
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

A Fair and Maximal Allocator for Single-Cycle On-Chip
Homogeneous Resource Allocation

Shaoteng Liu, Axel Jantsch, and Zhonghai Lu

Abstract— Traditional allocators for network-on-chip (NoC) routers
suffer from either poor-matching quality or limited fairness. We propose
a waterfall (WTF) allocator targeting homogeneous resource allocation,
which provides single-cycle maximal matching while guaranteeing strong
fairness based on the round-robin principle. It can be implemented
with a loop-free structure. In 90 nm technology, the allocator operates
at about 1 GHz clock frequency. We compare WTF with wave-front,
separable-input-first, and separable-output-first allocators and find that
it is at least 10% smaller, has 50% less delay under high load, and
uses 3% less power than any of these alternatives. Also, WTF is at
least as fair or clearly fairer. We also find that in a 4 × 4 circuit
switched NoC the use of WTF gives up to 20% higher network
performance.

Index Terms— Allocator, fairness, maximal matching, network-on-chip
(NoC), round-robin.

I. INTRODUCTION

An allocator performs a matching between multiple resources
and multiple requesters. A matching is an assignment of resources
to requesters satisfying the following three constraints [1]:
1) a resource is granted to a requester only if the corresponding
request exists; 2) each resource is granted to at most one requester;
3) a requester is at most granted once. A matching in which
no additional requests can be served without removing one of
the existing grants is called a maximal matching [2] and the
one containing the maximum number of grants is called a max-
imum matching. Maximum matching is often too costly to be
realized in hardware. However, maximal matching is achievable.
In addition to matching quality, fairness is an important property
for an allocator, and we can distinguish between strong fairness
and weak fairness [2]. Intuitively, strong fairness guarantees that
all requesters are served in proportion to their relative request
rates. In practice, this means that persistently active requesters
are served in a periodic sequence equally often within each rea-
sonably short period. In contrast, weak fairness only requires
that every request is eventually granted, without any guarantee at
which rate or in which relative proportion different requesters are
served.

Allocators used in network-on-chip (NoC) routers have limitations.
Compared to large scale networks, the performance of NoCs is more
sensitive to the latency of each router. This mandates the use of single
cycle allocators in router design [2]. Consequently, conventional
allocators in NoCs do not take into account the maximal matching
quality and strong fairness at the same time. Strong fairness is usually
provided by using a variation of the round-robin principle, which
states that a request that was just served should have the lowest
priority in the next round [1]. On one hand, allocators which adopt
round-robin cannot ensure maximal matching. Separable-input-first
(SIF) and separable-output-first (SOF) allocators [2], [3] are classified
in this category. On the other hand, maximal matching allocators,

Manuscript received January 1, 2013; revised June 26, 2013; accepted
September 9, 2013.

The authors are with the Department of Electronic Systems, KTH Royal
Institute of Technology, Stockholm 16440, Sweden (e-mail: liu2@kth.se;
axel@kth.se; zhonghai@kth.se).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2013.2284563

Fig. 1. Illustration of homogeneous allocation in NoC.

such as wave-front (WVF) [4]–[6] or rectilinear-propagation-arbiter
and diagonal-propagation-arbiter [7], do not use the round-robin
principle and only provide week fairness. For general matching
problems, no ideal solution is known to design a NoC allocator
overcoming all these shortcomings.

However, in NoC design practice, we frequently encounter a kind
of special matching problem called homogeneous resources allocation
(HRA). Here, homogeneous resources refer to a class of resources
that have the same functionality and can be used interchangeably.
This kind of matching problem obeys two more constraints besides
the three constraints introduced above: 4) for each requester, all
resources it desires belong to the same class; and 5) any resource
of a class can be granted to the requester who have requests on this
class.

We use a router model to illustrate the HRA problem. The
router in Fig. 1 has five directions and each direction contains
k-duplexed channels. Channels in this model can either be regarded
as virtual channels (VCs) that share one physical channel in a time
division multiplexing way, or subphysical channels by splitting the
wires of a link in an spacial division multiplexing (SDM) way.
The output channels of each direction form one resource class.
The routing algorithm is deterministic, e.g., dimension-order-routing,
which assigns each arrival packet one and only one desired output
direction. For example, in Fig. 1, both packets from input channel
k of the west and input channel 1 of the resource desire an out-
put channel to the east. The right part of Fig. 1 is the bipartite
graph of this case with each line representing a request. Since
all requests of a packet are confined to output channels of the
east direction, constraint 4) holds, and because each packet asserts
requests on every output channel of the east direction, constraint
5) can be satisfied. Therefore, channel allocation inside such a router
is an HRA problem.

