

Abstract— Measuring and comparing performance, cost, and
other features of advanced communication architectures for
complex multi core/multiprocessor systems on chip is a significant
challenge which has hardly been addressed so far.
This document outlines the top-level view on a system of
benchmarks for Networks on Chip (NoC), which intends to cover
a wide spectrum of NoC design aspects, from application
modeling to performance evaluation and post-manufacturing test
and reliability. For performance benchmarking, requirements
and features are described for application programs, synthetic
micro-benchmarks, and abstract benchmark applications. Then,
it proposes ways to measure and benchmark reliability, fault
tolerance and testability of the on-chip communication fabric.
This paper introduces the main concepts and ideas for
benchmarking NoCs in a systematic and comparable way. It will
be followed up by a report that will define a benchmark
framework and the syntax of interfaces for benchmark programs
that will allow the community to build-up a benchmark suite.

Index Terms— metrics, networks-on-chip, performance
evaluation, benchmarks.

I. INTRODUCTION

HIS paper motivates the need for a Network-on-Chip
benchmarking, outlines the compelling features of a NoC

benchmarking environment, and describes an initiative toward
establishing some widely accepted and useful benchmarks.

A. Benchmarking Problem

The practical implementation and adoption of the NoC
design paradigm faces multiple unresolved issues related to
design methodology/technology and analysis of architectures,
test strategies and dedicated CAD tools[1]. To advance and
accelerate the state of the art of the NoC paradigm R&D, the
community is in need of widely available reference
benchmarks [1][2].

Classic benchmarks for multiprocessor systems [3][4] are
application-oriented, and cannot be used directly for
communication-intensive architecture such as NoCs.
Moreover, the nature of the applications running on NoC-
based designs is expected to be more varied and heterogeneous

compared to typical applications for multiprocessor
computers.

The current SoC benchmark circuits, e.g. ITC 2002 [5],
contain only a very limited number of blocks; they target test
development only, and do not reflect the high level of
integration specific to the NoC scenarios. We promote a
collaborative initiative to develop NoC benchmarks that will
foster improved and accelerated development in this field.

B. Benchmarks Characteristics

The problem of NoC design is extremely complex and it can
only be solved by identifying and parameterizing the elements
that potentially define a NoC, their properties, and their
interactions. As such, it is clear that a NoC benchmark has to
be applied on more than a simple topological description of a
certain circuit (such as in the case of well-known ISCAS85 or
ITC 2002 benchmarks), but rather on a combination of
hardware blocks (functional IP cores), a NoC fabric (routing
elements and wires) with a certain topology/architecture, and a
specification for the traffic of data through the entire system.
These elements can be thought to be orthogonal, and different
benchmark scenarios can be created by their superposition.

A minimal list of properties and features that a NoC
benchmarking environment should exercise includes the
following:

- Network size (small, medium, large)
- IP core composition (amount of processing, memory

cores, other)
- Topology (regular, irregular)
- Traffic characteristics (spatial and temporal)
- QoS requirements (best-effort, guaranteed bandwidth,

guaranteed latency)
The different characteristics of the NoC benchmarks with
respect to the above properties will allow the evaluation of the
NoC performance parameters, among the most important ones
being the throughput, latency, power/energy dissipation, and
silicon area.

C. Proposal Outline

In view of the propriety issues involved, we propose that the
interested community work toward the development of a set of
synthetic benchmarks characterized by the following sets of
orthogonal parameters:

Towards Open Network-on-Chip Benchmarks
Cristian Grecu1, Andrè Ivanov1, Partha Pande2, Axel Jantsch3, Erno Salminen4, Umit Ogras5,

Radu Marculescu5

1University of British Columbia, 2Washington State University, 3Royal Institute of Technology,
4Tampere University of Technology, 5Carnegie Melon University

T

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

i) A set of relevant metrics and the associated
measurement methodologies

ii) A set of parameterized reference inputs for the NoC
benchmarks, consisting of:
a. NoC functional cores composition (# of

Processing Elements - PEs -, number and size of
memories, number of I/Os)

b. interconnect architectures;
c. data communication requirements.

