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Daniel Schnöll, Matthias Wess, Matthias Bittner, Maximilian Götzinger and Axel Jantsch
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Abstract—Quantization of Deep Neural Networks is a cen-
tral technique to reduce the computation load in embedded
devices. Even in quantized Deep Neural Networks (DNNs),
the scaler/rescaler following a convolution or dense layer often
requires a high bit width multiplication and a shift. Previous
work has proposed to remove the multiplier by restricting the
quantization method. We propose a Quantisation Aware Training
(QAT) approach, which explicitly models the rescaler during
training, eliminating the limitations of quantization functions and
achieving a 30 – 35% improvement in training time and a signifi-
cant reduction in memory requirements compared to the state-of-
the-art. GitHub:https://github.com/embedded-machine-learning/
FastQATforPOTRescaler

Index Terms—Convolution, Training, Neural networks, Quan-
tization (signal), Quantization Aware Training, hardware-friendly

I. INTRODUCTION

Due to resource constraints, inference of deep neural net-
works on edge devices remains challenging. Various opti-
mization approaches have been proposed, including approxi-
mate matrix multiplications, pruning, and quantization. While
pruning focuses on reducing the model size by removing
unnecessary connections and weights, approximate matrix
multiplications aim to perform computationally expensive
operations more efficiently. On the other hand, quantization
offers a dual benefit by reducing the model size while enabling
more efficient hardware utilization. For example, NVIDIA
claims up to 4× acceleration when transitioning from FP32
to INT81. Using a Field programmable Gate Array (FPGA) or
Application-Specific Integrated Circuits (ASIC) could further
improve the performance, particularly because the size of a
standard multiplier scales with the squared number of bits.

A. Operations of an Accelerator

Dense/Convolutional Layers require matrix multiplications,
which in turn require Multiply Accumulate (MAC) operations
(Fig. 1). A MAC operation is part of a Digital Signal Processor
(DSP). The MAC is characterized by the number of bits for the
weights and the feature maps. For instance, a common notation
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1Accessed: 10th of May 2023 https://developer.nvidia.com/blog/
nvidia-ampere-architecture-in-depth/

is A8W4, which indicates that the activation function produces
an 8-bit value (typically the feature map for the following
input), and the weights are represented in a 4-bit format. The
Accumulation register is typically implemented using a 32-bit
data type or is assumed to be large enough to avoid overflow.

FPGAs often have DSPs. These units have predefined sizes.
For example, the Xilinx ultra-96 has 350 28x18-bit multiplier
with a 48-bit accumulation register2. Since these DSPs are
explicitly implemented in hardware, they can not be changed.
However, they can be used in a modified manner, e.g., more
energy efficient or multiple multiplications at once.

The matrices in Deep Neural Networks (DNNs) are often
quite large. Therefore, matrix multiplications require numer-
ous multiplications, making them computationally demanding.
Minimizing the number of multiplications in other parts of
the network can significantly enhance the overall perfor-
mance. Other layers within DNNs that rely on multiplication
operations include the Batch Normalization (BN)-Activation
functions, which result in rescaling operations in hardware.
Hence, reducing multiplications in these layers can improve
the overall inference speed in DNNs.

B. Rescaler

The role of the Rescaler in DNN accelerators is to reduce
the accumulation register to match the bit-width of the feature

2Accessed: 3rd of May 2023 https://docs.xilinx.com/v/u/en-US/
ug579-ultrascale-dsp
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Fig. 1. Network operations and the HW Blocks for their implementation.
(Conv=Convolution, BN=Batch Normalization, MAC=Multiply-Accumulate
Unit)
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TABLE I
APPROXIMATE CHARACTERISTICS FOR 10nm TECHNOLOGY (BASED ON

[3]).

