
 

  
Abstract— Measuring and comparing performance, cost, and 
other features of advanced communication architectures for 
complex multi core/multiprocessor systems on chip is a significant 
challenge which has hardly been addressed so far. 
This document outlines the top-level view on a system of 
benchmarks for Networks on Chip (NoC), which intends to cover 
a wide spectrum of NoC design aspects, from application 
modeling to performance evaluation and post-manufacturing test 
and reliability. For performance benchmarking, requirements 
and features are described for application programs, synthetic 
micro-benchmarks, and abstract benchmark applications. Then, 
it proposes ways to measure and benchmark reliability, fault 
tolerance and testability of the on-chip communication fabric. 
This paper introduces the main concepts and ideas for 
benchmarking NoCs in a systematic and comparable way. It will 
be followed up by a report that will define a benchmark 
framework and the syntax of interfaces for benchmark programs 
that will allow the community to build-up a benchmark suite.  

 
Index Terms— metrics, networks-on-chip, performance 
evaluation, benchmarks.   

I. INTRODUCTION 

HIS paper motivates the need for a Network-on-Chip 
benchmarking, outlines the compelling features of a NoC 

benchmarking environment, and describes an initiative toward 
establishing some widely accepted and useful benchmarks.  

A. Benchmarking Problem 

The practical implementation and adoption of the NoC 
design paradigm faces multiple unresolved issues related to 
design methodology/technology and analysis of architectures, 
test strategies and dedicated CAD tools[1]. To advance and 
accelerate the state of the art of the NoC paradigm R&D, the 
community is in need of widely available reference 
benchmarks [1][2].  

Classic benchmarks for multiprocessor systems [3][4] are 
application-oriented, and cannot be used directly for 
communication-intensive architecture such as NoCs. 
Moreover, the nature of the applications running on NoC-
based designs is expected to be more varied and heterogeneous 

compared to typical applications for multiprocessor 
computers. 

The current SoC benchmark circuits, e.g. ITC 2002 [5], 
contain only a very limited number of blocks; they target test 
development only, and do not reflect the high level of 
integration specific to the NoC scenarios. We promote a 
collaborative initiative to develop NoC benchmarks that will 
foster improved and accelerated development in this field. 

B. Benchmarks Characteristics 

The problem of NoC design is extremely complex and it can 
only be solved by identifying and parameterizing the elements 
that potentially define a NoC, their properties, and their 
interactions. As such, it is clear that a NoC benchmark has to 
be applied on more than a simple topological description of a 
certain circuit (such as in the case of well-known ISCAS85 or 
ITC 2002 benchmarks), but rather on a combination of 
hardware blocks (functional IP cores), a NoC fabric (routing 
elements and wires) with a certain topology/architecture, and a 
specification for the traffic of data through the entire system. 
These elements can be thought to be orthogonal, and different 
benchmark scenarios can be created by their superposition. 

A minimal list of properties and features that a NoC 
benchmarking environment should exercise includes the 
following: 

- Network size (small, medium, large) 
- IP core composition (amount of processing, memory 

cores, other) 
- Topology (regular, irregular) 
- Traffic characteristics (spatial and temporal)  
- QoS requirements (best-effort, guaranteed bandwidth, 

guaranteed latency) 
The different characteristics of the NoC benchmarks with 
respect to the above properties will allow the evaluation of the 
NoC performance parameters, among the most important ones 
being the throughput, latency, power/energy dissipation, and 
silicon area.  

C. Proposal Outline 

In view of the propriety issues involved, we propose that the 
interested community work toward the development of a set of 
synthetic benchmarks characterized by the following sets of 
orthogonal parameters: 
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i) A set of relevant metrics and the associated 
measurement methodologies 

ii) A set of parameterized reference inputs for the NoC 
benchmarks, consisting of: 
a. NoC functional cores composition (# of 

Processing Elements - PEs -, number and size of 
memories, number of I/Os) 

b. interconnect architectures; 
c. data communication requirements. 

 
The term synthetic refers to some level of abstraction, for 

example a task graph with known computation times and 
communication loads instead of actual application code. Of 
major importance is the benchmark measurement 
methodology, which defines parameters of interest and their 
points of measurement (in time and space) relative to the 
structure and representation of the NoCs. For coherent, 
reproducible evaluation and comparison of research data, 
adequate metrics must be available. 