The term synthetic refers to some level of abstraction, for

example a task graph with known computation times and
communication loads instead of actual application code. Of
major importance is the benchmark measurement
methodology, which defines parameters of interest and their
points of measurement (in time and space) relative to the
structure and representation of the NoCs. For coherent,
reproducible evaluation and comparison of research data,
adequate metrics must be available.

These sets of parameters (a, b, c), when combined, would
suffice to yield a meaningful and useful representative set of
NoC characteristics. For instance, core composition would
characterize the NoC with respect to the number of processing
elements, memory elements, I/Os. For testing purposes,
additional information would be required, for example, the test
strategy (e.g., BIST, scan, etc.) for each functional core and
test related parameters (e.g., number of scan chains, scan
chains lengths, number of test patterns, number of I/Os, etc.).
This type of information is mainly intended to allow the
development and comparison of system level test synthesis and
scheduling techniques.

The interconnect architecture is intended to characterize
NoCs with respect to the data transport capabilities of the
communication fabrics. The proposed interconnect
architectures to date can be classified into one of the
following: cube-based topologies, tree-based topologies,
irregular ones, and their different combinations.

Data communication requirements would define the
communication needs of the synthetic NoC. This set of
parameters consists of inter-core bandwidth/latency, data
integrity requirements, and spatial/temporal traffic distribution.

D. Long-term Benefits

 The NoC benchmarks would envisage benefits similar to
those ensuing from our field or related fields. Examples
include:

Improved sharing and comparison of R&D results

The NoC design is still in its infancy and, generally,
companies and institutions are not open to share specifications,
models, and other proprietary data regarding NoCs. A set of
academic, synthetic benchmarks can be shared and used
without these limitations. The existence of an open format for
benchmarks specifications makes possible for interested

research groups to contribute with relevant models and test
cases.

Increased, healthy competitiveness between R&D

The use of different metrics and measurement
methodologies complicates comparison. For example, some
research groups tend to emphasize just the implementation
related issues, such as area or power, whereas the others
provide only a set of (anecdotal) performance values.

Increased reproducibility of results and commonality for
comparative purposes

Comparison of results is only possible if input data and
measurement are fully reproducible. Often, researchers tend to
use proprietary test cases, not always fully characterized and
therefore not entirely reproducible. Common benchmarks
allow fair and consistent comparison of different approaches.
Reproduction also requires thorough documentation of
measurement settings.

Accelerated development and analysis

Usually, designers build testbenches based on the initial
specifications to verify the functionality and performance of
complex systems. The existence of standardized input data and
hardware models can speed-up the initial design and
performance estimation phase.

Better scalability compared to application benchmarks

Application benchmarks offer the best accuracy but are
difficult to port for different systems, and their simulation is
time intensive, compared to synthetic benchmarks. They also
scale poorly with system size, for example the number of tasks,
which defines the maximum number of processing elements, is
fixed. Synthetic benchmarks are more suitable for
benchmarking purposes since they can exhibit properties of
particular fixed size application benchmarks, but can scale
with system size while still retaining these properties.

II. PERFORMANCE BENCHMARKS

Since many different parameters and factors influence the
performance perceived for a particular application, we need a
versatile set of devices to analyze, measure and compare the
performance of different NoCs. The overall performance for a
particular application is the ultimate criteria. However, there
are many different factors influencing this figure such as
algorithm design, functional partitioning, resource allocation,
mapping, communication services, buffering, flow control,
routing algorithms, physical design, clocking strategies, and so
on. To be able to accurately analyze and assess individual
factors we need a more sophisticated set of characteristics.
In the following two types of benchmarks are defined.

Benchmark programs are programs or models resembling
real applications, which exercise the entire communication
architecture and design methodology. Hence, they can be used

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

to assess the suitability of a particular NoC for a given
application or application domain.

Micro-benchmarks are stochastic benchmarks, which
exercise one or a few specific aspects of a communication
architecture. They can be used to gain insight into a particular
design feature or to compare and rate a number of alternative
techniques, e.g. several routing algorithms. The most common
example is uniform random traffic.

A. Hardware Platform Model

The model of hardware platform consists of a set of
Resource Models (RMs) that are connected to the
communication network, as shown in Figure 1.