Rescaler
HW Costs

Resources
2-NAND Area Power

# gates µm2 pJ
Components:

NAND 1 0.042 0.0025
2:1 MUX 3 0.125 0.008

8x8 Multiplier 274 11.4 0.696

Rescalers:
With 32x32 Mult. 4928 205.07 12.52

With 32x8 Mult. 1640 68.37 4.16
Power of 2 544 22.67 1.38

map and apply the non-linearity. Typically, this involves a
32-bit multiplication followed by a shift operation [1]. The
resulting value is then clipped to a specific value domain,
e.g., 0 – 255. However, performing a 32-bit multiplication
is computationally expensive. Alternatively, a power of 2
Rescaler can be used to avoid multiplication and only perform
the arithmetic shift operation [2].

Table I contains ballpark estimations for different Rescalers
to illustrate the potential impact of about 70 – 90% reduction
in hardware complexity.

If the power of 2 Rescaler offers significant benefits, it raises
the question of why it is not the default approach. We have
identified two major challenges associated with the power of
2 Rescaler:

1) Restrictions on quantization method: The current ap-
proach to achieving a power of 2 Rescaler is to limit
each quantization method to a power of 2. This is not
always straightforward, as exemplified by the amount of
work done in [4] to implement PArameterized Clipping
acTivation (PACT).

2) Long training times: Effective Quantisation Aware
Training (QAT) often requires two passes through a
convolution/dense layer. This process, including quan-
tization, nearly doubles the training time and requires
approximately 40 – 50% more GPU RAM.

C. Contribution

In this paper, we address both of these challenges. We
dynamically modify the linear weight quantization method
during training to enforce a desired Rescaler (Fig. 2). This
modification is applicable to any linear quantization method.
Through the well-defined behavior, we can incorporate an
approximation that eliminates the need for a second forward
pass during training.

Furthermore, we showcase our approach with a power-of-2
Rescaler, but it is important to emphasize that our method is
not limited to it. Our approach offers extensive flexibility, for
instance:

• One can use channel-wise quantization with a layer-wise
Rescaler,
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Fig. 2. Classical approach compared to our approach and which information
we require for training.

• or pair any weight and output quantization method, with-
out additional implementation effort, while still enforcing
a specific Rescaler.

• One is free to tailor the Rescaler to the needs or capa-
bilities of the hardware. For example, one may choose to
only use prime numbers as rescaling factors or limit the
network to only two rescaling factors.

II. RELATED WORK

Jacob et al. introduced two significant aspects in [1], “fake
Quantization” and “Batch-norm folded Quantization Aware
training,” also sometimes called double forward for BN fusion.

Fake quantization is a widely used technique during train-
ing in which a value is converted to the quantized domain
and then restored to full precision, thereby including all the
quantization errors of the value. This approach has become
standard in QAT. In this paper, we define it as

F (x, S, b) := S
⌊
clamp

(x

S
,−2b−1, 2b−1−1

)⌉
(1)

for signed values and

F (x, S, b) := S
⌊
clamp

(x

S
, 0, 2b−1

)⌉
(2)

for unsigned values, where clamp(x,m1,m2) =
max(m1,min(x,m2)). In both cases, x is the value to
quantize, S is the scaling value from the quantization method,
and b is the number of bits.

How to handle a BN is quite an important question in the
quantized domain. There are multiple approaches, depending
on which parts of the BN should be updated during training.
On the one hand, Yao et al. suggest in [5] fully freezing and
fusing the BN into the weights of the preceding linear or
convolutional layer. This approach is often called fine-tuning
and requires significant modifications to hyper-parameters.
On the other hand, Jacob et al. in [1] and later refined
by Krishnamoorthi et al. in [6] keep the BN unfrozen and
fully capable of adapting. They essentially use two passes
through the preceding layer, one in full precision to update
the BN and a second one in a fused, quantized manner. Fig. 3
displays the data paths through such a double forward for
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Fig. 3. Double forward and the paths the data takes.

BN fusion approach. Li et al. goes further into detail in [7],
beautifully summarizing multiple approaches and their minute
differences. Inside the PyTorch repository there exists a QAT
implementation 3 of a modified [6], which does not require two
passes while keeping the BN unfrozen. To our knowledge, no
paper is associated with this implementation, reaffirmed by [7].

Contrary to the approaches above, Nagel et al. suggests
in [8] to keep the BN in full precision and fuse it into the
activation function, thereby also requiring only one pass.