These sets of parameters (a, b, c), when combined, would 
suffice to yield a meaningful and useful representative set of 
NoC characteristics. For instance, core composition would 
characterize the NoC with respect to the number of processing 
elements, memory elements, I/Os. For testing purposes, 
additional information would be required, for example, the test 
strategy (e.g., BIST, scan, etc.) for each functional core and 
test related parameters (e.g., number of scan chains, scan 
chains lengths, number of test patterns, number of I/Os, etc.). 
This type of information is mainly intended to allow the 
development and comparison of system level test synthesis and 
scheduling techniques. 

The interconnect architecture is intended to characterize 
NoCs with respect to the data transport capabilities of the 
communication fabrics. The proposed interconnect 
architectures to date can be classified into one of the 
following: cube-based topologies, tree-based topologies, 
irregular ones, and their different combinations. 

Data communication requirements would define the 
communication needs of the synthetic NoC. This set of 
parameters consists of inter-core bandwidth/latency, data 
integrity requirements, and spatial/temporal traffic distribution. 

D. Long-term Benefits  

 The NoC benchmarks would envisage benefits similar to 
those ensuing from our field or related fields. Examples 
include:  

Improved sharing and comparison of R&D results 

The NoC design is still in its infancy and, generally, 
companies and institutions are not open to share specifications, 
models, and other proprietary data regarding NoCs. A set of 
academic, synthetic benchmarks can be shared and used 
without these limitations. The existence of an open format for 
benchmarks specifications makes possible for interested 

research groups to contribute with relevant models and test 
cases. 

Increased, healthy competitiveness between R&D 

The use of different metrics and measurement 
methodologies complicates comparison. For example, some 
research groups tend to emphasize just the implementation 
related issues, such as area or power, whereas the others 
provide only a set of (anecdotal) performance values. 

Increased reproducibility of results and commonality for 
comparative purposes 

Comparison of results is only possible if input data and 
measurement are fully reproducible. Often, researchers tend to 
use proprietary test cases, not always fully characterized and 
therefore not entirely reproducible. Common benchmarks 
allow fair and consistent comparison of different approaches. 
Reproduction also requires thorough documentation of 
measurement settings. 

Accelerated development and analysis 

Usually, designers build testbenches based on the initial 
specifications to verify the functionality and performance of 
complex systems. The existence of standardized input data and 
hardware models can speed-up the initial design and 
performance estimation phase. 

Better scalability compared to application benchmarks 

Application benchmarks offer the best accuracy but are 
difficult to port for different systems, and their simulation is 
time intensive, compared to synthetic benchmarks. They also 
scale poorly with system size, for example the number of tasks, 
which defines the maximum number of processing elements, is 
fixed. Synthetic benchmarks are more suitable for 
benchmarking purposes  since they can exhibit properties of 
particular fixed size application benchmarks, but can scale 
with system size while still retaining these properties. 

II. PERFORMANCE BENCHMARKS 

Since many different parameters and factors influence the 
performance perceived for a particular application, we need a 
versatile set of devices to analyze, measure and compare the 
performance of different NoCs. The overall performance for a 
particular application is the ultimate criteria. However, there 
are many different factors influencing this figure such as 
algorithm design, functional partitioning, resource allocation, 
mapping, communication services, buffering, flow control, 
routing algorithms, physical design, clocking strategies, and so 
on. To be able to accurately analyze and assess individual 
factors we need a more sophisticated set of characteristics. 
In the following two types of benchmarks are defined.  

Benchmark programs are programs or models resembling 
real applications, which exercise the entire communication 
architecture and design methodology. Hence, they can be used 
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to assess the suitability of a particular NoC for a given 
application or application domain.  

Micro-benchmarks are stochastic benchmarks, which 
exercise one or a few specific aspects of a communication 
architecture. They can be used to gain insight into a particular 
design feature or to compare and rate a number of alternative 
techniques, e.g. several routing algorithms. The most common 
example is uniform random traffic. 

A. Hardware Platform Model  

The model of hardware platform consists of a set of 
Resource Models (RMs) that are connected to the 
communication network, as shown in Figure 1.  
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Figure 1: A number of resource models (RMs) connected 
to the communication network. 