RM

R
M

R
M

RM RM RM

RM RM RM RM

R
M

R
M

NI/sockets

Figure 1: A number of resource models (RMs) connected
to the communication network.

A RM is a model written in C, C++, SystemC, VHDL or
Verilog. It may be arbitrarily simple or complex. It models the
functionality of a resource in the system which communicates
with other resources over the network. It may represent a PE
(such as processor with software, a dedicated hardware block,
a DSP block), an on- or off-chip memory, or any other
resource in the system. The main requirement is that it
complies with one of the defined interface protocols like OCP
[6], AMBA [8], or similar (see Sec. 2.6) and that functional
tasks may be mapped onto RMs. The functionality may be
presented either as benchmark programs or as micro-
benchmarks.

B. Benchmark Programs

Programs are modeled as programs written in C, SystemC,
VHDL or any other language but without considering the final
implementation, be it any combination of HW and SW. For
benchmark programs the figure of merit is defined by the
benchmark itself because it may be different for different
benchmarks. In many cases the end-to-end delay and the
overall throughput of the system will be the most important
figures of merit. However, some benchmarks may focus on
other aspects. For instance, for a benchmark representing a
hard real-time system, the most important figure is the number

of deadline misses. For most embedded systems the memory
size has to be minimized. Consequently, benchmarks that
represent those applications will focus also on the amount of
buffer space needed at the network interfaces.
A benchmark program provides the following information:

Functionality:
- Application model
- Mapping and scheduling of application tasks to the

resource models (RMs)
- Set of RM as C, C++, SystemC, VHDL or Verilog models

Usage:
- Directions to connect the RMs to the network
- Instructions for configuration and compilation
- Deadlines or other non-functional requirements of the

application (optional)

Topology and Mapping (optional):
- Size and topology of the network, the structure of the

routers
- Binding of a RM to a position in the network

Task descriptions are independent of the underlying
hardware (RM and network) and it defines the temporal and
spatial properties of the traffic. Tasks are explicitly mapped to
resources. In simplest the case, there is exactly one task per
RM but there can also be multiple tasks per RM. A resource
translates the operation count in application model into time
units. For example, if a simple resource model can perform 2
operations/cycle, a task with 500 operations takes 500/2=250
cycles to execute on that RM. Given the cycle time, this can be
translated to, for example, nanoseconds.

The usage information gives all necessary directions to
connect the RMs to the terminals of the network, initialize
them, run the benchmark and interpret the results. For instance
a benchmark program may require an initialization phase of
1µs followed by an evaluation phase of 5 µs.

The topology and mapping information are optional.
However, if it is not provided the evaluation includes also the
design methodology and the techniques for network
configuration, resource allocation and resource binding. If a
benchmark program targets the benchmarking of the network
architecture (topology, routing, switching, etc.) it has to
provide the topology and mapping information because
different mappings may lead to radically different performance
results for the same network architecture. If this information is
not provided, the benchmark program can be used to evaluate
the combined effect of a topology configuration, mapping, and
the communication network itself.

C. Micro-Benchmarks

Micro-benchmarks intend to exercise a NoC in a very
specific way or measure a single particular aspect. Hence, they
offer insights on a specific property and facilitate the analysis
and design of a communication infrastructure. A single micro-

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

benchmark provides only a very limited view and does not
allow for far-reaching conclusions about the suitability for an
application domain. However, a set of well designed
micro-benchmarks can give both a broad and detailed
understanding of a given communication network. Since even
a large set of micro-benchmarks is not guaranteed to represent
a real application well, micro-benchmarks are complementary
to benchmark programs. While benchmark programs evaluate
the combined effect of many aspects of the platform as well as
of the application, micro-benchmarks isolate individual
properties and allow for a deeper point analysis.

Micro-benchmarks should cover a number of different
aspects which are outlined in the following.

Packets and Transactions:
The packet is the basic unit of information in the network ;

it has limited size. By measuring delay, bandwidth, jitter,
power consumption, etc. of individual packets, the network
itself, its routing, switching, buffering and flow control
mechanisms are evaluated. Distinction should be made
between the latency in the network and the delay for network
access.

