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Abstract—Message authentication is fundamental for securing
modern automotive networks. Our work focuses on integrating
buffering in existing authentication protocols to sustain the
presence of malicious or corrupt messages, and arbitrary packet
swaps in the in-vehicle network. The proposed extension applies
to the popular vatiCAN protocol, and other CAN bus authen-
tication protocols, which use separate messages for transferring
packet information and authentication data. The proposed exten-
sion uses one or more, independent Finite State Machines (FSMs)
at each receiver node to temporarily store and subsequently
validate message pairs, i.e., a legitimate data packet L with
its hashed-based message authentication code (HMAC) packet
H. The proposed methodology is evaluated experimentally on a
Raspberry Pi-based Electronic Control Unit (ECU) with CAN
interfaces. We examine key design parameters, such as the LH
swap rate, the malicious rate, and queue configuration options,
such as the queue size and flush policy. Results show that the
protocol extension improves authentication. When the queue size
is below 5, the LH swap rate is up to 50%, and 50% of malicious
packets are introduced, the validated packet rate is low (5%).
However, if the queue size exceeds 20, the verified packet rate
reaches 100%, regardless of other parameters. The increased
queue size has a minimal effect on latency, which increases by a
few ms on average, and on false positives, which remain below
10−9. Statistical models help evaluate queue size bounds for
worst-case scenarios, strengthening our experimental findings.

Index Terms—automotive security, CAN bus, hash-based au-
thentication, in-vehicle networks, reliability, FSM

I. INTRODUCTION

Safety and security are interrelated system properties in
many application domains. Ensuring just the safety of auto-
motive vehicles is no longer sufficient. Security has become
equally important, as exhibited in numerous examples. In the
attack known as “The Jeep Hack” [1], the car engine was
remotely controlled by first exploiting a software vulnerability
in the infotainment system. Similarly, in [2], the authors have
shown how to execute system commands using the radio,
the Bluetooth stack, or the telematics unit, thus remotely
affecting physical components of the vehicle through CAN
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Fig. 1. In the above images the order of received packets at a network node
is shown. Scenario a: Packets are received according to the specifications, i.e.,
each legitimate packet L (carrying data) is followed by its authentication H
(carrying an HMAC). Scenario b: Packets are received in the wrong order,
i.e., certain (L, H) pairs have been swapped. Scenario c: Not all packets
are received. Scenario d: Malicious or corrupt packets are received among
legitimate packets and their authentication. Scenario e: Malicious or corrupt
packets are received, and legitimate packets and/or authentications are lost.

message injection, message spoofing, and replay attacks. These
attacks show that vehicle communication vehicle subsystems
are particularly vulnerable to attacks.

Since then, several holistic security solutions have focused
on strengthening authenticated broadcast communication in-
vehicle networks using lightweight proprietary and open
source cryptographic protocols [3]–[5]. However, hazards re-
lated to a) the presence of malicious or corrupt messages or b)
packet reordering due to automotive network reliability issues
(e.g., poor channel conditions) can cause complete failure of
these security protocols (as seen in [6], [7]). In particular, if a
malicious or corrupt packet appears, the subsequent pairing of
an incoming packet L and an authentication packet H carrying
an HMAC is broken. Moreover, thereafter, all remaining
packets are erroneously authenticated.

Figure 1 presents different cases of packets received at a
network node. When packets are broadcast over an in-vehicle
bus, such as a CAN Bus, case (a) presents queuing at the979-8-3315-0769-5/25/$31.00 ©2025 IEEE

00952

20
25

 IE
EE

 1
5t

h 
An

nu
al

 C
om

pu
tin

g 
an

d 
Co

m
m

un
ic

at
io

n 
W

or
ks

ho
p 

an
d 

Co
nf

er
en

ce
 (C

CW
C)

 |
 9

79
-8

-3
31

5-
07

69
-5

/2
5/

$3
1.

00
 ©

20
25

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

CC
W

C6
29

04
.2

02
5.