A RM is a model written in C, C++, SystemC, VHDL or 
Verilog. It may be arbitrarily simple or complex. It models the 
functionality of a resource in the system which communicates 
with other resources over the network. It may represent a PE 
(such as processor with software, a dedicated hardware block, 
a DSP block), an on- or off-chip memory, or any other 
resource in the system. The main requirement is that it 
complies with one of the defined interface protocols like OCP 
[6], AMBA [8], or similar (see Sec. 2.6) and that functional 
tasks may be mapped onto RMs. The functionality may be 
presented either as benchmark programs or as micro-
benchmarks.   

B. Benchmark Programs 

Programs are modeled as programs written in C, SystemC, 
VHDL or any other language but without considering the final 
implementation, be it any combination of HW and SW. For 
benchmark programs the figure of merit is defined by the 
benchmark itself because it may be different for different 
benchmarks. In many cases the end-to-end delay and the 
overall throughput of the system will be the most important 
figures of merit. However, some benchmarks may focus on 
other aspects. For instance, for a benchmark representing a 
hard real-time system, the most important figure is the number 

of deadline misses. For most embedded systems the memory 
size has to be minimized. Consequently, benchmarks that 
represent those applications will focus also on the amount of 
buffer space needed at the network interfaces. 
A benchmark program provides the following information: 

Functionality: 
- Application model 
- Mapping and scheduling of application tasks to the 

resource models (RMs) 
- Set of RM as C, C++, SystemC, VHDL or Verilog models 

Usage: 
- Directions to connect the RMs to the network 
- Instructions for configuration and compilation 
- Deadlines or other non-functional requirements of the 

application (optional) 

Topology and Mapping (optional): 
- Size and topology of the network, the structure of the 

routers 
- Binding of a RM to a position in the network 

Task descriptions are independent of the underlying 
hardware (RM and network) and it defines the temporal and 
spatial properties of the traffic. Tasks are explicitly mapped to 
resources. In simplest the case, there is exactly one task per 
RM but there can also be multiple tasks per RM. A resource 
translates the operation count in application model into time 
units. For example, if a simple resource model can perform 2 
operations/cycle, a task with 500 operations takes 500/2=250 
cycles to execute on that RM. Given the cycle time, this can be 
translated to, for example, nanoseconds. 

The usage information gives all necessary directions to 
connect the RMs to the terminals of the network, initialize 
them, run the benchmark and interpret the results. For instance 
a benchmark program may require an initialization phase of 
1µs followed by an evaluation phase of 5 µs. 

The topology and mapping information are optional. 
However, if it is not provided the evaluation includes also the 
design methodology and the techniques for network 
configuration, resource allocation and resource binding. If a 
benchmark program targets the benchmarking of the network 
architecture (topology, routing, switching, etc.) it has to 
provide the topology and mapping information because 
different mappings may lead to radically different performance 
results for the same network architecture. If this information is 
not provided, the benchmark program can be used to evaluate 
the combined effect of a topology configuration, mapping, and 
the communication network itself. 

C. Micro-Benchmarks 

Micro-benchmarks intend to exercise a NoC in a very 
specific way or measure a single particular aspect. Hence, they 
offer insights on a specific property and facilitate the analysis 
and design of a communication infrastructure. A single micro-
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benchmark provides only a very limited view and does not 
allow for far-reaching conclusions about the suitability for an 
application domain. However, a set of well designed 
micro-benchmarks can give both a broad and detailed 
understanding of a given communication network. Since even 
a large set of micro-benchmarks is not guaranteed to represent 
a real application well, micro-benchmarks are complementary 
to benchmark programs. While benchmark programs evaluate 
the combined effect of many aspects of the platform as well as 
of the application, micro-benchmarks isolate individual 
properties and allow for a deeper point analysis.  

Micro-benchmarks should cover a number of different 
aspects which are outlined in the following. 

Packets and Transactions:  
The packet is the basic unit of information in the network ; 

it has limited size. By measuring delay, bandwidth, jitter, 
power consumption, etc. of individual packets, the network 
itself, its routing, switching, buffering and flow control 
mechanisms are evaluated. Distinction should be made 
between the latency in the network and the delay for network 
access. 

Transactions are higher level communication activities that 
evaluate data packetization, end-to-end flow control, streaming 
capabilities and similar services offered by the network. In 
addition to the network, transactions also evaluate the interface 
blocks between the network and resources. Examples of 
transactions are: memory read and write, read and write bursts, 
transmission over an open connection or stream, opening and 
closing of connections.  