For HRA, we propose a single cycle allocator which guarantees
both maximal matching and strong fairness. We call it “water-fall”
(WTF) because it finds the matching in several consecutive steps.
For an n-requester allocator, it requires n steps. WTF is implemented
entirely as combinational logic, which means the allocation takes
one cycle. It can be implemented free of combinational loops that
are common in traditional maximal allocators, e.g., the wave-front
allocator in [4]. We develop a fairness policy which inherits the
principle of round-robin and name it as massive round-robin (MRR)
for HRA.

HRA is an abstraction of a class of allocation problems which
are frequently encountered in NoC designs. For example, either VC
allocation in wormhole-based packet switched NoC [3] or subchannel
allocation in circuited switched NoC using SDM [8] is an HRA
problem. However, aside from our examples, we believe that our
allocator can be further utilized by other kinds of on-chip applications
which have HRA problems, even beyond the scope of NoC usage.

1063-8210 © 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

II. DESIGN OF THE ALLOCATOR

A. Basic Structure of the Allocator

Intuitively WTF reduces the request matrix (rows in this matrix
represent requesters and columns represent resources) by taking
advantage of homogeneous resources. As the matrix in Fig. 2
suggests, input channels 0, 1, 3 each request a channel from output
direction 1. Input channel 2 requests a channel from output direc-
tion 2. Each input packet just has one desirable output direction, thus
constraints 4) and 5) hold and it is an HRA problem. For an HRA
problem, first, the big matrix can be split into submatrices according
to resource classes (output directions). Secondly, we can merge the
requests of a submatrix. As described in Fig. 2, the 4 × 4 matrix is
split up into two separate 4 × 1 matrices representing requests for
output direction 1 and 2, respectively.

Continuing the example, we apply two separate homogeneous
resource allocators to solve the two reduced matrices. We use a
ripple carry arbitration scheme to design such an allocator. Taking
the allocation in output direction 1 as an example, as described in
Fig. 3(a), since it has two resources and four requesters (marked
as 2 → 4), the allocator is made up of two columns and four
rows of arbitration cells accordingly. The three active requesters are
indicated by “1” in the reduced matrix. Two tokens are used to
denote the availability and grant decisions of the two output channels
(resources), respectively. In the current round, the arbitration for
tokens starts from the row 2, moves counter-clock wise, and ends at
row 1. Thus, the 4 requesters are served in this order: (r2, r3, r0, r1).
r3 will be the first to catch a token and r0 the second. This means
channel 1 is granted to r3 and channel 2 is granted to r0.

Considering fairness, we need to roll the start row. Our MRR
fairness policy is illustrated in Fig. 3(a) and (b). The principle
is that the end row in the next round is the last successful
requester of the previous round. And the start row is acquired by
incrementing the end row by 1, then modulo n. If no requester
is granted, the start row remains the same as in the previous
round. Applying this policy, active requesters r0, r1, r3 in Fig. 3
(assuming they are persistently active) are granted in the periodic
sequence: {(r3, r0)round0, (r1, r3)round1, (r0, r1)round2, (r3, r0) . . .}.
The start row i is selected by asserting pi = 1, 0 ≤ i ≤ n − 1,
where n is the number of requesters.

In general, we derive the function of the MRR policy as follows.
Given current grants gi , 0 ≤ i ≤ n − 1 for each requester (gi = 1
means granted), and suppose G is the set of granted requesters of the
current round with G = {x|0 ≤ x ≤ n − 1, gx = 1} and b denotes
any granted requester that b ∈ G, and the current start row is k(t)
and the end row is f . Compute the start row of the next round k(t+1)
as follows:

(if ∃ f that){
(f + n − k(t))modn = max {(b + n − k(t))modn}
f ∈ G

(then k(t+1) = (f + 1)modn, otherwise k(t+1) = k(t)).

Although in WTF there is no actual logic feedback, we also need to
avoid combinational circuits with loops which are undesirable due to
issues in verification and testing [7]. In Fig. 3(c), we propose a loop-
free structure by adding redundant logic. For an n-requester allocator,
our loop-free structure contains 2n − 1 rows. The bottom n − 1 rows
replicate the top n − 1 rows. In this way, rolling of the start row is
equivalent to selecting an active area. Fig. 3(c) shows how to convert
a loop structure into a loop-free structure. For example, suppose all
requesters are served in the order (r1, r2, r3, r0) in the current round.
Mapping into the loop-free structure, the area from row 1 to row 5
is activated, as the rectangular box in Fig. 3(c) suggests. Since row 5

Fig. 2. Reduction of request matrix.