Power of 2 Rescaler is desirable as it eliminates the
need for multiplication and renders a simple arithmetic shift
sufficient. Previous research, such as in [2], achieved this with

Sx, Sw, So ∈ {2x|x ∈ Z} , (3)

2n =
SxSw

So
, (4)

where Sx, Sw, and So are the scaling factors for the input,
weights, and output, respectively. All scaling factors are a
power of 2 by restricting the quantization methods, which
results in a power-of-2 Rescaler.

F8NET is presented by Lin et al. in [4]. It is a current
implementation of a power of 2 Rescaler. They use double
forward for BN fusion. Their quantization functions are all a
power of 2. They enabled PACT [9] by fusing its parameter
into the weights. However, this procedure leads to an overhead,
which is one of the problems we want to tackle.

Our approach differs from the previous work in two main
aspects.
A. The Rescaler is a combination of multiple values. We do

not restrict all of them; instead, we modify one so that
the combination produces a power of 2.

B. We approximate the first pass-through in double forward
for BN fusion, thereby removing it.

III. ENFORCING A RESCALER

We start with a regular Convolution BN Activation path.
Let X be the input for the convolution layer, W its weights,
and O the output of the activation function A. We define our
BN as

BN(u) :=
u− µ√
σ2 + ϵ

γ + β, (5)

with the mean µ, the variance σ2, the weights γ, and the bias
β. ϵ exists to avoid division by 0 and is usually 1e−5.
The Activation function is a simple non-linearity such as
Rectified Linear Uni (ReLU), ReLU6, and PACT. We use fake
quantization with the scaling factors Sx for the input, Sw for

3Last Accessed 14th of May 2023: https://github.com/pytorch/pytorch/blob/
main/torch/ao/nn/intrinsic/qat/modules/conv fused.py

the weights, and So for the output. We assume a full channel-
wise quantization. Therefore they are vectors. We split the
input quantization into a channel-wise part and an average
part. We fuse the channel-wise aspect into the weights,

Sx := 2mean(log2(Sx)),

Ŝx :=
Sx

Sx

,

W ′ := ŜxW.

(6)

Sw is only dependable on these weights,

Sw := LinearQuantizationMethod(W ′). (7)

Considering these aspects, the Conv-BN-Act path can be
defined as

OZ = AZ

(
γSxSw(XZ ∗W ′

Z)

So

√
σ2 + ϵ

+ β′
)
, (8)

β′ =
γµ

So

√
σ2 + ϵ

+
β

So
, (9)

where subscript Z represents the integer domain.
The Rescaler is the multiplicative aspect, which we want

to define as a power of 2. However, our approach aims to
calculate the multiplicative difference to the power of 2 rather
than forcing all components to a power of 2. To represent this
multiplicative difference and the right-shift value n, we can
use the factor ϕ as

γSxSw

So

√
σ2 + ϵ

= ϕ2−n. (10)

The next steps require HW information. For example, if the
accumulator is a 32-bit register, we can define the range of n as
[0, 31]. Because a right shift is a flooring division, a left-sided
0 in (10) is comparable to a right shift of 31. Now we can
include the rules for the Rescaler. We provide three examples
of how these rules can look like:

• Channel-wise Rescaler:

n′′ := −log2

(
γSxSw

So

√
σ2 + ϵ

)
n′ := clamp(n′′, 0, 31)

n := ⌊n′⌋
ϕ := 2n−n′

This means that ϕ is always in the range of [0.5, 1].
• Layer-wise Rescaler with channel-wise quantization:

n′′ := −log2

(
γSxSw

So

√
σ2 + ϵ

)
n′ := clip(n′′, 0, 31)

n := median(⌊n′⌋)
ϕ := 2n−n′

• A fixed number of Rescalers per network or one fixed
Rescaler: A fixed number of Rescalers or a single fixed
Rescaler would be the extremest form. n would need to
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be defined across Layers and could closely follow the
Layer-wise approach.