Unloaded and loaded case: 
In the unloaded case, individual packets or transactions are 

measured without any network contention. This gives data 
about minimum delay and peak performance. 
The loaded case investigates the network behavior when many 
independent packets and transactions compete for the same 
resources. Congestion, arbitration, buffering and flow control 
policies will be exercised. 

Temporal and spatial distribution:  
In the loaded case, different traffic scenarios have to be 

considered. The obvious and most widely used is the random, 
uniform traffic where nodes communicate with each other with 
equal probabilities. However, micro-benchmarks need to stress 
the network with various different traffic scenarios to study 
how the performance depends on the traffic patterns.  

We need to differentiate between temporal and spatial 
distribution of traffic generation [1]. The temporal distribution 
determines how an individual RM generates traffic over time. 
In particular, bursty traffic scenarios have to be covered 
adequately. The spatial (i.e. target) distribution governs the 
spatial traffic pattern: who communicates with whom. The 
benchmarks should cover traffic scenarios with localized 
traffic, hot-spot patterns and other typical patterns that 
represent important application characteristics. 

Best effort and guaranteed services: 
Micro-benchmarks measure the performance of best effort 

traffic. Guaranteed throughput services are supposed to 
provide guarantees on minimum throughput and maximum 
latency, which should be verified by some other means. 
However, it is important to study the effect of resource 
allocation by guaranteed services on best effort traffic 
performance. 

Network size:  
To study the scalability of the communication networks of 

various sizes with up to several hundred nodes shall be 
exercised by scaling the micro-benchmark accordingly. 

The set of micro-benchmarks shall systematically exercise 
all important aspects of a NoC. It will give the NoC developer 
insight and guidelines for improvement. It will also give the 
NoC user a detailed understanding of the NoC behavior, its 
strengths and weaknesses. 

D. Communication-centric Application Modeling 

Synthetic benchmarks and traffic generators are useful for 
exercising various aspects of the communication network and 
evaluating different network configurations. However, they 
must be able to capture the control and data dependencies 
between the tasks. For example, in an MPEG encoder, the 
variable length encoding operation can start only after the 
discrete cosine transform and quantization tasks are 
completed. Therefore, simple stochastic models for RMs with 
constant transfer probabilities are likely to result in inaccurate 
estimates. Capturing the control and data dependencies 
becomes vital especially, when one targets a specific class of 
applications. A complete implementation of a real application 
will obviously capture all the dependencies; however, it may 
be very complicated and time-consuming. Moreover, the 
behavior of a task as a traffic source/sink, i.e., its model of 
communication, as opposed to the details of the computation it 
performs, is sufficient for the evaluation of the communication 
architecture. For this reason, we propose to utilize Finite State 
Machines (FSM) that mimic the tasks of a real application in 
terms of communication. 

1) Overview 
In the context of embedded systems, applications are usually 

modeled as communication task graphs (CTG) [1]. The tasks 
in the CTG exhibit both control and data dependencies.  
The control dependencies imply that one task cannot be 
executed before its predecessor tasks are completed, while the 
data dependencies indicate communication between two tasks. 
Furthermore, CTGs are widely accepted and there are publicly 
available benchmarks [4] and CTG generation tools [1]. 
Hence, we use CTGs as an entry point to the proposed 
methodology. 

Basically, each PE in the network is characterized by an 
FSM generated automatically from CTG and mapping 
information. The PE is connected to a router via bidirectional 
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links and comply with common interface protocols. Instead of 
generating a packet randomly, the PEs follow the rules 
specified by the underlying CTG, as explained below.  

2)  Data generation/consumption 
Each PE is a Finite State Machine with the following 

information: 

Task list (i.e. mapping):  
This is an enumeration of tasks that are mapped to 

corresponding PEs. It provides the information regarding the 
sender list (the list of PE that can send data to the current PE) 
and the destination list (the list of the PEs to which the current 
PE sends data). 

Control information:  
This provides information regarding the data dependencies. 

For example: “If enough data is received from source i, then 
initiate a transaction with destination j”. For detailed 
modeling, the control information includes also the internal 
state of the task (e.g. its current execution time). 

Processing  time:  
This expresses the amount of time it takes for the PE to 

complete a certain task. After receiving enough data, the PE 
will execute a finite number of operations (modeled as waiting 
for certain period), before generating a response. 