Transactions are higher level communication activities that
evaluate data packetization, end-to-end flow control, streaming
capabilities and similar services offered by the network. In
addition to the network, transactions also evaluate the interface
blocks between the network and resources. Examples of
transactions are: memory read and write, read and write bursts,
transmission over an open connection or stream, opening and
closing of connections.

Unloaded and loaded case:
In the unloaded case, individual packets or transactions are

measured without any network contention. This gives data
about minimum delay and peak performance.
The loaded case investigates the network behavior when many
independent packets and transactions compete for the same
resources. Congestion, arbitration, buffering and flow control
policies will be exercised.

Temporal and spatial distribution:
In the loaded case, different traffic scenarios have to be

considered. The obvious and most widely used is the random,
uniform traffic where nodes communicate with each other with
equal probabilities. However, micro-benchmarks need to stress
the network with various different traffic scenarios to study
how the performance depends on the traffic patterns.

We need to differentiate between temporal and spatial
distribution of traffic generation [1]. The temporal distribution
determines how an individual RM generates traffic over time.
In particular, bursty traffic scenarios have to be covered
adequately. The spatial (i.e. target) distribution governs the
spatial traffic pattern: who communicates with whom. The
benchmarks should cover traffic scenarios with localized
traffic, hot-spot patterns and other typical patterns that
represent important application characteristics.

Best effort and guaranteed services:
Micro-benchmarks measure the performance of best effort

traffic. Guaranteed throughput services are supposed to
provide guarantees on minimum throughput and maximum
latency, which should be verified by some other means.
However, it is important to study the effect of resource
allocation by guaranteed services on best effort traffic
performance.

Network size:
To study the scalability of the communication networks of

various sizes with up to several hundred nodes shall be
exercised by scaling the micro-benchmark accordingly.

The set of micro-benchmarks shall systematically exercise
all important aspects of a NoC. It will give the NoC developer
insight and guidelines for improvement. It will also give the
NoC user a detailed understanding of the NoC behavior, its
strengths and weaknesses.

D. Communication-centric Application Modeling

Synthetic benchmarks and traffic generators are useful for
exercising various aspects of the communication network and
evaluating different network configurations. However, they
must be able to capture the control and data dependencies
between the tasks. For example, in an MPEG encoder, the
variable length encoding operation can start only after the
discrete cosine transform and quantization tasks are
completed. Therefore, simple stochastic models for RMs with
constant transfer probabilities are likely to result in inaccurate
estimates. Capturing the control and data dependencies
becomes vital especially, when one targets a specific class of
applications. A complete implementation of a real application
will obviously capture all the dependencies; however, it may
be very complicated and time-consuming. Moreover, the
behavior of a task as a traffic source/sink, i.e., its model of
communication, as opposed to the details of the computation it
performs, is sufficient for the evaluation of the communication
architecture. For this reason, we propose to utilize Finite State
Machines (FSM) that mimic the tasks of a real application in
terms of communication.

1) Overview
In the context of embedded systems, applications are usually

modeled as communication task graphs (CTG) [1]. The tasks
in the CTG exhibit both control and data dependencies.
The control dependencies imply that one task cannot be
executed before its predecessor tasks are completed, while the
data dependencies indicate communication between two tasks.
Furthermore, CTGs are widely accepted and there are publicly
available benchmarks [4] and CTG generation tools [1].
Hence, we use CTGs as an entry point to the proposed
methodology.

Basically, each PE in the network is characterized by an
FSM generated automatically from CTG and mapping
information. The PE is connected to a router via bidirectional

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

links and comply with common interface protocols. Instead of
generating a packet randomly, the PEs follow the rules
specified by the underlying CTG, as explained below.

2) Data generation/consumption
Each PE is a Finite State Machine with the following

information:

Task list (i.e. mapping):
This is an enumeration of tasks that are mapped to

corresponding PEs. It provides the information regarding the
sender list (the list of PE that can send data to the current PE)
and the destination list (the list of the PEs to which the current
PE sends data).

Control information:
This provides information regarding the data dependencies.

For example: “If enough data is received from source i, then
initiate a transaction with destination j”. For detailed
modeling, the control information includes also the internal
state of the task (e.g. its current execution time).