ϕ is now everything which can not be expressed by the
Rescaler. This would usually be fused into the weights.
However, we suggest fusing it into the weight quantization
factor. The reason for this is twofold:

1) It is an automatic “BN un-fusion”, which is expected to
improve accuracy [8].

2) The number of operations is significantly lower than fus-
ing them into the weights and un-fusing them from the
feature map. E.g., A Convolution layer, traditionally4:
Cin×Cout×K2 multiplications and Cin×Cout×W×H
divisions compared to our approach Cout multiplications
(the fake quantization function does the rest, which is
present in both).

Applying this approach results in a modified weight quan-
tization factor,

S′
w :=

Sw

ϕ(γ, σ, Sx, Sw, So)
. (11)

The state of the art would require Sx, So to be a power of
2, thereby restricting the allowed values. Our approach does
not limit them and enables them to use their desired values.

The final combined Conv-BN-Act path during training
is:

Sw = LinearQuantizationMethod(ŜxW ), (12)

W ′′ = F (W,S′
w/Ŝx,Weight bits), (13)

O = F (A (BN (X ∗W ′′)) , So,Act. bits) , (14)

and during inference:

β′′
Z =

⌊
2n

(
γµ

So

√
σ2 + ϵ

+
β

So

)⌉
, (15)

OZ = AZ
(⌊
2−n(XZ ∗W ′′

Z + β′′
Z)
⌋)

. (16)

Note that all scaling factors are assumed as vectors/tensors
and need to be used in their corresponding axes, e.g. S′

w/Ŝx

would be a Cin × Cout × 1× 1 tensor.

IV. ACCELERATING TRAINING

Accelerating training is the second primary task. One of the
drawbacks of double forward for BN fusion is the necessity
to calculate the convolution twice, which also means storing
data twice. This overhead reduces training speed and increases
memory overhead significantly. In [8], Nagel et al. argues
that folding the BN is unnecessary for the particular case of
channel-wise quantization with a full precision Rescaler. We
fully agree, and our equations come to the same conclusion
(ϕ would always be 1, meaning the neutral element for
multiplication and division5). In our case, S′

w is already a

4Following the common names of C for channels, K for Kernel, and W /H
for feature-map width/height.

5The modification would be in (10), 2−n is replaced by a full precision
number so ϕ would result in the question: “Which parts of full precision can
not be represented by full precision?”

partial fusion. If, for a moment, we ignore the dependencies
of ϕ, the multiplicative components,

γSxS
′
w

So

√
σ2 + ϵ

, (17)

could be seen as full precision per-channel quantization, and
the Rescaler “happens” to always fall on a power of 2. That,
in turn, would mean no double forward would be required.
Nonetheless, the dependencies do exist, namely

ϕ(γ, σ, Sx, Sw, So). (18)

The question is whether they change during a forward pass. γ
updates per step and thus can be considered fixed. Moreover,
Sx, the scaling factor of the input, can be seen as semi-fixed
as the point of updating the value is before requiring it. Sw

depends on the convolution weights and Sx, which means it
is semi-fixed too. This leaves σ and So, which get updated
after they are required. However, they are approximable as
described in the following.
σ, the running variance is used for fusion. It should rep-

resent the average variance of a layer for the whole dataset.
The stability of the running values is assumed by regular full-
precision training. The only time it does not hold is at the
early stages of training, with high learning rates and rapidly
changing values. However, we argue that it is unnecessary to
accurately quantize early during the training because a perfect
representation of values is not required if their ballpark is in-
correct. Once the training converges, the running parameters of
the BN should stabilize. Therefore, it appears as approximately
constant from one step to the next, which means that the last
step approximates the current step well.

The output quantization factor So should stabilize as well.
The quantization is desired to be unchanging during device
inference. Therefore a value optimal for the whole dataset is
desired. A few approaches exist, such as low pass filters over
the extracted information (e.g., Exponential Moving Average
(EMA)), using BN information, or a trainable parameter (e.g.,
PACT), which all fall into the previous assumptions.

It is important to note that there is a difference between the
running values of the BN and the values of the current batch.
This difference can still cause problems, as described in [6].
We are only arguing for the running values.