Fig. 3. Allocation mechanism, fairness policy and loop-free structure (circles
represent arbitration cells, dots represent tokens. (a) Allocation in output
direction 1. (b) Start row rotation. (c) Loop-free structure).

replicates row 0, the allocation is also in the order (r1, r2, r3, r0).
In this way, the functions of the loop and loop-free structures are
equivalent.

B. Implementation

A WTF allocator consists of two parts: allocation logic and
priority updating logic. The allocation logic is used to generate
grants of the current round. The priority updating logic is used to
guarantee the fairness.

1) Implementation of the Allocation Logic: A loop-free design is
described in Fig. 4(a). An n-requester m-resource allocator (m → n)
has 2n − 1 rows and m columns. The top n rows are made up of
white cells, whereas the bottom n − 1 rows are composed of dark
cells. The right part of Fig. 4(a) depicts the internal logic of the
two arbitration cells. A white cell plays a role as “token” starter
when its priority p is asserted. It directly accepts the channel status
as tokens. When p is de-asserted, its role is a “token” passer and
it can receive a token passed by the upper cell from its north input.
A request is injected from the W(west) input of a cell. When an
arbitration cell receives a token and if it has one request asserted, it
consumes the token and grants the request with gi j = 1. Otherwise,
it passes the token on from its south output. The role of a black cell
is a token passer when p is de-asserted. When p is asserted, the
black cell’s function is that of a token terminator. In this situation,
all its outputs are set to “0.” Token passing ends at this cell.

Suppose pi , 0 ≤ i ≤ n − 1, is set as “1,” then the effective tokens
are injected from row i and passed downward. Meanwhile, row i +n
in the dark region also gets its priority line pi asserted and thus stops
tokens passing. In such a way, the active region starts from row i and
ends at row i + n − 1.

2) Implementation of the Priority Updating Logic: The key point
of the priority updating algorithm is to find the end row for the
new round. This is a 1 → n allocation problem. The n-bit grant
vector generated by the allocation logic denotes requesters. The
requester which gets the token will turn into the end row, as shown
in Fig. 4(b). This time the token passing is clock-wise, which is
opposite to the allocation logic. The start row is the same start row

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

Fig. 4. Hardware implementation of the WTF allocator. (a) Allocation logic.
(b) Priority updating logic.

used by allocation logic for the current round. For example, in a
(2 → 4) allocator, suppose p2 is asserted and thus the grant vector
generated is 1001. For the priority updating logic, the token is also
injected from row 2 but passed in clock-wise order. As a result,
row 0 (g0) catches the token. Then row 1 will be the start row in
the next round (incrementing the end row by 1, then modulo n).
The whole priority updating logic is implemented as illustrated in
the right part of Fig. 4(b).

III. EVALUATION AND ANALYSIS

It is known that fairness and performance are two key metrics for
an allocator. We evaluate and analyze both aspects. The router model
described in Fig. 1 is simulated. The arrival packets at each input
channel are queued up. When an output channel is granted to an
input channel, one packet leaves the queue. Each packet just needs
1 cycle to be delivered. The arrival time of packets obey a Poison
process or an on-off process. The arrival packets are uniformly and
randomly distributed among all input channels.

In our setting, each direction of the router contains four duplex-
channels. Thus the channel allocation inside this router forms a
20 → 20 allocation problem. However, considering HRA, the
20 → 20 matrix can be split into five 4 → 16 submatrices, each
of which represents the channel allocation of one output direction.
Accordingly, we can assign each output direction an allocator. Since
our purpose is to evaluate the fairness and performance of an
allocator, in order to avoid influences such as head of line blocking,
we assign every arrival packet the same target output direction.

In addition to the WTF allocator, we modeled several other
allocators for comparison, including SIF allocator, SOF allocator,
and WVF allocator. They are reported as representative allocators
in NoC design in [2]. Both the two separable allocators adopt two
stages of round-robin arbitration. The wave-front allocator adopts
rotating policy [1], [9] by incrementing the priority each round. All
allocators are tested under the same packet injection test bench for
each utilization. Here utilization equals the duration of an output
channel occupied by a packet (1 cycle in this case) multiplied by
the sum of injection rates of all inputs and divided by the number
of resources (4 in this case). We simulated 40 000 cycles at each
utilization for each allocator.