Processing time:
This expresses the amount of time it takes for the PE to

complete a certain task. After receiving enough data, the PE
will execute a finite number of operations (modeled as waiting
for certain period), before generating a response.

Transaction data amount:
This accounts for the size of the transaction that will be

generated after processing. Based on the control and data
dependencies specified by the underlying CTG, there may be a
number of different PE types:

SISD (Single input, single destination):
This is the simplest case. The PE may receive data only

from one PE. After processing the input, the resulting
transaction is sent only to a single destination.

MISD (Multiple input, single destination):
In this case, more than one PE may send data to this PE.

This situation corresponds to a scenario where inputs from
multiple sources are needed to perform a certain type of task.
After the task is completed, the response is sent to a single
destination. One can further divide MISD into two classes:
dependent or independent inputs. For the case with dependent
inputs, all the inputs have to be received before the processing
can take off, while for the independent inputs a subset of
inputs is sufficient for processing to continue.

SIMD (Single input, multiple destination):
This type of PE receives input from a single source, but the

packet generated after receiving this input is sent to multiple
destinations.

MIMD (Multiple input, multiple destination):
This type of PE reflects the most general case and the others

are simply sub-cases of MIMD. In this case, the PE can both
receive from and send to multiple PEs. The inputs can be
either dependent or independent as in the MISD case.

3) Overall operation
The PEs and their associated FSMs describing the target

application are automatically generated from the CTG of the
application, available RMs, and given mapping. Then, the PEs
and routers are connected to each other as specified by the
network topology. The PE that implements the root task in the
CTG initiates the application by injecting the input data to the
network. The input PE repeats this process at a period
specified by the CTG.

The operation of a sample PE is depicted in Figure 2. All
PEs, except the one that implements the root task, are initially
in the waiting state (State 1 in Figure 2). As soon as all
necessary data are received, the PE enters the processing state
(State 2 in Figure 2). The PE stays in this state until the
processing is completed. This duration is determined by the
underlying task graph and the type of the processing element.
This state is followed by State 3 where the PE generates the
output data and sends it to the PEs on the destination list. After
this, the PE enters again the waiting state.

- Generate the output
- Send the packets to
..the network

Wait for new data
for processing

Process the input
data

Data received

More data elements are
expected

Processing is
completed

1 2

3

- Generate the output
- Send the packets to
..the network

Wait for new data
for processing

Process the input
data

Data received

More data elements are
expected

Processing is
completed

1 2

3

Figure 2: The finite state machine describing a basic
operation of a generic processing element.

To summarize, the PEs mimic the real application as the
generated data traffic matches the actual implementation of the
application. As a result, the application run-time and
throughput can be obtained, and different network
configurations can be evaluated accurately as described below:
Application run-time:

This is the time it takes to complete the application. We
note that this metric can be reliably computed only when the
data and control dependencies within the application are
captured as in the proposed method. This method also gives
insight to utilization level of the PEs and how well the
deadlines are met.
Application throughput:

This is the minimum period at which the input PE injects
data determines the maximum application throughput. If the
input PE injects data at a faster rate, the bottleneck PE among
the downstream nodes cannot accept it at the same pace and
the data will be blocked after the available buffering resources
are exhausted.

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

E. Measurement Points

In addition to defining how to exercise a network, it is also
important to unambiguously define where to measure the
parameters of interest.

RM RM

CA
CA

NoC

transaction delay

packet delay

CA - communication assist
 (models the NI/socket)

Figure 3: Points of measurement.

Figure 3 shows two different delays that have to be
distinguished. The packet delay denotes the delay of a packet
between the moment its header is injected into the network and
the moment when the last flit leaves the network. In the
communication assist (CA) mode usually some buffering is
done when the packet cannot enter the network immediately.
Also, for transactions and longer messages, the CA performs
packetization, de-packetization, reordering of received
packets, and connection management. All packet-related
measurements shall be done between the CA and the network
fabric, while all transaction-related measurements shall be
done between CA and the RM. In addition to average values,
both minimum and maximum latencies are measured at the
same time. In certain cases, the variation in latency (i.e. jitter)
is also important.