Transaction data amount:  
This accounts for the size of the transaction that will be 

generated after processing. Based on the control and data 
dependencies specified by the underlying CTG, there may be a 
number of different PE types: 

SISD (Single input, single destination):  
This is the simplest case. The PE may receive data only 

from one PE. After processing the input, the resulting 
transaction is sent only to a single destination. 

MISD (Multiple input, single destination):  
In this case, more than one PE may send data to this PE. 

This situation corresponds to a scenario where inputs from 
multiple sources are needed to perform a certain type of task. 
After the task is completed, the response is sent to a single 
destination. One can further divide MISD into two classes: 
dependent or independent inputs. For the case with dependent 
inputs, all the inputs have to be received before the processing 
can take off, while for the independent inputs a subset of 
inputs is sufficient for processing to continue. 

SIMD (Single input, multiple destination):  
This type of PE receives input from a single source, but the 

packet generated after receiving this input is sent to multiple 
destinations. 

MIMD (Multiple input, multiple destination):  
This type of PE reflects the most general case and the others 

are simply sub-cases of MIMD. In this case, the PE can both 
receive from and send to multiple PEs. The inputs can be 
either dependent or independent as in the MISD case. 

3) Overall operation 
The PEs and their associated FSMs describing the target 

application are automatically generated from the CTG of the 
application, available RMs, and given mapping. Then, the PEs 
and routers are connected to each other as specified by the 
network topology. The PE that implements the root task in the 
CTG initiates the application by injecting the input data to the 
network. The input PE repeats this process at a period 
specified by the CTG. 

The operation of a sample PE is depicted in Figure 2. All 
PEs, except the one that implements the root task, are initially 
in the waiting state (State 1 in Figure 2). As soon as all 
necessary data are received, the PE enters the processing state 
(State 2 in Figure 2). The PE stays in this state until the 
processing is completed. This duration is determined by the 
underlying task graph and the type of the processing element. 
This state is followed by State 3 where the PE generates the 
output data and sends it to the PEs on the destination list. After 
this, the PE enters again the waiting state. 

- Generate the output 
- Send the packets to               
..the network

Wait for new data 
for processing

Process the input 
data

Data received

More data elements are 
expected

Processing is 
completed

1 2

3

- Generate the output 
- Send the packets to               
..the network

Wait for new data 
for processing

Process the input 
data

Data received

More data elements are 
expected

Processing is 
completed

1 2

3

 

Figure 2: The finite state machine describing a basic 
operation of a generic processing element. 

To summarize, the PEs mimic the real application as the 
generated data traffic matches the actual implementation of the 
application. As a result, the application run-time and 
throughput can be obtained, and different network 
configurations can be evaluated accurately as described below:  
Application run-time:  

This is the time it takes to complete the application. We 
note that this metric can be reliably computed only when the 
data and control dependencies within the application are 
captured as in the proposed method. This method also gives 
insight to utilization level of the PEs and how well the 
deadlines are met. 
Application throughput:  

This is the minimum period at which the input PE injects 
data determines the maximum application throughput. If the 
input PE injects data at a faster rate, the bottleneck PE among 
the downstream nodes cannot accept it at the same pace and 
the data will be blocked after the available buffering resources 
are exhausted. 
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E. Measurement Points 

In addition to defining how to exercise a network, it is also 
important to unambiguously define where to measure the 
parameters of interest.  

RM RM

CA
CA

NoC

transaction delay

packet delay

CA - communication assist 
        (models the NI/socket)  

Figure 3: Points of measurement. 

Figure 3 shows two different delays that have to be 
distinguished. The packet delay denotes the delay of a packet 
between the moment its header is injected into the network and 
the moment when the last flit leaves the network. In the 
communication assist (CA) mode usually some buffering is 
done when the packet cannot enter the network immediately. 
Also, for transactions and longer messages, the CA performs 
packetization, de-packetization, reordering of received 
packets, and connection management. All packet-related 
measurements shall be done between the CA and the network 
fabric, while all transaction-related measurements shall be 
done between CA and the RM. In addition to average values, 
both minimum and maximum latencies are measured at the 
same time. In certain cases, the variation in latency (i.e. jitter) 
is also important. 