To our knowledge, no paper exists using such an approach,
but we found an implementation inside the PyTorch repository
as described in the related work. Compared to our approach,
PyTorch is using [6] and accepts the inaccuracies of using
the last step. There is a problem when the BN weights reach
0 (division by 0). A full fusion into the weights is made
before passing them into the quantization function, so if the
scales change quickly, the quantization function needs to adapt
quickly, especially with a sign change in the BN weights. In
other words, stabilized or trained quantization is questionable
for such an implementation.

The existence of this implementation further reassures us
that the made assumptions likely hold, even if we find it
strange that no paper is associated with it.

703



V. EXPERIMENTS

Unless otherwise mentioned, all trainings are done from
scratch to display the quantization error dominantly. Since this
paper focuses on the speed and efficiency of the training, we
must track the resources used and the time spent. This requires
a highly reliable and controlled environment. We use our
development server, which has two NVIDIA V100 with 32GB
RAM each. By staying on one server, we exclude network
interference, which can occur during regular cluster training.
Consequently, big datasets and extensive networks have enor-
mous training costs. To remove data transfer limitations, we
load all datasets into RAM. CIFAR10 [10] and CIFAR100 [10]
do this automatically, as they are tiny. For Imagenet1k [11],
we created a directory on a RAM drive, copied train/eval, and
symbolically linked the compressed files.

We first define the quantization functions in the following
(Section V-A). Then, we show accuracy, memory require-
ments, and training time for small networks (Section V-B) as
well as larger networks (Section V-C). Section V-D demon-
strates our method’s significant speedup and reduction in
memory usage. Finally, Section V-E illustrates the possibilities
and effects of flexible rules imposed on the Rescaler.

A. Quantisation Functions Used

1) F8: From F8NET [4], we use the quantization method
but remove the limiting rounding in the logarithmic domain.
We define it as

SF8 :=
σ

40
(signed), (19)

SF8 :=
σ

70
(unsigned). (20)

2) MinMSE: As F8NET is only defined for 8-bit, we follow
a similar approach with our example quantization function
MinMSE:

SMinMSE := σ3.347e−0.5739bits (signed), (21)

SMinMSE := σ1.688e−0.5813bits (unsigned). (22)

We fitted this function by a brute force search on a Gaussian
distribution to minimize the mean squared error.

3) OCTAV: To also represent a different approach, we
implemented OCTAV [12]. It defines the quantization level
by an iterative approach.

sn+1 :=

∑
x

[
|x| · 1{|x|>sn}

]
4−bits

3

∑
x

[
1{0<|x|≤sn}

]
+
∑

x

[
1{|x|>sn}

] (23)

SOCTAV :=
s

2bits−1
(24)

We found that with a few values to quantize, it can start
to oscillate between values. We added an EMA filter over the
generated values to suppress this behavior and then increased
the maximum iterations to 1000. We allowed an early exit if
the relative change was less than 1e−3. These modifications
stabilize the algorithm but, at the same time, slow it down. If
the stabilized version is used, it is marked as such.

4) Activation functions: We are using PACT [9] for most
activation functions,

PACT(x, α) :=

 0 : x < 0
x : 0 ≤ x ≤ α
α : x > α

. (25)

We use F8 signed for down-scaling if no activation function
is directly behind the BN. This is the case inside a ResNet
block [13], where the non-linearity follows the addition of two
’unrestricted’ feature maps. Those feature maps must have the
same or by a power of 2 separated scaling factors. We follow a
similar approach as F8NET and scale one by the other. Except
for PACT, we use exclusively straight-through estimation.