F. Interfaces and Sockets

To make a benchmark reusable for analyzing different
networks, both the benchmark and the network have to adhere
to a standard interface definition. Thus, the benchmark
initiative will define the interfaces and protocols that networks
under test and benchmark programs have to adhere to.
Similarly, the file format for delivering the benchmarks will be
defined.

Protocols such as OCP or ARM’s AMBA [8] serve this
purpose well, and their use simplifies both the benchmarking
and the design of NoC-based systems. The OCP protocol is
core-centric and interconnect agnostic, which allows the
network interfaces (NI) to actually deliver to the NoC fabric a
set of standard communication signals (defined by the OCP
socket) organized in packets and enhanced with the set of data
that is specific to the particular network protocol.

The OCP-IP socket is openly available, popular, and has
sufficient high level and advanced concepts, such as multiple

open, pipelined and out-of-order transactions. Therefore, it
seems suitable for interfacing with NoCs. All benchmark
programs or micro-benchmarks accepted in the NoC
benchmark suite shall adhere to the OCP-IP, AMBA or a
similar protocol. The precise requirements will be defined.

The corresponding benchmark program will thus measure
the performance of NIs from the OCP socket to the point
where packetized data is injected into the NoC interconnect.
This allows the benchmark to be independent of the functional
cores and concentrate on assessing the communication
performance and parameters of the NoCs.

III. BENCHMARKS FOR NOC TEST AND RELIABILITY

One of the most important requirements for the NoC design
methodology to be widely adopted is to be complemented by
efficient test mechanisms [11]. In the case of NoC-based chips,
two main aspects have to be addressed with respect to their test
procedures:

- how to test the NoC communication fabric, and
- how to test the functional cores (processing, memory

and other modules).
 Hence the (post-manufacturing) test strategies of

NoC-based interconnect infrastructures need to address two
problems:

- testing of the switch blocks;
- testing of the inter-switch interconnect segments.

The NoC interconnects are characterized by poor
controllability and observability, due to the fact that they are
deeply embedded and spread across the chip. Pin-count
limitations restrict the use of I/O pins dedicated for the test of
the different components of the data-transport medium. The
NoC fabric is a mix of active and passive components that are
exposed to a multitude of faults. The NoC switches contain
both memory elements and logic blocks, for which the fault
mechanisms and models can be significantly different.
However, they need to be integrated in a consistent,
streamlined manner. On the other hand, the inter-switch links
are sensitive to interconnect-specific faults such as opens,
shorts, delay-faults, and crosstalk faults.

A distinct direction for benchmarking NoCs is reliability
benchmarking. In a broader sense, the reliability issues
encompass aspects such as tolerance to post-manufacturing
faults and transient errors, tolerance to process, voltage, and
temperature (PVT) variations, resilience to transient errors
[13].

A. Test Access Mechanisms (TAM)

The problem of test access mechanism design for NoCs can
be formally described as follows: given a set of functional
cores and an on-chip communication fabric, design a hardware
mechanism that transports test input data from an on- or off-
chip source to the functional cores and to the communication
infrastructure, and delivers the test output data from the cores

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

and NoC to an on- or off-chip test sink. This problem is
somewhat similar to the more general TAM design for SoC
core-based test; however, the existence of a complex,
distributed data transport mechanism (the NoC infrastructure),
raises two issues.

First, how can this infrastructure be tested, and second, what
is the relationship between the NoC infrastructure and the
TAM infrastructure? The latter question appears when one
considers that the NoCs are particular forms of SoCs, for
which test methodologies (and cored-based test in particular)
are mature enough to provide a safe, if not fully optimized,
solution. Consequently, a NoC could be considered as a classic
SoC, and tested using the core-based approach [11], with the
communication fabric tested as a separate core. On the other
hand, since a NoC will already possess a dedicated data
transport mechanism, it makes sense to reuse that for purpose
of test data transport. While this is not the place to discuss one
solution in particular, it is obvious that a test benchmark has to
be transparent to the particular TAM used by a target NoC.

With these considerations, the overall benchmarking
approach requires as inputs the following data:
- test information for each functional core (test type - scan,

BIST -, number of test I/Os, number and configuration of
scan chains);

- test patterns for the functional cores and the NoC
infrastructure;

- optional, information on the topology of the NoC
architecture.