10
90

39
53

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on March 20,2025 at 09:09:02 UTC from IEEE Xplore.  Restrictions apply. 



receiver in the simplest case of paired (L, H) packets. Cases
(b)-(e) present different scenarios due to a) message reorders
caused by the introduction of malicious or corrupt packets, or
b) the loss of packets caused by unreliable communication,
deliberately shutting down an interface in case of intrusion,
bus off, etc. In this paper, we consider scenarios (b) and (d),
but not (c) and (e) where packets are lost.

Note that with existing security protocols, when a malicious
packet is received, the receiver node has no knowledge of it.
Thus, it behaves normally, trying to authenticate the packet
as a legitimate one, and fails. This can become a major
issue since the relative order of the legitimate packets and
their corresponding authentication packets is broken. Given
that the receiver cannot distinguish between legitimate (L)
and hashed packets (H), if another possibly malicious or
corrupt packet intervenes, the receiver tries to authenticate
two non-paired packets and likely fails. Hence, depending
on the number of packet reorders and malicious or corrupt
packets at the receiver, the efficiency of the authentication
mechanism is affected and may drop to zero. Depending on
the number of malicious packets, legitimate packets may never
be authenticated, or in the worst case, the system may become
unavailable (denial-of-service).

This paper contributes to the following solution.

• A novel, robust security protocol that allows the receiver
to tackle message reordering and injection of malicious
or corrupt packets. The protocol improves the robustness
of hash-based authentication protocols that use separate
packets for data and authentication. To the extent of our
knowledge, no similar techniques have been documented
and evaluated in the literature.

We validate the proposed protocol extension in two ways:

• We present an experimental case study on the CAN Bus,
using an open distributed embedded platform consisting
of Raspberry Pi 3, Model B+ nodes connected to CAN
using dual Canberry SPI-to-CAN interfaces.

• We also provide a worst-case model using statistical
arguments. More specifically, if malicious/corrupt packets
are generated by independent random processes, then the
sequence of precisely k consecutive malicious packets
(called a loss run) in a run of N packets corresponds
to a Bernoulli trial of size N and loss probability q
(probability of malicious packet). The loss run represents
a number of malicious packets that arrive together.

Both experimental and statistical results demonstrate the high
performance and reliability achieved by our security protocol
extension, with small queues of size up to 20 packets.

In Section II, the related work is presented. Then, in Section
III, we describe our methodology, explaining how an FSM at
the receiver node manages a queue to improve authentication
performance and reliability, by handling reordering and ma-
licious or corrupt messages. The experimental framework is
examined in Section IV and the results are presented in section
V. We conclude our paper with future work in Section VI.

II. RELATED WORK

The Controller Area Network (CAN bus) is a bus protocol
(ISO standard 11898) widely used for in-vehicle communi-
cation. It supports real-time data exchange between different
nodes, such as sensors, actuators, and electronic control units
(ECUs). The baud rate of the protocol can reach up to 1Mb/s
and the data frame includes 8-byte data with an 11- or 29-bit
ID. The nodes broadcast the messages asynchronously, and
the messages are prioritized for transmission based on their
ID (PID field). The lower the PID, the higher the priority.

CAN bus protocol does not support security features. This
leads to security exploits, as explained in [8]. The result of
the assessment as well as the vulnerabilities described in [9],
regarding possible security attacks on autonomous vehicles
and their countermeasures, are summarized in Table I.

TABLE I
THE VULNERABILITIES OF THE STANDARD CAN PROTOCOL.

Properties Attacks Explanations Countermeasures
Confidentiality Eavesdropping CAN packets

are plaintexts.
Encryption

Integrity Man-in-the-
middle, replay,
spoofing, data
alteration

Messages are
broadcasted.

