
A Simple State Transition Control for FSM

Programmable Protocol Processors

Yutai Ma, Axel Jantsch and Hannu Tenhunen

Department of Electronics, Royal Institute of Technology, Sweden

Abstract- We present a FSM model for pro-
grammable protocol processors. It removes the branch
instruction penalty and thus it is suitable for control
intensive protocol processing. Compared to the CAM
based FSM model [5], our model improves state mem-
ory access speed by half and reduces state memory
cost by around 8:5%. Also, state memory utilization
in our model is improved to 100%.

I. Introduction

Due to the ever-evolving protocols and services used
in computer communications, it raises a demand for
protocol processors with 
exibility so as to make it
possible to keep up with the pace of protocol research
and development and thus to shorten the time-to-
market. On the other hand, although general pur-
pose computers have powerful processing capability
and performance is improved every year, because they
are not designed particularly for protocol processing
the potential high performance provisions can not be
utilized e�ciently when they are applied to high speed
computer communications.

Programmable protocol processors provide an alter-
native solution to constructing high speed computer
communication systems with 
exibility by using spe-
cial architectures which are suitable for protocol pro-
cessing. The experiment of [3] indicates that at least
3{4 times performance gain can be achieved by us-
ing special instructions for protocol processing. [4]
developed an architecture model for protocol process-
ing. Their simulation results show that an aggregate
gain of approximately 10:1 is obtained compared to
general purpose processors. [2, 7] developed a proto-
col processor for gateways. Their protocol processor
gains 12-fold performance of conventional system for
transmission and 7-fold performance for reception.

Meanwhile FSM processors give an alternative and
promising solution to high speed protocol process-
ing. [5] designed a programmable protocol processor
based on FSM (�nite state machine). The experi-

Search Fields Read Fields

Current Packet User Inside Next HP
State Signal Signal Transition State Instr.

Fig. 1: Word Format of the State CAM.

ment achieves 28-fold performance of a general pur-
pose microprocessor. FSM based protocol processors
have many advantages over traditional processors in
protocol processing. The main advantages are that
the penalty of branch instructions is removed and
a branch or jump instruction can be combined with
other operations. These provide a possibility for con-
structing 
exible and high performance protocol pro-
cessing systems. Two drawbacks of this design are
that CAM (content addressable memory) is more ex-
pensive and performance of the CAM state memory
is poor compared to SRAM and state memory space
utilization in this model is low.

This paper is devoted to FSM protocol processor
architecture with concentration on state memory or-
ganization and e�cient branch instruction implemen-
tation. Since a SRAM is used to replace the CAM
to store states and instructions and a simple logic is
used for FSM control, the performance of FSM based
programmable protocol processors can be improved
greatly in state memory access speed, area cost and
state memory utilization.

II. Matsuda's Model: A CAM Based FSM

Protocol Processor

Matsuda [5] developed a programmable protocol
processor based on FSM. Two important components
of the processor are a protocol state CAM (content ad-
dressable memory) and task processing elements. The
CAM word format is shown in Figrue 1.

The processor accesses the CAM by using a key-
word register containing a current protocol state, a
received packet type, a received user signal and an



inside transition condition and then uses a read out
HP instruction to control operations of the process-
ing elements. The next protocol state �eld updates
current protocol state in the keyword register for the
next CAM read operation.

The main disadvantages of this model is that CAM
access speed is lower than SRAM and CAM capac-
ity is limited. This becomes a bottleneck to the per-
formance of FSM programmable protocol processors.
Other drawbacks will be discussed in section 4.

III. A FSM Model Based on SRAM and

ALU Flags Decoding

An insight to improve Matsuda's design [5] is to re-
place the CAM with a SRAM to speed up memory ac-
cess. On the other hand, for a CAM based FSM, both
current and next protocol states must be included in
each CAM word. Whereas for a SRAM based FSM,
next protocol state is still provided by each SRAM
word, but the �eld of current protocol state is not
needed any more and thus the memory cost can be
reduced. Another motivation is to improve the state
memory space utilization.

A. FSM Processor Architecture and Word
Format of The SRAM State Memory

An obstacle to the performance of SRAM based
FSMs is how to generate addresses for di�erent sate
transitions from a protocol state. We want the ad-
dress generation to be simple enough so that we can
integrate it into address decoding of the state memory.

The word format is shown in Figure 2 and the FSM
model is shown in Figure 3. The instruction �eld con-
trols ALU operations, memory read/write, and I/O
operations. The next state �eld speci�es a base ad-
dress to the state memory for next state memory read
operation. We use ALU 
ags and the control �eld
to capture a state transition or a branch/jump in-
struction. Since protocol processing is full of con-
trol and branch instructions, it deserves combining a
branch or jump instruction with other ALU or mem-
ory read/write operations. The control �eld is used
to specify a condition for state transition. Detecting
multiple conditions simultaneously at a time is sup-
ported. For example, a 4-bit 
ag register can represent
four status 
ags simultaneously. Also, it can support
a case statement with up to 16 branches. The control
�eld works with the branch bits to generate an n-bit
address o�set for branch target instructions, where n

Control 1-Bit Next Instructon
Field Branch State Field

Fig. 2: Word Format of State SRAM.