B. Test Scheduling

The goal of manufacturing test is to ensure that the NoC is
fabricated correctly, with respect to a specified set of faults.
To achieve this, for each core, a set of test patterns are
generated (on- and/or off-chip) and applied to the cores’ test
inputs. Subsequently, test output data is collected from the test
outputs and transported to the test sink for comparison with the
expected outputs. For large numbers of cores, this activity can
become extremely time-intensive, and this can raise the cost
associated to manufacturing test to prohibitive amounts.
Therefore, test scheduling has the objective of minimizing the
test time, and implicitly the total test cost. Additional
constraints that must be considered here are test power and test
area. The power dissipated during testing must be carefully
estimated, such that the power budget of the NoC is not
exceeded and the test area overhead is within acceptable
limits.

The data that must be provided by a benchmark contains:
- each functional core test information (test type, number of

test I/Os, nature and length of scan chains),
- individual test patterns for each core and for the NoC

communication infrastructure,
- NoC topology, and other constraints such as test power

budget, thermal characteristics, etc.

C. On-line Testing

Transistor sizes used in current fabrication technologies and
increased levels of integration expose the NoCs to a multitude
of transient faults during their life-time. Among the most
significant causes we can enumerate electromagnetic noise,
cosmic radiations and PVT variations. Moreover, many of the
possible NoC applications are in fields like communications,
avionics, defense, where reliable and safe operation of the
devices is one of the most important design parameters. In
order to monitor continuously their operation and ensure that
malfunctions can be detected and compensated for, it is a
common practice to perform some amount of testing on-line,
without disrupting the operation of the devices. Different NoC
designs may be more or less suited for on-line testing, and
specific techniques must be developed to perform on-line
testing in NoCs. Therefore, an important component of the
benchmarking must be evaluating the ability of a NoC to be
tested on-line.

D. Benchmarks for Fault Tolerance and Reliability

NoCs are particularly suited for implementation of
fault-tolerant techniques, due to their inherent parallelism and
potential for reconfigurability. Defect/fault tolerant techniques
can be implemented at different levels, from hardware
redundancy to software-based error recovery schemes.
Adaptive routing algorithms combined with error control
mechanisms show great promise in achieving fault-tolerant
on-chip communication. However, the impact on NoC power
and performance can be prohibitive, since extra-hardware or
traffic management schemes required for correcting faults and
re-ordering of the packets will generally tax the power budget.
A meaningful benchmark for NoC reliability must provide
QoS- and power-constrained application data and assess the
impact of particular fault-tolerance mechanisms on NoC
implementations.

A critical requirement for determining the efficiency of
different fault tolerant designs is the availability of relevant,
quantitative metrics. A fault tolerant NoC must be able to
recover from failures of the data transport mechanism. Fault
recovery performance refers to the time required to detect and
recover from a NoC fault (e.g. a crosstalk fault on an
interconnect link, a failed memory buffer, etc.). If the
maximum time to perform a fault recovery can be bounded
while still meeting the system performance requirements, then
the network fault recovery mechanism can be used
successfully. The fault tolerance metrics must be independent
of specific hardware features or NoC architectures. They
should allow NoC fault recovery performance to be assessed
from an application point of view.

A comprehensive fault tolerant approach consists of five key
elements: avoidance, detection, containment, isolation, and
recovery. They may be adopted individually or as hierarchical
combinations. The effectiveness of the corresponding

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

implementations can be estimated using quantitative metrics
generally accepted for distributed communication systems.
We consider a set of fault tolerance metrics to be used for
assessing the reliability of a NoC subsystem:
- Detection latency (Tdet): the amount of time (in cycles)

between the moment a fault appears and the moment it is
detected.

- Recovery time (Trec): the amount of time (in cycles) that
passes between the detection and recovery of a fault.

- Availability: the ratio between the amount of time the NoC
subsystem is fully functional, and the total operating time,
including detection and recovery latencies.