Authentication

Availability Denial of ser-
vice (DoS)

Priority is
based on PID

Anomaly
detection, firewall

Device
Authenticity

Spoofing,
replication,
Sybil attack

Devices are not
authenticated

Device
fingerprints

To cope with different vulnerabilities described in Table I,
a variety of authentication and encryption protocols for CAN
bus have been developed. In our study, we concentrate on a
class of security protocols that use separate packets for data
and authentication. At the expense of extra packet delay, these
protocols increase both security and reliability since alternative
solutions use fields in the same packet to carry authentication
data, e.g., bits in the data byte field or the cyclic redundancy
check (CRC) field. Thus, we focus next on the three popular
representatives of this class: vatiCAN, vecure, and VulCAN.

vatiCAN is a backwards-compatible add-on to the basic
CAN protocol [3]. To reduce the cryptographic overhead for
legacy devices, vatiCAN is used only for critical messages.
Authentication messages are sent separately with a special
PID, keeping backward compatibility with CAN bus. For
message authentication, lightweight symmetric cryptography
with a hash-based authentication code (HMAC) is used based
on its compliance with real-time and the resource-constrained
nature of the ECUs. During normal operation, vatiCAN tackles
replay and spoofing attacks. For the replay attack, a random
nonce is added to each hashed-based message authentication
code (HMAC) computation. For the nonce, a counter is
used at each sender. This counter is incremented after each
transmission. If the sender uses a unique set of PIDs, spoofed
messages sent by a compromised device can be detected by
comparing them with the original PIDs. Notice that to deal
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with the effect of message loss during synchronization, a nonce
synchronization channel has been introduced using timing-
based covert channels [4]. The vatiCAN authentication scheme
can benefit from Vecure and VulCAN secure primitives.

Vecure uses trust levels to group ECUs [5]. The high-trust
group shares a symmetric secret key. Authentication frames
contain a 2-byte counter, a 1-byte node ID, a 1-byte marker,
and a 4-byte authentication code. This frame is sent like
vatiCAN in a second packet. The frame is created either offline
using heavyweight SHA3 computation that involves counter,
ID, session number, and overflow (device authentication), or
using a lightweight hash on data (data authentication).

VulCAN utilizes secure system primitives at the software
and hardware level, including a trusted computing base inside
which message authentication code (MAC) is generated [10].
Like vatiCAN and Vecure, VulCAN authentication takes a few
ms. Its two main features are fast, secure authentication, and
software component isolation. In regard to security, to keep the
protocol compatible with legacy systems, the authentication
data, and the message packets are transmitted separately. The
MAC is computed over a 128-bit key, a nonce that protects
against replay attacks, and the CAN identifier, in the case the
key is shared among different IDs. To protect from replay
attacks, the nonce value is never repeated for the same key
and data, thus the initialization of the nonce is vital. For
this reason, session keys are generated, and the nonce is
initialized. In the case of packet loss, nonce is out-of-sync
and authentication will fail. Depending on the case, the nonce
can be sent in the message payload.

A. Comparisons with Related Work

Fault tolerance related to packet reordering and malicious
or corrupt message injection is important in critical systems,
such as in-vehicle automotive networks. Packet reordering,
along with time synchronization, have been used successfully
for designing a covert data channel for encoding forward
error correction when vatiCAN experiences packet loss [4],
since using re-transmissions is expensive. Therefore, packet
reordering can actually occur on CAN.

Although popular CAN-based protocols, such as vatiCAN
[3], Vecure [5], or VulCAN [10], have considered packet
loss and/or replay (duplication) attacks as a threat model, a
packet reordering threat model has not been considered in
the context of automotive in-vehicle networks. However, since
the above CAN-based authentication protocols use pairs of
packets for authentication, even a simple packet reorder (or a
malicious or corrupt message) breaking the pair relationship
can cause catastrophic consequences: all following packets to
be erroneously authenticated.

Packet reordering attacks can be implemented by a mali-
cious CAN driver present on the sender node or an external
malicious ECU node that acts as a man-in-the-middle. The
proposed security extension provides a way to restore pairing
at the receiver by utilizing a queue that stores unauthenticated
packets for future comparisons. This method improves the

attack resilience of hash-based authentication protocols that
use separate packets for data and authentication information.

Both experimental results and theoretical statistical models
are developed to demonstrate good system performance and
reliability with limited queue size for the proposed extension
that addresses packet reordering threats.