ALU
Reg

Instruction

State

Memory

(SRAM)

F1

F2

C

B

S

S
ta
te
T
ra
n
s.

S
eg
.
R
eg
.

Packet
Memory

Stack Data

Route Table

?

?
-
-
-
-

-

-

1-Bit R

-

ALU Flags

-

-
-
-

State/Branch/Control Fields

� �

6
?

- -Packets Input Output

6�

Fig. 3: A FSM Model for Programmable Protocol

Processors Based on SRAM and Flags Decoding.

is the bit-width of the branch �eld. In this illustration,
only one bit is used. Therefore, a base address spec-
i�ed by the next state �eld and a generated branch
target address o�set form address to the state mem-
ory. We discuss it in detail in the next subsection.

B. Address O�set Generation of
Branch Target Instructions

Condition evaluation for state transition and
branch instruction (block \State Trans." in Figure
3) is illustrated in Figures 4 and its generated address
o�set of branch target instructions is shown in Table
1.

When a control bit is set to \1", current state will
transfer to a next state only when the corresponding

��H
H b

ppppppppppppppppppppppppppppppppppppppppppppp
pppppppppppppppppppp
ppppppppppppppppp
pppppppppppppppp
pppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppppppppppp

ppppppppppppppppppppppppp

b

F1

C1

��H
H b

pppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppp
pppppppppppppppp
ppppppppppppppp
ppppppppppppppp
pppppppppppppppp
ppppppppppppppppp
ppppppppppppppppppppppppp

pppppppppppppppppppppppppppppppp

b

F2

C2

pppppppppppppppppppppppppppppppppppppppppppp
ppppppppppppppppppppp
ppppppppppppppppp
pppppppppppppppp
ppppppppppppppp
pppppppppppppppp
ppppppppppppppppppp
ppppppppppppppppppppppppppp

pppppppppppppppppppppppppp

b
R

B
Branch Bit

Fig. 4: State Transitions Evaluation.



Table 1: Branch Target Address O�set

Control Cond. 1-Bit R: Branch Target
Field Eval. Branch Address O�set

> 0 True \1" \0"
False \1" \1"

= 0 { \0" \1"
{ \1" \0"


ag is set up, in this case the branch bit should be
set to \1". If speci�ed conditions are satis�ed, a bit
of \0", otherwise a bit of \1", is generated. If a con-
trol �eld is set to \0", no condition is required for the
corresponding 
ag. For multiple possible state transi-
tions from a state, we use multiple branch instructions
to implement them. If no control bit is set to \1", then
no condition is required for this state transition. In
this case the branch bit can be either \0" or \1". This
is useful for unconditional jump instructions and tasks
which cannot be completed in one instruction cycle.
This insight is illustrated in Table 1.

As shown in Figure 3, the branch target address
o�set (R in Figure 4) and the next state �eld form
address to the state memory for next protocol state.
Compared to considerable performance improvement
on branch instruction execution, it deserves combining
this state transition evaluation circuit with address
decoder of the state memory.

It is worth noting that to clear ambiguity among
multiple 
ag pattern matches in a state when the bit-
width of address o�set is less than that of the control
�eld (here, the bit-width of the address o�set is one),
the pattern with more `1's should be matched �rst.
For example, for 
ag patterns of \11" and \10", pat-
tern match of \11" should be done �rst.

C. State Memory Capacity

To reduce the state memory complexity, the �eld
length of next state is restricted. For example, with
10-bit representation of the branch bit and next state
�elds 1k instructions can be accommodated. To ac-
commodate more instructions/programs into the state
memory, a virtual memory management unit like the
one used on general purpose microprocessors can be
used. We can also choose a simpli�ed form by using
a segment register to indicate a memory segment as
shown in Figure 3. This segment register can be set
up by a speci�c ALU operation. When a program
needs to roam into another segment, an instruction is

used to update the segment register and a following
instruction use its own next state �eld and the seg-
ment register to fetch next instruction in another state
memory segment. Since jumping across segments is
much less frequent compared to normal operations,
this overhead is light.

D. A FSM Program Example

We use a send subroutine of ARQ protocol [6] to
illustrate how our model works. To simplify this il-
lustration, we do not focus on these statements im-
plementation but assume that some statements are
implemented by one instruction. The send subroutine
is described below.

s.kind = fk; /* Instruction 1 */
s.seq = frame nr;
s.ack = (frame expected+MAX SEQ) %

(MAX SEQ+1);
stop ack timer(); /* End of Instr 1*/
if fk = data then /* Instruction 2 */

s.info = bu�er[frame nr % NR BUFS];
start timer(frame nr % NR BUFS);

end if; /* End of Instr 2 */
if fk = nak then /* Instruction 3 */

no nak = false;
end if; /* End of Instr 3 */
to physical layer(&s); /* Instruction 4 */

Assume two 
ag bits are used to represent the frame
type data, nak and ack and they are encoded as \11",
\10" and \01" respectively. The program on our
model is shown below, where we assume that this sub-
routine returns to an instruction in address \011".