B. Small Network Experiments

We tested VGG-small [14], ResNet8 [15] structure but
without the feature embedding, and the baseline model of the
modified Mobilenet-V2 [16], on the datasets CIFAR10 [10]
and CIFAR100 [10], with the results shown in figures 4, 5 and
6 for accuracy, memory, and training time, respectively. Please
note that these networks are designed for CIFAR10 and not for
CIFAR100. As these networks train quickly, we can make a
broader test with quantization functions and hyper-parameters.
Using cosine annealing, we tested learning rates of 0.1; 0.02;
0.01; 0.001. For VGG-small and Mobilenet-v2 modified, the
number of bits for weights and activations are W8A8; W4A8;
W4A4, and for ResNet8, they are W8A8; W4A8. The number
of epochs is 100, the weight decay is 5e−4, and the batch size
is 300. Everything is trained from scratch on one GPU, and
two tests run in parallel. In contrast to the usual approach
of preserving the first and last layer in full precision, we
quantize the layers and the input/output to INT8. We only
display training and not validation. The memory is measured
by torch.cuda.mem get info(), the average of the whole epoch
is taken, and Python’s time package measures time.

The accuracy is fairly constant across the networks and
hyper-parameters, Fig. 4. Unsurprisingly, the accuracy is
slightly lower than full precision, as all are trained from
scratch. VGG-small suffers the least as it is explicitly de-
signed for quantization. ResNet8 quantizes nicely. Mobilenet-
V2 modified behaves as expected since Mobilenet is known
to quantize poorly without extra care [6], [8], [17], [18]. We
attribute the improvement of accuracy for CIFAR100 to the
regulative effect of quantization [19].

The memory overhead is quite surprising, Fig. 5, as quan-
tized Mobilenet-V2 modified requires far less memory than
full precision. This is highly unlikely, as we store all quan-
tized values in full precision during training. Full precision
Mobilenet requires about 17GiB of memory during training.
As later displayed in Table III, a memory-optimized training
state exists, which takes longer to train, but with less memory.
However, it would be surprising if it would trigger this early,
roughly 20 out of 32 GiB. It might also be possible that
the inverse is happening. It could be that full precision is
sped up at the cost of memory consumption. That a form
of optimization is active is further supported by the training
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Fig. 4. The Validation Accuracy of the tested models, quantization methods, and precisions. Values are slightly displaced on the horizontal axis to increase
visibility. Only the highest value per learning rate is displayed. The accuracies are as expected for from-scratch training. aStabilized OCTAV.
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M
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Fig. 5. The training memory requirement compared to Float, depending on the
networks and quantization methods. The absolute memory for full precision
VGG-small, ResNet8, and Mobilenet-V2 modified is about 7GiB, 7.5GiB, and
16.5GiB, respectively. aStabilized OCTAV.

time, Fig. 6 and Table II, which display a reasonably constant
time overhead. Realistically speaking, we observed a memory
overhead of about 2 – 10%.

Training time overhead is about 20% for VGG-small and
ResNet8, Fig. 6. As expected iterative quantization approach
takes longer than the other methods. Mobilenet-V2 modified
takes relatively longer than all other tests, which, as already
discussed, we attribute to an optimization. OCTAV, especially
Stabilized OCTAV, requires many iterations for Mobilenet-V2
modified, as the weights of the dep-wise separated convolution
are channel-wise quantized, meaning 9 values get one quan-
tization factor. However, Stabilized OCTAV did achieve the
highest accuracy for quantized Mobilenet-V2 modified.

VGG-small

ResNet

M
obilenet-V2

1

2

3

4

Relative Time

Quant. Method:
None
MinMSE
F8
OCTAV
OCTAVa

Fig. 6. The training time compared to Float, depending on the networks
and quantization methods. The absolute amount of time per epoch for full
precision VGG-small, ResNet8, and Mobilenet-V2 modified is about 12.5
seconds, 20.5 seconds, and 36 seconds, respectively. aStabilized OCTAV.

C. ResNet18 on Imagenet1k

To study larger networks on a large data set, we tested
ResNet18 [13] on Imagenet1k [11]. The training strategy
is close to Torchvision6. We use 90 epochs of training, a
step learning rate scheduler that reduces the learning rate
by 0.1 every 30 epochs, and ten warm-up epochs of linear
increasing learning rate to the initial learning rate of 0.1.
The augmentations used are RandomResizeCrop7 to 224 with
otherwise default arguments and a random horizontal flip.