III. METHODOLOGY

This section is focused on handling authentication at the
receiver in the presence of packet reordering, and malicious
or corrupt messages. Message corruption can occur because
of channel issues or malicious actions. Confidentiality of the
transferred data is beyond our scope. However, the treatment of
confidentiality could impact authentication as well, depending
on the scheme, e.g., encrypt-then-MAC, or MAC-then-encrypt.

The sender, for each one of the data packets (also referred
to as legitimate packet) (L), sends an additional authentication
packet H, always in this order. The authentication packet
contains the hash value of the legitimate packet. This value is
used to verify the integrity of the legitimate packet. The sender
node is not known to the receiver. The only related packet
information apart from the data bytes for L (or authentication
bytes for H) is the packet priority (PID). The lower the PID,
the higher the priority of the packet. This helps in avoiding
collisions when nodes broadcast packets to the CAN bus. The
normal sequence is L1, H1, L2, H2, L3, H3, which allows the
authentication process to proceed without any issues.

We consider that the packets are received in the correct
order per node, though, this does not exclude the possibility
that reordered packets from different nodes can exist. Re-
ordering is caused by inconsistent merging of message flows
at the receiver due to limited knowledge. This effect can
create a sequence at the receiver (per PID) as the following:
L1, L2, H1, H2, L3, H3 where Li is the legitimate data packet
from node i and Hi is the corresponding authentication packet
from node i. There are also several other possible sequences,
such as L1, L2, H2, H1, L3, H3

The receiver has no previous knowledge of malicious or
legitimate packets. Hence, ignoring the case of rare false
positives (examined later in this section), the receiver can
only assume that all unauthenticated packets are malicious
or corrupt. To restore pairing a centralized queue stores
unauthenticated packets at the receiver for future comparisons.
The behavior of the receiver FSM is analyzed next.

A. Finite State Machine at the Receiver

To handle authentication with packet reordering and ma-
licious or corrupt messages we resort to queuing. More
specifically, instead of using a central queue that stores all
pending authentications, we distribute these messages to dif-
ferent statically allocated queues and define one for each
different message PID; while CAN base frames support an
11-bit identifier, extended frames support 29-bit identifiers.

The queue in figure 1 (a) represents a valid queue state at the
receiver when there is no packet reordering and no malicious
or corrupt message. Moreover, diagram 2 describes the FSM at
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the receiver node. When a new packet is received, the receiver
has no knowledge of the packet type (L, H) and pairing, and so
it searches the queue until a successful authentication packet is
found. During this search, the algorithm examines all possible
packets as candidates of an (L, H) pair, By definition, all these
packets have the same PID priority.

This process starts with the packets closer to the most
recently received packet. This heuristic is expected to increase
the possibility of finding matching authentications since pack-
ets are always received in the right order per sending node.

In case of successful authentication, the (L, H) packet pair is
removed from the queue. Alternatively, in the case of a failed
search, the FSM waits for a newly received packet to start a
new round of packet authentication comparisons.

If during the process of receiving messages, the queue
becomes full, a percentage of the queue packets are deleted
starting from the older packets, according to the selected flush
policy. This happens because, with our heuristic algorithm,
packets staying very long in the queue are considered by the
receiver as malicious or corrupt, even though there could only
be reorders in the queue. Since most messages are periodic,
packet re-transmission is not always required by the specific
application.

Next, we proceed to examine figure 2 closely. The behavior
of the receiver, as well as the efficiency of the proposed
methodology, depends on two parameters: the size of each
queue (we define one queue for each active PID) and their
corresponding flush policy.