The three parameters defined above have direct impact on
global performance figures of merit of the NoC, specifically in
terms of QoS: Tdet, Trec define the lower limit of the achievable
latency, and therefore the level of QoS that can be guaranteed
upon occurrence of faults. These metrics complement the
application metrics (latency, throughput) and resource metrics
(area, power consumption) measured in presence of fault
tolerant techniques.

E. Future Directions

In order to provide consistent and reliable means for results
sharing and comparison, the NoC benchmarks must be
provided in a format that is simple, flexible, non-ambiguous,
and allows for future improvements. Additionally, the IP-
sensitive nature of such benchmarks when reflecting
commercial designs must be protected, so that the benchmarks
can remain open to the academic/industrial communities.
Another requirement for the benchmarks and their format is
modularity: according to their place in the NoC design/test
flow, some benchmarks may be the output of a design/test step
whose input is a different benchmark. When developing the
benchmarking methodology and formats, one should consider
how different benchmarks could possibly interact with each
other.

The input formats and detailed benchmarking methodologies
are the object of a second document that the NoC
Benchmarking Workgroup will make available. Interested
parties wishing to provide feedback or contribute with
specifications and models are invited to contact the group
members.

Acknowledgements

The authors would like to thank OCP-IP for its continued
support and contribution. The authors also thank other
workgroup members and industry partners for the fruitful
discussion and their useful comments during this initiative.

REFERENCES

[1] U. Y. Ogras, J. Hu, R. Marculescu, “Key Research Problems in NoC
Design: A Holistic Perspective,”in Proc.CODES+ISSS, Jersey City, NJ, Sept.
2005, pp. 69-74.

[2] E. Salminen, T. Kangas, T. D. Hämäläinen, J. Riihimäki, "Requirements
for Network-on-Chip Benchmarking", Norchip, Oulu, Finland, Nov. 21-22,
2005, pp. 82-85.

[3] The Standard Performance Evaluation Corporation, SPEC,
http://www.spec.org/hpg/

[4] R. Dick, Embedded System Synthesis Benchmarks Suites (E3S)
http://www.ece.northwestern.edu/~dickrp/e3s/

[5] ITC'02 SOC Test Benchmarks, http://www.hitech-
projects.com/itc02socbenchm/

[6] Open Core Protocol Specification, Release 2.2, OCP-IP, 2006,
http://www.ocpip.org/socket/ocpspec/

[7] R. P. Dick, D. L. Rhodes and W. Wolf, “TGFF: task graphs for free,"
Proc. Intl. Workshop on Hardware/Software Codesign, March 1998.

[8] AMBA 3 AXI Specification,

www.arm.com/products/solutions/axi_spec.html.

[9] Y. Zorian, E. J. Marinissen, S. Dey, "Testing Embedded Core-Based
System Chips," IEEE International Test Conference (ITC'98), pp. 130-143,
1998.

[10] A. Jantsch and H. Tenhunen, editors, Networks on Chip, Kluwer
Academic Publishers, 2003.

[11] P. P. Pande, C. Grecu, A. Ivanov, R. Saleh, G. De Micheli, "Design,
Synthesis, and Test of Networks on Chips," IEEE Design and Test of
Computers, vol. 22, no. 5, pp. 404-413, Sept/Oct, 2005.

[12] Y. Zorian, D. Gizopoulos, C. Vandenberg, P. Magarshack, "Guest
Editors' Introduction: Design for Yield and Reliability," IEEE Design and
Test of Computers, vol. 21, no. 3, pp. 177-182, May/Jun, 2004.

[13] V. lyengar, K. Chakrabarty, E.J. Marinissen, “Test Access Mechanism
Optimization, Test Scheduling, and Tester Data Volume Reduction for
System-on-chip” IEEE Transactions on Computers, vol. 52, issue 12, Dec
2003, pp:1619 – 1632.

[14] Vassos Soteriou, H. Wang, and Li-Shiuan Peh, "A Statistical Traffic
Model for On-Chip Interconnection Networks", Proc. of the IEEE Intl
Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems (MASCOTS), Sept. 2006.

Proceedings of the First International Symposium on Networks-on-Chip (NOCS'07)
0-7695-2773-6/07 $20.00 © 2007

Authorized licensed use limited to: IEEE Xplore. Downloaded on March 20, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