6Accessed 14th of May: https://github.com/pytorch/vision/tree/main/
references/classification

7https://pytorch.org/vision/main/generated/torchvision.transforms.
RandomResizedCrop.html
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TABLE II
RESNET18 ON IMAGENET1K. THE VALIDATION ACCURACY IS AS ONE WOULD EXPECT FROM QAT. RELATIVE TRAINING RESOURCES ARE CLOSE TO

FIG. 6 AND 5.

ResNet18
Imagenet1k

Pre-Train Train Val. Training Resources
Val-Top1 Top1 Top1 Top5 Time p.E. Memory

% % % % seconds MiB
Float – 68.9 68.6 88.5 535 18 292

F8 from Scratch – 68.0 67.9 88.0 650 19 632
F8 from Full-Pr. 68.6 71.1 68.8 88.9 650 19 632

F8 from Torchvision 69.8 72.1 69.8 89.3 650 19 632

Moreover, we normalize it with a mean of 0.5 and a standard
deviation of 0.225. The normalization is defined in this manner
to quantize the input easily. We use a batch size of 512 per
GPU and train on 2 GPUs. We use a weight decay of 4e-5, as
suggested by Jin et al. [4]. In contrast to the usual approach of
keeping the first and last layer in full precision, we quantize
the layers and the input to INT8 and accept an INT32 output.

We are using ResNet-V1 [13], not V2 [20]. The essential
difference is that in V2, the activation function is before
the convolution rather than after the convolution in the basic
Blocks. Reviewing F8NETs GitHub repository 8 [4], we con-
clude that they use ResNet-V2 variation d) BasicBlocks, with
an additional INT32 ReLU after the addition. The drawback is
that INT32 feature maps must be stored and processed during
inference. Our approach enforces INT8/UINT8 feature maps
in the BasicBlocks.

As expected, from-scratch training results in worse accuracy
than full precision, while using full precision as initialization
improves the accuracy (Table II). We also tested Torchvisions
9 weights and kept the accuracy. We noticed instability, as
described by [6], which leads us to conclude that a similar
training strategy would benefit us. The training time overhead
is 21.5% which is highly similar to the previous tests, even
though it is a multi-GPU test. The memory overhead is 7.3%,
which is close to the ResNet8 tests.

D. Accelerating Training

We compare the training times of our approach with the
F8Nets GitHub repository10. We used a single GPU for 1
minute of training and tqdm11 for the estimation of the whole
epoch. To validate the estimation, we ran one epoch at batch
size 512. The error is less than 15 seconds.

We use nvidia-smi for memory usage, which attributes
32768MiB of memory to the GPUs. The used version of
PyTorch is 1.13.1+cu116.

Removing the second forward pass significantly reduces the
training time, namely by about 30 – 35%

We tested full precision as well. For QATs seemingly opti-
mal batch size of 512, full precision would require about 18

8Accessed 12th of May 2023: https://github.com/snap-research/F8Net/tree/
main

9Last Accessed 12th of May: https://pytorch.org/vision/main/models/
generated/torchvision.models.resnet18.html

10See footnote 8.
11https://pypi.org/project/tqdm/4.64.1/

TABLE III
COMPARISON DOUBLE FORWARD AND OUR APPROACH, ROUNDED TO
THE NEAREST HALF MINUTE. THE ESTIMATED TIME IS REASONABLY

ACCURATE AS WE FULLY RAN ONE EPOCH AT THE BATCH SIZE OF 512
AND THE ERROR IS LESS THAN 15 SECONDS. THE FULL RUNTIMES ARE 34

MINUTES AND 42 SECONDS, AND 21 MINUTES AND 32 SECONDS, FOR
DOUBLE FORWARD AND OUR APPROACH RESPECTIVELY.

Time &
Memory

usage

Double Forward Our Approach
F8Net Repository

est. Time Memory est. Time Memory
BS minutes MiB minutes MiB

256 35.5 13292 22.0 11782
512 34.5 26496 21.5 19992
640 35.0 30276 21.5 24354
768 35.0 31916 22.0 27950
896 OF OF 23.0 32052
960 – – 23.0 31322

1024 – – 23.0 29364
1152 – – 23.0 31940
1216 – – 26.0 32208
1280 – – OF OF

OF: Memory overflow.
– Not tested due to previous memory overflow.

minutes and 18264MiB. This means double forward requires
nearly twice the amount of time, while our approach only
requires about 21% more time. The memory overhead for
double forward is about 45%, while our method requires only
about 10% more.