Let the size of each queue at the receiver be Qmax. Without
loss of generality, let Qmax = 2n + 1, where n > 1 is an
integer. For each PID, the receiver node uses a finite state
machine (FSM) similar to the one shown in figure 2. The states
of the FSM correspond to queue sizes S0, S1, ..., SQmax

based on the number of received packets. We define Si as the
state that corresponds to queue size i, where

Si, 0 ≤ i ≤ 2n+ 1 (1)

Using separate queues, one for each PID, directly aligns
messages for subsequent authentication comparisons. Hence,
considering authentication only within packets of the same
priority minimizes the number of comparisons between un-
matched packets. The final queue size created is number
of PIDs ∗Qmax. Practically, since the number of PIDs in
different vehicles usually ranges from 6 to 14 or so, and the
expected queue size is relatively small (see section IV) the
memory requirements at the receiver are relatively small (few
KBytes). Moreover, only lightweight processing is needed on
each state of the FSM; more specifically, O(1) comparisons
are necessary to compare each newly received message with
packets already in the queue. For every new packet entry in the
queue, the receiver attempts to authenticate it with all existing
packets in the queue, starting with the packets received last.

For the states, S0, S1, the receiver does not attempt to
perform any authentication since the number of packets is
not sufficient. The authentication starts at first in state S2,
where there are 2 packets in the queue. Upon successful

authentication, the packets are forwarded to be processed,
and they are flushed from the queue, returning to State S0.
Similarly, according to diagram 2, it is simple to follow the
FSM behavior for larger queue sizes, due to the symmetry
implied by taking Qmax = 2n+ 1.

B. Security analysis and False Positives

A consecutive successful run of two elements, i.e., Li, Hi

(corresponding to the correct delivery of a packet and its
authentication) is handled correctly without false positives.
However, when a corrupt or malicious packet is received after
Li, but before Hi, it may create a false positive.

Assuming a random attack with corrupt or malicious mes-
sages, a single false positive can occur with probability 2−N ,
where N is the size of HMAC, i.e., for CAN bus, N = 64 bits,
since we use 8 data bytes for the authentication. Therefore,
with a number of t trials, the probability of at least one false
positive is 1−[1−2−N ]t. Note that this probability remains less
than 10−9, for billions of trials t. Therefore, in the context of
automotive safety, this error is usually considered acceptable.

C. Key management

Key management involves key distribution, renewal, and
storage, vital processes to CAN authentication. Session keys,
used in hash functions, are renewed periodically by a dedicated
node. This node can generate and share session keys regularly,
protecting their distribution against replay attacks using pa-
rameters, such as epoch counters. Although key management
is important, it is orthogonal to our work.

D. Queue Size and Flush Policy Considerations

The efficiency of the proposed authentication partially de-
pends on the queue size Qmax ≥ 3 and the flush policy.

Notice that if the queue is small, it may overflow, thus
breaking possible future authentications. This could happen if
there is a “sufficiently long” sequence of malicious or corrupt
messages or consecutive reorders of many normal packets
(e.g., Li, Lj) or their authentications (Hi, Hj). Moreover, if
the queue is large, the number of authentication comparisons
with previously received packets increases, rendering the in-
spection of messages in real time impossible. This case also
increases the number of false positives.

A key strategy that influences the efficiency of the receiver
FSM in authenticating packets is queue overflow management.
A progressive overflow management scheme could be to delete
many old messages “as soon as possible” (or “as soon as seen
necessary”) with the prospect of making space to store and
match new upcoming packets. On the other hand, with a more
conservative drop-out policy, malicious or corrupt packets may
stay in the queue for longer, enabling further authentication
comparisons with new upcoming packets. Considering the
implications of these two extreme policies, we decide to
follow a simple and general, threshold-based, flush policy, as a
trade-off between successful authentications (validations) and
memory efficiency. More specifically, as shown in diagram 2,
the queue is flushed to become completely (or partly) empty,
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S0 S1 S2 S3 S2n-2 S2n-1 S2n S2n+1

...
Rc=1 Rc=1 Rc=1

Rc=1

Rc=1 Rc=1 Rc=1

Rc=0

Rc=0

Rc=0

Rc=0

Rc=0

Rc=0

Rc=0

Rc=0

Auth(P2,P1:P0)=1
Del(P0,Pi), 0≤i≤1

Auth(P1,P0)=1
Del(P1,P0)