A. Performance

Performance is affected by matching quality of an allocator.
Fig. 5(a) shows the average delay in terms of cycles versus the

Fig. 5. Performance comparison between allocators [the waiting delay of
a packet is the time that the packet waits in the input queue. The total
delay (response time) of a packet equals the waiting delay plus one cycle].
(a) Average waiting delay in cycles (The curves of WVF and WTF are almost
identical.) (b) Random case fairness. (The curves of WTF, SIF, and SOF are
almost identical.)

TABLE I
SYNTHESIS RESULTS OF DIFFERENT ALLOCATORS

utilization. It suggests that WTF exhibits the same average waiting
delay in cycles as WVF. This is because both WVF and WTF are
maximal allocators, they generate the same number of grants every
cycle, thus the average packet delay is the same. The performances of
the two separable allocators are worse than WTF and WVF because
no maximal allocation guarantee is provided. At utilization 0.9, the
waiting delay of WTF and WVF are both 1.2 cycles. And it is
3.1 cycles for SIF and 13.3 cycles for SOF. For separable allocators,
in some cases, resources are left unassigned even in the presence of
requests waiting for resources, and thus performances are degraded.
Although the delay in cycles of WTF and WVF are very close, when
the differences in clock frequency are considered, WTF has 50% of
the actual delay in ns of WVF (WTF is about as twice fast as WVF,
as Table I suggests.)

B. Fairness

In addition to lower performance, WVF is also less fair.
1) Example Study: Continuing our previous example shown in

Fig. 3(a), for an 2 → 4 allocator, suppose r0, r1, r3 is continuously
asserted. For WTF, three active requesters are served in a periodic
sequence (r3, r0), (r1, r3), (r0, r1), (r3, r0) Each period has three
allocation rounds. Inside a period, every requester is served twice. The
normalized throughputs are (0.66, 0.66, 0.66), respectively. However,
for WVF with priority rotating policy, the periodic sequence is
(r0, r3), (r1, r0), (r3, r1), (r3, r0), (r0, r3) Each period has four
allocation rounds. Inside a period, r0 and r3 are served three times,
but r1 is only served two times. The throughputs are (0.75, 0.75, 0.5),
respectively.

2) Worst Case Analysis: In general, we assume an allocator has
n inputs and m resources (m ≤ n). Suppose during a time interval
(t1, t2), p requesters (m ≤ p ≤ n), numbering r1, r2, . . . , r p , are
constantly active. Each requester will occupy the resource for L
cycles when it is granted. Let Vi (t1, t2) denote the amount of service
received by requester i in (t1, t2).

Applying our MRR policy, we can ensure that between any two
service opportunities given to requester ri , requester r j must have
had an opportunity. Thus, suppose during (t1, t2), requester i gets

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS

z service opportunities and requester j gets z′, then | z − z′ | ≤ 1.
Therefore

|Vi (t1, t2) − Vj (t1, t2)| = |zL − z′L | ≤ |z − z′|L = L . (1)

As interval (t1, t2) → ∞, the difference in amount of services of
any two requesters is always bounded by L .

For the WVF, the p requesters are served in a periodic sequence
and each period contains n allocation rounds. Thus, each period is nL
cycles long. During every period, in the worst case, the most favorite
requester ri can have m +n − p service opportunities, while the least
served requester r j just has m service opportunities. Suppose there
are q periods during interval (t1, t2) that q = �t2 − t1/nL	, then

(m + n− p)(q−1)L ≤ Vi (t1, t2)≤(m + n− p)(q + 1)L (2)

m(q − 1)L ≤ Vj (t1, t2) ≤ m(q + 1)L (3)

|Vi (t1, t2) − Vj (t1, t2)| ≤ (n − p)qL + (2m + n − p)L . (4)

As interval (t1, t2) → ∞ and q → ∞, there is no worst case
bound for WVF.

3) Random Case Study: The simulation model used for perfor-
mance is used to study the stochastic fairness behavior.

Under certain traffic patterns, an unfair allocator may generate
significant biased allocations. For example, as long as frequently
active requesters are not evenly spaced among all requesters, the
allocation may be unfair with WVF. We will take one of such traffic
pattern for a study. The traffic pattern is set as follows: the packets
are injected from only 12 of the total 16 inputs: from input 0, 1, . . .
to input 12. The packets injection process is an on-off process. This
two-state Markov modulated process has probability α to switch from
off to on, and a probability to β switch from on to off. In the on
state, each input has the same probability r1 of injecting a packet.
While in the off state, no packets can be injected. Thus, the average
injection rate of each input is αr1/(α + β).

