DoP) as a knob for power
management and to improve system reliability. Application
mapping i.e., spatial alignment of active cores for improving
power budget and thus power capping limit was proposed
in [11] and [21]. A multi-objective power capping approach
was presented in [19] which uses combination of DVFS and
PCPG based on network and workload characteristics. Chen
et. al have proposed using resource allocation at data center
level as another knob for power actuation [3]. They use his-
tory based prediction for potential workload to determine
CPU resource allocation. While all the above techniques
use TDP as upper bound, Pagani et. al have proposed an
adaptive way way of setting the upper bound on power con-
sumption, thermal safe power (TSP), as a function of spatial
alignment of active components. [16].

Approximation: Ansel et al. have used variable accu-
racy implementations of same algorithm, with language and
compiler support to choose one among different implemen-
tations for exploring energy-accuracy trade-offs. [1]. Baek
and Chilimbi have proposed approximation at software level
with a choice between accurate and approximate versions
of blocks of code using Green compiler [2]. Hoffman et al.
have proposed using energy-accuracy trade-offs in context of
power capping by translating static parameters of an appli-
cation into dynamic knobs such as convergence for drop in
accuracy [9]. However, other approximations at algorithmic
level such as logic simplification cannot be translated into
dynamic knobs. Escaping infinite loops and skipping itera-
tions of long bottleneck loops was proposed by Sidiriglou et
al. as Loop Perforation [22]. All these techniques explore
ways to compute approximately, keeping quality control, en-
ergy and performance gains in view. However, they do not
use approximation for actuating power consumption in a
closed-loop way.

7. CONCLUSIONS AND FUTURE WORK

In this work, we proposed approximation as another knob
for power capping in many-core systems. We used the APPX
knob hierarchically with other power knobs of DVFS and PG
to gain performance and energy within the power budget, for
some accuracy trade-offs. We presented a power manage-
ment framework, APPEND, that monitors power consump-
tion and workload intensities to dynamically replace accu-
rate tasks with approximate tasks. We used multiple vari-
able accuracy implementations of the same application to
support dynamic switching between tasks. APPEND thor-
oughly honors TDP and yields higher throughput and lower

wait-times, in comparison with state-of-the-art power man-
agement techniques. Our proposed approach requires appli-
cation design support and restricts the accuracy trade-offs
to a fixed scale. Making the system aware of possibilities in
accuracy scaling for a fine-grained and dynamic approxima-
tion is planned for future work.

Acknowledgment
The authors acknowledge financial support by Academy of
Finland project, "MANAGE: Data Management of 3D Sys-
tems for the Dark Silicon Age” and University of Turku grad-
uate school (UTUGS).

8. REFERENCES

[1] J. Ansel et al. PetaBricks: a language and compiler for
algorithmic choice. ACM SIGPLAN Notices, 2009.

[2] W. Baek et al. Green : A Framework for Supporting
Energy-Conscious Programming using Controlled
Approximation. In PLDI, 2010.

[3] H. Chen et al. Dynamic server power capping for enabling
data center participation in power markets. In ICCAD,
2013.

[4] R. Cochran et al. Pack & cap: adaptive dvfs and thread
packing under power caps. In MICRO, 2011.

[5] H. Esmaeilzadeh et al. Dark silicon and the end of
multicore scaling. In ISCA, 2011.

[6] F. Fazzino et al. Noxim: Network-on-chip simulator. URL:
http://sourceforge.net/projects/nozim, 2008.

[7] M. Haghbayan et al. Dark Silicon Aware Power
Management for Manycore Systems under Dynamic
Workloads. In ICCD, 2014.

[8] M. Haghbayan et al. MapPro: Proactive Runtime Mapping
for Dynamic Workloads by Quantifying Ripple Effect of
Applications on NoCs. In NOCS, 2015.

[9] H. Hoffmann et al. Dynamic knobs for responsive
power-aware computing. ACM SIGPLAN Notices, 2012.

[10] S. Holmbacka et al. A task migration mechanism for
distributed many-core operating systems. Journal of
Supercomputing, 68(3), 2014.

[11] A. Kanduri et al. Dark silicon aware runtime mapping for
many-core systems: A patterning approach. In ICCD, 2015.

[12] N. Kapadia et al. VARSHA: Variation and
Reliability-aware Application Scheduling with Adaptive
Parallelism in the Dark-silicon Era. In DATE, 2015.

[13] K. Ma and X. Wang. PGCapping: Exploiting power gating
for power capping and core lifetime balancing in CMPs.
PACT, 2012.

[14] S. Misailovic et al. Chisel: Reliability- and accuracy-aware
optimization of approximate computational kernels. In
OOPSLA, 2014.

[15] T. Muthukaruppan et al. Hierarchical power management
for asymmetric multi-core in dark silicon era. In DAC, 2013.

[16] S. Pagani et al. TSP: Thermal Safe Power: Efficient Power
Budgeting for many-core systems in dark silicon era. In
CODES+ISSS, 2014.

[17] D. Palomino et al. Thermal optimization using adaptive
approximate computing for video coding. DATE, 2016.

[18] A. Rahmani et al. Design and management of
high-performance, reliable and thermal-aware 3D
networks-on-chip. IET Circ., Dev. € Sys., 2012.

[19] A. Rahmani et al. Dynamic power management for
many-core platforms in the dark silicon era: A
multi-objective control approach. In ISLPED, 2015.

[20] A. Rahmani et al. The Dark Side of Silicon. 2016.

[21] M. Shafique et al. Dark Silicon As a Challenge for
Hardware/Software Co-design. In CODES+ISSS, 2014.

[22] S. Sidiroglou et al. Managing performance vs. accuracy
trade-offs with loop perforation. In FSE, 2011.

[23] E. Trevor et al. Sniper: Exploring the level of abstraction
for scalable and accurate parallel multi-core simulations. In
SC, 2011.

[24] A. Vega et al. Crank it up or dial it down: Coordinated
multiprocessor frequency and folding control. In MICRO,
2013.

[25] L. Wang and K. Skadron. Dark vs. dim silicon and
near-threshold computing extended results. Univ. of
Virginia, Dept of Comp.Sci Technical Report, 1, 2012.