Auth(P2n,P2n-1:P0)=1
Del(P2n,Pi), 0≤i≤2n-1

FLUSH 
Auth(P2n-1,P2n-2:P0)=1
Del(P2n-1,Pi), 0≤i≤2n-2

Fig. 2. The finite state machine of the receiver. The condition Rc = 1 indicates new packet arrivals, while Rc = 0 indicates the absence of a new packet.
Besides storing new packets upon arrival, the FSM uses two functions, namely Auth and Del. Auth(P2n, P2n−1 : P0) represents authentication comparisons
of packet P2n with every packet from P2n−1 to P0. The Del process represents the dequeue of a message pair that has authenticated successfully. The
FLUSH function of the queue brings the FSM to an earlier state by removing several packets, depending on the queue flush policy selected.

when it becomes full, i.e., when control arrives at the last state
of the queue (Qmax). Notice that this occurs independently for
each queue that corresponds to a specific PID.

E. Statistical Models: Predicting the Queue Size

When considering malicious messages as random processes,
the event that “a malicious or corrupt packet arrives” follows
a Bernoulli trial process of size N with a success probability
of p, where p is the probability of a legitimate packet, and
q = 1−p is the loss probability corresponding to a malicious,
or corrupt packet. Within this context, we consider a sequence
of k consecutive malicious packets (called a loss run) in a run
of N trials, preceded and succeeded by zero or more successes.
The length of a loss run is a useful parameter since it represents
the number of malicious packets that can arrive together. Thus,
if the queue size is selected to match the expected value of the
loss run length, our FSM will likely not drop packets without
pairing them first with legitimate packets for the same PID.

If malicious packets arrive at a very high rate compared
to legitimate packets (q >> p), a different type of denial-of-
service will occur, causing the queue to continuously overflow.
Both authentication-based and other metrics, such as the
cumulative sum of message frequency counters, can be used
to detect this anomaly. Now, focusing on the case where
legitimate packets are more than malicious ones (p >> q),
figure 3 shows the number of Bernoulli trials N versus the
loss probability (q = 1− p), for various numbers of loss runs.
From the figure, observe that, if the rate of malicious or corrupt
packets falls to 10%, then the number of packets for a loss
run of size k = 30 increases exponentially to ≈ 1030. Hence,
due to the extremely large number of messages, overflows are
not expected to occur with a queue of size 30, if the rate of
malicious packets is below 10%. Note that useful asymptotics
are provided in [11], and closed-form equations for the case
p = q are available in [12] [13].

IV. EXPERIMENTAL SET UP

To evaluate the performance of the security extension, we
use the embedded platform in Figure 4. This proof-of-concept
platform represents a simplified CAN-based ecosystem with
two Raspberry Pi 3B+ CAN nodes: message sender and
receiver. Both nodes operate on 2019-04-08-Raspbian, with
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Fig. 3. Bernoulli trials N vs. loss runs (k) for various loss probabilities (q).
The number of Bernoulli trials for a given loss run increases exponentially
when the success probability increases linearly.

Canberry (SPI-to-CAN)Canberry (SPI-to-CAN)

CAN 0 CAN 1 CAN 1 

L,H,M packets

CAN 0 

Raspberry 0 Raspberry 1

Fig. 4. Schematics of the embedded platform used for experimentation. ECU
nodes are based on Raspberry Pi 3B+ with SPI-to-CAN interfaces. The gray
arrows indicate other CAN connections.

Linux kernel 4.9 and preempt rt patch. Using the Industrial-
Berry’s Canberry Dual v2.1 SPI-to-CAN shield, the platform
can be extended to interface with 4 CAN networks. We
configure the CAN rate at 500Kb/sec, and the transmit queue
length of the CAN network interface to a large value (1M );
this determines the maximum number of packets allowed per
transmit queue.