F. Interfaces and Sockets 

To make a benchmark reusable for analyzing different 
networks, both the benchmark and the network have to adhere 
to a standard interface definition. Thus, the benchmark 
initiative will define the interfaces and protocols that networks 
under test and benchmark programs have to adhere to. 
Similarly, the file format for delivering the benchmarks will be 
defined. 

Protocols such as OCP or ARM’s AMBA [8] serve this 
purpose well, and their use simplifies both the benchmarking 
and the design of NoC-based systems. The OCP protocol is 
core-centric and interconnect agnostic, which allows the 
network interfaces (NI) to actually deliver to the NoC fabric a 
set of standard communication signals (defined by the OCP 
socket) organized in packets and enhanced with the set of data 
that is specific to the particular network protocol. 

The OCP-IP socket is openly available, popular, and has 
sufficient high level and advanced concepts, such as multiple 

open, pipelined and out-of-order transactions. Therefore, it 
seems suitable for interfacing with NoCs. All benchmark 
programs or micro-benchmarks accepted in the NoC 
benchmark suite shall adhere to the OCP-IP, AMBA or a 
similar protocol. The precise requirements will be defined. 

The corresponding benchmark program will thus measure 
the performance of NIs from the OCP socket to the point 
where packetized data is injected into the NoC interconnect. 
This allows the benchmark to be independent of the functional 
cores and concentrate on assessing the communication 
performance and parameters of the NoCs. 

III. BENCHMARKS FOR NOC TEST AND RELIABILITY 

One of the most important requirements for the NoC design 
methodology to be widely adopted is to be complemented by 
efficient test mechanisms [11]. In the case of NoC-based chips, 
two main aspects have to be addressed with respect to their test 
procedures: 

- how to test the NoC communication fabric, and  
- how to test the functional cores (processing, memory 

and other modules).  
 Hence the (post-manufacturing) test strategies of 

NoC-based interconnect infrastructures need to address two 
problems:  

- testing of the switch blocks;  
- testing of the inter-switch interconnect segments. 

The NoC interconnects are characterized by poor 
controllability and observability, due to the fact that they are 
deeply embedded and spread across the chip. Pin-count 
limitations restrict the use of I/O pins dedicated for the test of 
the different components of the data-transport medium. The 
NoC fabric is a mix of active and passive components that are 
exposed to a multitude of faults. The NoC switches contain 
both memory elements and logic blocks, for which the fault 
mechanisms and models can be significantly different. 
However, they need to be integrated in a consistent, 
streamlined manner. On the other hand, the inter-switch links 
are sensitive to interconnect-specific faults such as opens, 
shorts, delay-faults, and crosstalk faults.  

A distinct direction for benchmarking NoCs is reliability 
benchmarking. In a broader sense, the reliability issues 
encompass aspects such as tolerance to post-manufacturing 
faults and transient errors, tolerance to process, voltage, and 
temperature (PVT) variations, resilience to transient errors 
[13]. 

A. Test Access Mechanisms (TAM) 

The problem of test access mechanism design for NoCs can 
be formally described as follows: given a set of functional 
cores and an on-chip communication fabric, design a hardware 
mechanism that transports test input data from an on- or off-
chip source to the functional cores and to the communication 
infrastructure, and delivers the test output data from the cores 
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and NoC to an on- or off-chip test sink. This problem is 
somewhat similar to the more general TAM design for SoC 
core-based test; however, the existence of a complex, 
distributed data transport mechanism (the NoC infrastructure), 
raises two issues.  

First, how can this infrastructure be tested, and second, what 
is the relationship between the NoC infrastructure and the 
TAM infrastructure? The latter question appears when one 
considers that the NoCs are particular forms of SoCs, for 
which test methodologies (and cored-based test in particular) 
are mature enough to provide a safe, if not fully optimized, 
solution. Consequently, a NoC could be considered as a classic 
SoC, and tested using the core-based approach [11], with the 
communication fabric tested as a separate core. On the other 
hand, since a NoC will already possess a dedicated data 
transport mechanism, it makes sense to reuse that for purpose 
of test data transport. While this is not the place to discuss one 
solution in particular, it is obvious that a test benchmark has to 
be transparent to the particular TAM used by a target NoC.  