Under a certain utilization, the average packet waiting time of input
queue i is marked as Di , 0 ≤ i ≤ 12. We use standard deviation of
Di , 0 ≤ i ≤ 12 [denoted as σ(D)] as a metric of fairness. As we
can imagine, unfair allocators will result in significant variance of
these Di values. Therefore, its σ(D) should be higher than that of
fair allocators.

Fig. 5(b) suggests the σ(D) values of several allocators under
different utilizations. Generally speaking, under every utilization, the
value of WVF is much higher than the others. For example, at
utilization 0.78, the σ(D) of WVF is 17.2, while that of WTF is
only 1.0, SIF is 0.90 and SOF is 1.1. This means that WVF does
not treat every input queue fairly. In other words, certain inputs are
served more often than the others.

C. Synthesis Results

We synthesize the allocators used in the router model with TSMC
90 nm technology with Synopsys Design Compiler. The results are
listed in Table I. The power numbers are obtained by assuming
50% switching activity of each input signal. Note that the WVF
used for synthesis also has a loop-free implementation by replicating
the array for each possible priority diagonal and selecting the grant
matrix generated by the currently active one. For details of this WVF
allocator implementation, refer to [2].

We find that our WTF allocator is slightly slower than SIF and
SOF, but it consumes less area and power. It is much faster than
WVF. This is because WVF has to be square. In this case, it is more
efficient to be implemented as one 20 → 20 allocator rather than five
4 → 16 allocators. As a result, its critical path is longer than WTF.
Besides, since the WVF avoids combinational loops by replicating
the entire 20 × 20 array for each priority, it consumes much more
area than other allocators.

Fig. 6. Performance comparison in circuit switched NoC in cycles.
(a) Average delay in cycles. (b) Percentile delay in cycles.

IV. APPLICATION STUDY

Our allocator is used in a circuit switched NoC design. The circuit
switched NoC consists of 4 × 4 routers and adopts a mesh topology.
Inside each router, every direction has four-duplexed SDM subchan-
nels. A parallel probing method [10] is used for path set-up. Probes
are used to set-up a minimal path for data transfer. At the beginning,
one probe carrying a set-up request is sent out by the source node.
At each hop, when a probe enters into a router, it can split into
multiple probes if it has multiple preferable output directions. As
probes travel, they will reserve the output channels which they have
been allocated inside each router for future data transfer. Whenever
two probes carrying the same request meet, one of them is regarded as
redundant and is cancelled and all channels used only by the cancelled
probe are released. Each probe takes two cycles for a hop. For detailed
description of this router architecture and set-up method, refer
to [10].

Since each probe is assigned only one target direction, allocating
output channels to probes is an HRA problem. For evaluation,
uniform random traffic is applied. When a path is established, a
packet with eight flits is delivered. After data transfer the path is
released.

The results are shown in Fig. 6. Fig. 6(a) gives the average packet
delay in cycles versus offered load, by assuming that routers with
different allocators are working at the same clock frequency. Offered
load refers to the time used for data transfer of a path (8 cycles in
this case) multiplied by per node set-up request injection rate. In this
case, WTF has the best performance, e.g., at offered load 0.95, the
average packet delay by using WTF is 56 cycles. By using WVF, it is
59 cycles. For SIF and SOF, they are 76 and 79 cycles, respectively.
Although WTF and WVF are both maximal allocators, the unfairness
of WVF might cause unbalanced congestion of channels. In this
situation, some channels become saturated earlier than others. Thus,
we observe that the performance of WVF is slightly inferior to WTF.
This difference will be enlarged at high load, e.g., at load 0.96, the
average delay of WTF is 107 cycles while it is 152 cycles for WVF.

We also compared their worst packet delay by using a statis-
tical method. We use percentile as a measurement. For example,
Percentile(n) is the minimum delay of the (1 − n)% packets that
experience longest delays in our simulation.1 In Fig. 6(b), the per-
centile(99) delay of WTF is always smaller than WVF. For example,
at load 0.95, percentile(99) delay of WTF is 307 cycles, and it is

1We choose this metric because it is less susceptible to statistical abnormal-
ities [6]. Each percentile value is taken from a large amount of samples that
come from 2 million simulation cycles. Thus, the upper and lower bound of
the confidence interval of a percentile value are believed to be very close. For
example, at load 0.95, for WTF, we ran several simulations with different
random seeds and total simulation cycles, ranging from 250 thousand to
5 million cycles. The percentile(99) values of each simulation were all around
307, with less than 1% difference.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

Fig. 7. Performance comparison in circuit switched NoC in ns. (a) Average
delay in ns. (b) Percentile delay in ns.