Table III also displays some form of memory-optimization
algorithm. The memory goes down as the batch size increases.
It is unknown if PyTorch’s or NVIDIA’s optimization is strictly
on the GPU or if allows it to store some tensors on the system
memory. It is also quite surprising that this can not be seen
in double forward. If system memory is used, it could explain
why our approach could go further, as each layer requires its
feature map only once, potentially making it easier to free up
that memory on GPU and save a copy to the system memory
for backpropagation.

E. Enforcing Rescalers

Table IV illustrates the possibility and effects of flexible
Rescaler rules that allow enforcement of specific behavior. The
network is a VGG-small channel-wise quantized network, and
we enforce the Rescaler to take the following forms: layer-
wise Rescaler, one Rescaler for the first layer and one for
the rest, and one uniform Rescaler for the whole network.
Unsurprisingly, the accuracies are lower than in the previous
tests (Table IV and Fig. 4), as the restrictiveness of enforcing
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TABLE IV
RESTRICTING THE RESCALER. THE TESTED NETWORK IS VGG-SMALL.
THE COLUMN RESCALERS REPRESENTS THE RESULTING RIGHT SHIFT.

HEAVIER RESTRICTIONS ON THE RESCALER MEAN HEAVIER
RESTRICTIONS DURING TRAINING.

Rescricted
Rescaler
CIFAR10

Train Val. Rescalers
Top1 Top1 Individual Layers

% % right shift (2−n)
A8W8:

Layerwise 100 92.7 7 , 11, 10, 10, 9 , 10, 11
First and Rest 100 92.7 7 , 10, 10, 10, 10, 10, 10

All 100 91.7 10, 10, 10, 10, 10, 10, 10
A4W4:

Layerwise 100 92.6 7 , 7 , 7 , 6 , 6 , 6 , 9
First and Rest 100 92.3 7 , 7 , 7 , 7 , 7 , 7 , 7

All 99.9 92.1 7 , 7 , 7 , 7 , 7 , 7 , 7
Layer numbers: 1 , 2 , 3 , 4 , 5 , 6 , 7

Rescalers from the very start is noticeable. It is especially
noticeable in 4-bit, as the last two tests result in identical
Rescalers, but the accuracy differs. We conclude that if a re-
strictive Rescaler is desired, it should be introduced gradually
and not from the very start.

VI. CONCLUSION

We propose a novel approach to QAT that allows using any
linear quantization method for any linear Rescaler. We test
it with unconstrained quantization methods and a power of
2 Rescaler. The tests are successful, as accuracy behaves as
one would expect from regular QAT. This indicates that our
approach can be treated similarly to regular QAT, with the
benefit of additional HW restrictions. These restrictions affect
accuracy, Table IV.

We see high potential for including existing optimizations,
such as freezing the BN at convergence [6] and better gradient
approximations than straight-through estimation. Furthermore,
there are opportunities for developing novel optimizations
regarding the Rescaler. These optimizations should address
questions about when, how, and to which extent the Rescaler
should constrain scaling factors. Table IV shows that easing
into a Rescaler might be better than enforcing it from the start.
Finally, more extensive tests are required to investigate the in-
teraction between our approach and more general optimization
strategies, such as a hyper-parameter search.

Through the well-defined behavior of our approach, ap-
proximations to remove the second forward pass through a
convolution can be made without risking undefined behavior.
Comparing our approach to full precision results in a reason-
ably consistent 20 – 22% training time overhead. The memory
overhead ranges from 2 – 10%.

Compared to the state-of-the-art QAT method of double
forward for BN fusion, our approach accelerates training
by about 30 – 35% and significantly reduces the memory
overhead, enabling bigger networks and or bigger batch sizes.
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