FSM Program for the ARQ Send Subroutine

Addr. Instr. Control Branch Bit Next Sate

000 Instr1 11 1 01
001 Instr2 10 1 10
010 Instr3 00 0 10
101 Nop 10 1 10
110 Instr4 00 1 11

IV. Performance Comparisons

A. Comparison with Matsuda's CAM Based
FSM Model of Protocol Processors [5]

In [5] the state memory is constructed by using a
CAM. From the principle of CAM [8] we know that



memory access speed of SRAM is twice that of CAM.
Therefore, the operating speed of our model can be
twice that of Matsuda's model [5].

For Matsuda's model [5] both current state and next
state �elds are included in each CAM word. For our
model only the next state �eld is included in each
SRAM word. Matsuda's design contains 500 CAM
words by 70 bits, totally 12 bits are used to represent
the current state and next state. Our model reduces
the state memory cost by around 8:5%.

Furthermore, our model supports complex and
large scale protocol processing by using a segment
register or a virtual state memory management unit.
While due to restrains on CAM capacity, capability of
Matsuda's Model [5] is highly restricted.

Another problem in Matsuda's Model [5] is poor
memory space utilization related to state transitions
and branch instructions. For example, when using
the inside transition �eld as shown in Figure 1 to im-
plement a branch instruction, all possibilities of the
packet signal and user signal �elds must be taken into
account and thus these branch target instructions may
occupy 8 CAM words, instead of 2 SRAM words in our
model.

B. Comparison with High Performance
General Purpose Microprocessors

Protocol processing is full of control operations.
The control information appear in packets and other
data structures or actions, for example routing tables
and TCP 
ow and congestion control. Therefore, the
execution e�ciency of branch and jump instructions
has a severe impact on protocol processing perfor-
mance. From Figure 3 and Figure 4 we see that the
main advantages of our model over general purpose
processors are that the hazard of branch and jump in-
structions is removed and case statement is supported.
On the other hand, in our model branch and jump
instructions can be combined with other operations.
These advantages lead to a high e�ciency of protocol
processing.

We focus on branch and jump instructions issue
here, however our model also shares other proper-
ties of general purpose processors. For example, vir-
tual memory management and interrupt handle mech-
anisim. This means that our model can provide 
exi-
able and powerful processing capability as general pur-
pose processors while suitable for protocol processing.

V. Conclusion

FSM is an e�ective model for protocol description
and protocol processing. In this paper we have pro-
posed an architecture for FSM programmable protocol
processors. Compared to general purpose processors,
our model removes branch instruction hazard. On
the other hand, we see that compared to the CAM
based FSM model the state memory access time can
be reduced by half by using our model, meanwhile
the memory cost is reduced by around 8:5% and state
memory space utilization is improved to 100%. Our
FSM model can be used for constructing complex pro-
tocol processing systems by using a virtual state mem-
ory management unit or by using multiple such pro-
tocol processors.

References

[1] Ilija Hadzic, Jonathan M. Smith and Williams S.
Marcus, \On-the-
y Programmable Hardware for
Networks", Proceedings of Globecom'1998.

[2] Tetsuhiko Hirata, Susumu Matsui and Tatsuya
Yokoyama, \A high speed protocol processor to
boost gateway performance", Proceedings of Globe-

com'1990.

[3] Axel Jantsch, Johnny Oberg and Ahmed Hemani, \Is
there a nich for a general protocol processor core?",
Proceedings of Norchip'1998.

[4] Baiju D. Mandalia, Mohammad Ilyas and Ed-
uardo B. Fernandez, \Performance evaluation of the
communications protocol processor", Proceedings of
IEEE ICC'1990.

[5] Takao Matsuda, Kazuhiro Matsuda, \A new proto-
col processing architecture for high-speed networks",
Proceedings of Globecom'1996.

[6] Andrew S. Tanenbaum, \Computer Networks",
pp.216{217, Third Edition, Prentice-Hall, 1996.

[7] Matsuaki Terada, Tatsuya Yokoyama, \A high speed
protocol processor to execute OSI", Proceedings of
INFOCOM'91.

[8] Neil H. Weste and Kamran Eshraghian, \Principles
of CMOS VLSI Design: A Systems Perspective",
Second Edition, Addison-Wesley, 1993.

[9] Naoaki Yamanaka, Eiji Oki, Haruhisa Hasegawa,
\User-programmable 
exible ATM network architec-
ture: active-ATM-experimental results", Proceedings
of the Third IEEE Symposium on Computers and
Communications, 1998.

[10] Michael Yang and Ahmed Tantawy, \A design

methodology for protocol processors", Proceedings of

the Fifth IEEE Workshop on Distributed Computing

Systems, 1995.