With these considerations, the overall benchmarking 
approach requires as inputs the following data: 
- test information for each functional core (test type - scan, 

BIST -, number of test I/Os, number and configuration of 
scan chains); 

- test patterns for the functional cores and the NoC 
infrastructure; 

- optional, information on the topology of the NoC 
architecture. 

B. Test Scheduling 

The goal of manufacturing test is to ensure that the NoC is 
fabricated correctly, with respect to a specified set of faults. 
To achieve this, for each core, a set of test patterns are 
generated (on- and/or off-chip) and applied to the cores’ test 
inputs. Subsequently, test output data is collected from the test 
outputs and transported to the test sink for comparison with the 
expected outputs. For large numbers of cores, this activity can 
become extremely time-intensive, and this can raise the cost 
associated to manufacturing test to prohibitive amounts. 
Therefore, test scheduling has the objective of minimizing the 
test time, and implicitly the total test cost. Additional 
constraints that must be considered here are test power and test 
area. The power dissipated during testing must be carefully 
estimated, such that the power budget of the NoC is not 
exceeded and the test area overhead is within acceptable 
limits. 

The data that must be provided by a benchmark contains:  
- each functional core test information (test type, number of 

test I/Os, nature and length of scan chains),  
- individual test patterns for each core and for the NoC 

communication infrastructure,  
- NoC topology, and other constraints such as test power 

budget, thermal characteristics, etc. 

C. On-line Testing 

Transistor sizes used in current fabrication technologies and 
increased levels of integration expose the NoCs to a multitude 
of transient faults during their life-time. Among the most 
significant causes we can enumerate electromagnetic noise, 
cosmic radiations and PVT variations. Moreover, many of the 
possible NoC applications are in fields like communications, 
avionics, defense, where reliable and safe operation of the 
devices is one of the most important design parameters. In 
order to monitor continuously their operation and ensure that 
malfunctions can be detected and compensated for, it is a 
common practice to perform some amount of testing on-line, 
without disrupting the operation of the devices. Different NoC 
designs may be more or less suited for on-line testing, and 
specific techniques must be developed to perform on-line 
testing in NoCs. Therefore, an important component of the 
benchmarking must be evaluating the ability of a NoC to be 
tested on-line. 

D. Benchmarks for Fault Tolerance and Reliability 

NoCs are particularly suited for implementation of 
fault-tolerant techniques, due to their inherent parallelism and 
potential for reconfigurability. Defect/fault tolerant techniques 
can be implemented at different levels, from hardware 
redundancy to software-based error recovery schemes. 
Adaptive routing algorithms combined with error control 
mechanisms show great promise in achieving fault-tolerant 
on-chip communication. However, the impact on NoC power 
and performance can be prohibitive, since extra-hardware or 
traffic management schemes required for correcting faults and 
re-ordering of the packets will generally tax the power budget. 
A meaningful benchmark for NoC reliability must provide 
QoS- and power-constrained application data and assess the 
impact of particular fault-tolerance mechanisms on NoC 
implementations. 

A critical requirement for determining the efficiency of 
different fault tolerant designs is the availability of relevant, 
quantitative metrics. A fault tolerant NoC must be able to 
recover from failures of the data transport mechanism. Fault 
recovery performance refers to the time required to detect and 
recover from a NoC fault (e.g. a crosstalk fault on an 
interconnect link, a failed memory buffer, etc.). If the 
maximum time to perform a fault recovery can be bounded 
while still meeting the system performance requirements, then 
the network fault recovery mechanism can be used 
successfully. The fault tolerance metrics must be independent 
of specific hardware features or NoC architectures. They 
should allow NoC fault recovery performance to be assessed 
from an application point of view. 

A comprehensive fault tolerant approach consists of five key 
elements: avoidance, detection, containment, isolation, and 
recovery. They may be adopted individually or as hierarchical 
combinations. The effectiveness of the corresponding 
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implementations can be estimated using quantitative metrics 
generally accepted for distributed communication systems. 
We consider a set of fault tolerance metrics to be used for 
assessing the reliability of a NoC subsystem: 
- Detection latency (Tdet): the amount of time (in cycles) 

between the moment a fault appears and the moment it is 
detected. 

- Recovery time (Trec): the amount of time (in cycles) that 
passes between the detection and recovery of a fault. 

- Availability: the ratio between the amount of time the NoC 
subsystem is fully functional, and the total operating time, 
including detection and recovery latencies. 