To simulate how the FSM at the receiver handles incoming
packets, the sender node generates a sequence of packets based
on four parameters, a) a number of legitimate packets (leg), b)
a number of malicious packets (mp), c) the LH packet swap
rate (LH), and d) the malicious rate (mal rate). In the exper-
iments, for each legitimate packet, a subsequent authentication
packet is transmitted. This packet contains the hash value of
the original packet. According to the vatiCAN protocol, the
hash value is computed using the SHA3-256 algorithm (in
256 bits) and truncated to 64 bits. Table II presents the specific
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a.

b.

c.

Fig. 5. Typical packet distributions for various LH swap rates. a) Queue for
LH = 0. b) Queue for LH = 0.5; the LH sequences are not so symmetric,
i.e., 3 (or more) consecutive L are possible. c) Queue for LH = 1.

TABLE II
SENDER PARAMETERS

Parameter Investigated values
Legitimate packets (leg) {2000, 5000}
Malicious packets (mp) {0, 0.5, 1, 2} ∗ leg

LH swap rate (LH) {0, 0.5, 1}
Malicious rate (MAL) as defined in Eq. 2

parameter values used during the experiment.
The experiments are conducted for 2000 and 5000 le-

gitimate packets. The number of malicious packets is ei-
ther 0, 1000, 2000, 4000, for 2000 legitimate packets, or
0, 2500, 5000, 10000, for 5000 legitimate packets.

The parameter LH swap rate defines the frequency of
non-consecutive (L, H) pairs. Higher values result in greater
densities of L packets since the H packets remain at the end of
the sequence. Figure 5 demonstrates how different LH swap
rates impact the packet queue. Higher LH rates increase the
probability that packets stay at the receiver’s waiting queue
for longer, potentially leading to queue overflow.

The malicious rate (mal rate) defines the distribution of
malicious packets, as calculated in equation 2.

MAL = mp ∗ (2 ∗ leg +mp)−1 (2)

where leg is the number of legitimate packets, and mp is the
number of malicious packets (see Table II for possible values).

The behavior of the receiver is determined by two param-
eters: a) the queue size and b) the flush policy. The queue
size defines the memory space for storing packets not yet
authenticated, and the flush policy defines the number of
packets deleted in case of queue overflow. The experimental
values for these parameters are presented in Table III. Notice
that if the flush policy FL = 0.5, then the first half of the
queue is deleted during a queue overflow. If FL = 1, then the
whole queue is deleted.

We focus on the following experimental system metrics:
1) The percentage of the validated packets for a given LH

swap rate, and malicious rate.
2) The percentage of the validated packets for a given LH

swap rate, malicious rate, and flush policy.
3) The average queue length for a given queue size, LH

swap rate, and malicious rate.
4) The latency for a given LH swap, and malicious rate.

V. RESULTS

For the specific experimental configuration, there was no
packet loss at the CAN interface. Thus, the receiver node
receives all the packets sent from the sender node.

TABLE III
RECEIVER PARAMETERS

Parameter Experimental values
Queue size {3, 4, 5, 6, 8, 9, 10, 15, 20, 30}

Flush policy (FL) {0.5, 1}

Experimental data collected on the receiver node, includes
the number of received packets (rcv p), the number of vali-
dated packets (val p), the number of deleted packets (del p),
and the number of packets remaining in the queue (rem p)
used for validation. After performing several sanity tests, we
analyzed three fundamental system performance metrics. First,
the average queue length is calculated using Eq. 3. Second,
the average number of authentication trials is computed using
Eq. 4. Finally, the total latency is obtained using Eq. 5.

avg queue length =

∑rcv p
n=1 queue lengthn

rcv p
(3)

where queue lengthn is the length of the queue upon arrival
of packet n, and rcv p is the total number of received packets.

avg auth trials =
total trials

rcv p
(4)

where total trials is the total number of authentication
comparisons that took place in total for all received packets,
and rcv p is the number of received packets.

auth latency =

∑val p
n=1 auth delayn

val p
(5)

where auth delayn is the time from the moment the packet n
is received until the moment the packet is successfully authen-
ticated, and val p is the number of successfully authenticated
legitimate packets.