335 cycles for WVF. At load 0.96, the WTF is 406 cycles, and it
is 476 cycles for WVF. This result also support that WTF is fairer
than WVF. We also notice that the percentile(99) delay curves of SIF
and SOF are worse than WVF and WTF, because their performances
cannot catch up with maximal allocators such as WVF and WTF.

In Fig. 7, we evaluate the influences of using different allocators
on the critical timing path, which mainly consists of one allocator
latency plus one crossbar latency. In this case, a router with a WTF
allocator can work at 510 MHz clock frequency. A router with SOF
or SIF can work at 526 MHz. And a router with WVF operates at
345 MHz. As a result, we can measure average packet delay in ns.
In Fig. 7(a) we find that the WTF has the best performance and
WVF the worst. At load 0.94, the average packet delay is 92 ns
for WTF. And it is 117 and 116 ns for SIF and SOF, respectively.
For WVF, it is 141 ns. We also measure percentile(99) of the worst
case delay in ns, as shown in Fig. 7(b). For example, at load 0.93,
for WTF, it is 366 ns. For SIF and SOF, it is 469 and 473, respec-
tively. It is 569 ns for WVF. Hence, WTF is superior to the three
alternatives.

V. CONCLUSION

Matching quality and fairness are two important concerns for
designing an allocator. While achieving one or the other, traditional

allocators for NoCs fail to succeed in both aspects. In this brief,
we propose an allocator called WTF for homogeneous resource
allocation. This allocator guarantees both maximal matching quality
and strong fairness. Furthermore, our allocator can be implemented in
hardware without combinational loops. The abilities in performance
and fairness of our allocator are analyzed and demonstrated in
simulation. We also use WTF in a 4 × 4 circuit switched NoC design.
Experiment results suggest that WTF offers better performance and
lower area than traditional allocators while achieving strong fairness.

REFERENCES

[1] W. J. Dally and B. Towles, Principles and Practices of Interconnection
Networks (The Morgan Kaufmann Series in Computer Architecture
and Design). San Mateo, CA, USA: Morgan Kaufmann, Dec. 2003,
pp. 351–375.

[2] D. Becker and W. Dally, “Allocator implementations for network-on-chip
routers,” in Proc. Conf. High Perform. Comput. Netw., Storage Anal.,
2009, pp. 1–12.

[3] S. Park, T. Krishna, C. Chen, B. Daya, A. Chandrakasan, and L. Peh,
“Approaching the theoretical limits of a mesh NoC with a 16-node chip
prototype in 45 nm SOI,” in Proc. 49th Annu. DAC, 2012, pp. 398–405.

[4] J. Delgado-Frias and G. Ratanpal, “A VLSI crossbar switch with
wrapped wave front arbitration,” IEEE Trans. Circuits Syst. I, Fundam.
Theory Appl., vol. 50, no. 1, pp. 135–141, Jan. 2003.

[5] W. Olesinski, H. Eberle, and N. Gura, “PWWFA: The parallel wrapped
wave front arbiter for large switches,” in Proc. Workshop HPSR, Jun.
2007, pp. 1–6.

[6] Y. Tamir and H.-C. Chi, “Symmetric crossbar arbiters for VLSI com-
munication switches,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 1,
pp. 13–27, Jan. 1993.

[7] J. Hurt, A. May, X. Zhu, and B. Lin, “Design and implementation of
high-speed symmetric crossbar schedulers,” in Proc. IEEE ICC. vol. 3.
Jun. 1999, pp. 1478–1483.

[8] A. Lusala and J.-D. Legat, “Combining sdm-based circuit switching with
packet switching in a NoC for real-time applications,” in Proc. IEEE
ISCAS, May 2011, pp. 2505–2508.

[9] H. Chi and Y. Tamir, “Decomposed arbiters for large crossbars with
multi-queue input buffers,” in Proc. IEEE ICCD VLSI Comput. Proces-
sors, Oct. 1991, pp. 233–238.

[10] S. Liu, A. Jantsch, and Z. Lu, “Parallel probing: Dynamic and constant
time setup procedure in circuit switching NoC,” in Proc. IEEE DATE,
Mar. 2012, pp. 1289–1294.