The three parameters defined above have direct impact on 
global performance figures of merit of the NoC, specifically in 
terms of QoS: Tdet, Trec define the lower limit of the achievable 
latency, and therefore the level of QoS that can be guaranteed 
upon occurrence of faults. These metrics complement the 
application metrics (latency, throughput) and resource metrics 
(area, power consumption) measured in presence of fault 
tolerant techniques. 

E. Future Directions 

In order to provide consistent and reliable means for results 
sharing and comparison, the NoC benchmarks must be 
provided in a format that is simple, flexible, non-ambiguous, 
and allows for future improvements. Additionally, the IP-
sensitive nature of such benchmarks when reflecting 
commercial designs must be protected, so that the benchmarks 
can remain open to the academic/industrial communities. 
Another requirement for the benchmarks and their format is 
modularity: according to their place in the NoC design/test 
flow, some benchmarks may be the output of a design/test step 
whose input is a different benchmark. When developing the 
benchmarking methodology and formats, one should consider 
how different benchmarks could possibly interact with each 
other. 

The input formats and detailed benchmarking methodologies 
are the object of a second document that the NoC 
Benchmarking Workgroup will make available. Interested 
parties wishing to provide feedback or contribute with 
specifications and models are invited to contact the group 
members. 

Acknowledgements 

The authors would like to thank OCP-IP for its continued 
support and contribution. The authors also thank other 
workgroup members and industry partners for the fruitful 
discussion and their useful comments during this initiative. 

REFERENCES 

[1] U. Y. Ogras, J. Hu, R. Marculescu, “Key Research Problems in NoC 
Design: A Holistic Perspective,”in Proc.CODES+ISSS, Jersey City, NJ, Sept. 
2005, pp. 69-74. 

[2] E. Salminen, T. Kangas, T. D. Hämäläinen, J. Riihimäki, "Requirements 
for Network-on-Chip Benchmarking", Norchip, Oulu, Finland, Nov. 21-22, 
2005, pp. 82-85. 

[3] The Standard Performance Evaluation Corporation, SPEC, 
http://www.spec.org/hpg/ 

[4] R. Dick, Embedded System Synthesis Benchmarks Suites (E3S) 
http://www.ece.northwestern.edu/~dickrp/e3s/ 

[5] ITC'02 SOC Test Benchmarks, http://www.hitech-
projects.com/itc02socbenchm/ 

[6] Open Core Protocol Specification, Release 2.2, OCP-IP, 2006, 
http://www.ocpip.org/socket/ocpspec/ 

[7] R. P. Dick, D. L. Rhodes and W. Wolf, “TGFF: task graphs for free," 
Proc. Intl. Workshop on Hardware/Software Codesign, March 1998. 

[8] AMBA 3 AXI Specification, 

www.arm.com/products/solutions/axi_spec.html. 

[9] Y. Zorian, E. J. Marinissen, S. Dey, "Testing Embedded Core-Based 
System Chips," IEEE International Test Conference (ITC'98), pp. 130-143, 
1998. 

[10] A. Jantsch and H. Tenhunen, editors, Networks on Chip, Kluwer 
Academic Publishers, 2003. 

[11] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, G. De Micheli, "Design, 
Synthesis, and Test of Networks on Chips," IEEE Design and Test of 
Computers, vol. 22,  no. 5,  pp. 404-413,  Sept/Oct,  2005. 

[12] Y. Zorian, D. Gizopoulos, C. Vandenberg, P. Magarshack, "Guest 
Editors' Introduction: Design for Yield and Reliability," IEEE Design and 
Test of Computers, vol. 21,  no. 3,  pp. 177-182,  May/Jun,  2004. 

[13] V. lyengar, K. Chakrabarty, E.J. Marinissen, “Test Access Mechanism 
Optimization, Test Scheduling, and Tester Data Volume Reduction for 
System-on-chip” IEEE Transactions on Computers, vol. 52,  issue 12,  Dec 
2003, pp:1619 – 1632. 

[14] Vassos Soteriou, H. Wang, and Li-Shiuan Peh, "A Statistical Traffic 
Model for On-Chip Interconnection Networks", Proc. of the IEEE Intl 
Symposium on Modeling, Analysis, and Simulation of Computer and 
Telecommunication Systems (MASCOTS), Sept. 2006. 
                                                           
 

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00  © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore.  Restrictions apply.