The total latency, average queue length, and number of
validated packets, are significantly affected by queue size,
flush policy, LH swap rate, and malicious rate.

Upon analyzing figure 6, it becomes evident that queue
sizes greater than 20 result in a 100% validated packet
rate. Moreover, for queue sizes below 20, the percentage of
validated packets increases significantly with the queue size,
depending on the LH swap and malicious rates. Lower values
of LH swap rate and malicious rate lead to a faster increase
in the percentage of validated packets. For instance, when
LH = 0 and MAL = 0, a queue size of 3 items results in a
100% validated packet rate, while LH = 0.5 and MAL = 0.5
require a queue size of 20 for the same result.

Additionally, the flush policy also affects the validated
packets. As illustrated in figure 7, LH = 0.5 and MAL =
{0.2, 0.33} result in lower percentages of validated packets for
FL = 1 compared to FL = 0.5, regardless of the queue size.

The average queue length shown in figure 8 remains rel-
atively low when MAL = 0. As the LH swap rate and
malicious rate increase, the average queue length increases
linearly, justifying the need for a larger queue size (near 25).
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Fig. 6. The percentage of validated packets vs. the queue size for different
swap rates (LH), and malicious rates (MAL); the flush policy FL = 0.5.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Va
lid

at
ed

 P
ac

ke
ts

 (%
)

Queue Size

LH=0, MAL=0 LH=0.5, MAL=0 LH=0, MAL=0.2 LH=0.5, MAL=0.2
LH=0, MAL=0.33 LH=0.5, MAL=0.33 LH=0, MAL=0.5 LH=0.5, MAL=0.5

Fig. 7. The percentage of validated packets vs. the queue size for swap rate
LH=0.5, malicious rates MAL={0.2,0.33}, and flush policies FL={0.5,1}
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Fig. 8. The average queue length vs. the queue size for different swap rates
(LH), and malicious rates (MAL), given that the flush policy FL = 0.5.
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Fig. 9. The total latency of authentication for validated packets based on the
queue size for different LH swap rates (LH), and the malicious rates (MAL).

In figure 9, we examine the total latency of validated packets
for LH = 0.5. For LH = 1, the total latency cannot be
calculated since none of the packets is validated. We observe
that the total latency increases when the LH swap rate (LH),
and the malicious rate (MAL) increase, although the level of
increase is non-linear. In fact, for all LH and MAL rates, the
latency increase for a queue size of 20 (versus a queue size
of 5) is very small, only a few ms on average. Improvements
are marginal since they correspond to statistically insignificant
events, as demonstrated in section III-E.

Another important remark is that for queue sizes above 20
packets, where almost all packets are validated (cf., figures 6
and 7), the effect of increasing the malicious rate on the total
latency is more profound than increasing the LH rate.

As a practical example, assuming a queue size of 20, and
comparing the use case of LH = 0.5 and MAL = 0.5 with
that of LH = MAL = 0, we discover that the former case
has a ≈5 times larger latency (37ms vs 7.3ms). This extra
latency of ≈30ms extends braking distance by 0.83m on a car
speeding at 100 km/h.

Finally, note that by increasing the number of PIDs and
providing extra buffering, it is possible to reduce the number
of queue entry comparisons. However, although different PIDs
(associated with multiple FSMs) may be activated to reduce
comparisons, only one of the FSMs would be active each time
at each network node, the one receiving the new incoming
packet. Hence, our proposed scheme always uses a constant
number of comparisons for each received packet.

VI. FUTURE WORK

Several interesting open issues relate to extensions of the
current methodology.

• Is it feasible to authenticate multiple messages together
with a single tree-based HMAC? Examine trade-offs
between performance and security.

• In addition to packet reordering, and malicious or corrupt
messages, consider the case of lost messages. For this
case, is it possible to apply encoding techniques, such as
Reed-Solomon or LPDC error-correcting techniques, in
real time? Would these schemes require restructuring to
avoid re-computations?

It is also interesting to consider another approach based on
multiple hash chains and evaluate related performance, energy,
and storage trade-offs.
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