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Abstract

We present a novel approach to refine a system model specified with perfectly synchronous com-
munication onto a Network-on-Chip (NoC) best-effort communication service. We propose a top-
down procedure with three steps, namely,channel refinement, process refinement, andcommunica-
tion mapping. In channel refinement, synchronous channels are replaced with stochastic channels
abstracting the best-effort service. In process refinement, processes are refined in terms of interfaces
and synchronization properties. Particularly, we usesynchronizersto achievesynchronization con-
sistency. Within communication mapping, the refined processes and channels are mapped to a NoC
architecture. Adopting theNostrumNoC platform as target architecture, we use a digital equalizer
as a tutorial example to illustrate the feasibility of our concepts.

1 Introduction

For system design, a synchronous design style is attractive since it allowsone to separate timing from
function. The designer can focus on the design of the system functionalitywithout being distracted by
unnecessary low-level communication details. This also facilitates the verification task, which is a key
activity at the system level. Later, the implementation details and design constraints can be gradually
filled in by refinement.

Network-on-Chip (NoC) is emerging as a new SoC paradigm to cope with the scalability problem
of buses in order to connect tens or perhaps even hundreds of microprocessor-sized heterogeneous re-
sources, such as processor cores, DSPs, FPGAs/ASICs, and memories, enabled on a single chip due to
the steady technology scaling. Nostrum [MNTJ04, NMÖJ03, TMJ03] is our NoC architecture that pro-
vides a packet-switched communication platform. To satisfy different performance/cost requirements,
Nostrum provides two classes of unicast communication services, namely, Best Effort (BE) and Guar-
anteed Bandwidth (GB) services. The BE service is connection-less where packets are routed without
resource reservation. The GB service is connection-oriented where packets are delivered after enough
bandwidth is reserved.

There is a huge gap between an abstract system model and a complex implementation platform like
NoC. In order to bridge the gap, we propose a NoC design flow shown in Fig. 1 where we concentrate on
the communication problem. A system specified as a synchronous process model that has to be mapped
on a NoC. There are three communication-related tasks:clustering & resource allocation, communica-
tion refinement, andsynthesis. The clustering flattens the hierarchy in the model and groups processes
into new processes with perhaps coarser granularity. With resource allocation, the new processes are
allocated to HW or SW execution resources. Communication refinement bridges the gap between the



communication model in the specification and the NoC communication implementation via adapters.
With synthesis, these processes and adapters are synthesized into HW and/or SW.

Clustering & Resource allocation

Hardware Software

process model
Synchronous NoC

platform

Channel refinement

Process refinement 

Communication mapping

Synthesis

Computation  refinement Communication  refinement

Figure 1: A NoC Design Flow

In this paper, we address the communication refinement that starts from a synchronous communica-
tion model and ends with the Nostrum NoC best-effort communication service.Our contributions are
(1) a novel approach to realize this communication refinement; (2) a classification of process synchro-
nization properties asstrict, nonstrict, strong, andweaksynchronization in order to formally analyze
processes’ local synchronization requirement(s) (Section 5.2); (3) usingsynchronizers(synchronization
adapters) to maintain synchronization consistency during refinement (Section 5.3). In a synchronous sys-
tem model, communication is perfectly synchronous with a global logical clock and cleanly separated
from computation. With the NoC communication service, communication introduces variable delays and
crosses multiple clock domains connected by a packet-switched network. Clearly the communication in
the implementation domain is not synchronous, thus not consistent with that in thespecification domain.
We will focus on this synchronization issue while keeping the process computation untouched. Note
that, this synchronization issue is a process communication property at the system modeling level (sig-
nal level), not at the lower implementation level such as shared memory synchronization using locks or
semaphores, as well as message passing synchronization using blockingor nonblocking semantics. We
assume a clustering is done in a way that the resulting processes remain locallyin a synchronous domain.
Besides, we consider that a resource maintains a local synchronous region. Consequently a process (after
clustering) is to be mapped to one resource and one resource hosts exactly one process.

In the sequel, we outline related work in Section 2. Section 3 gives an overview of our refinement
technique and introduces the digital equalizer. Section 4 and 5 present thechannel refinement and process
refinement in detail, respectively. In Section 6, we describe the communication mapping. Finally we
draw conclusions and point out future directions in Section 7.

2 Related Work

Based on the isolation of communication from computation, a large body of workon communication
refinement exists in the literature. Through the Virtual Component Interfaces (VCI) of the VSI Alliance
[LSdJ+00], the COSY-VCC design flow [BKK+00] supports communication refinement from specifica-
tion, to performance estimation and to implementation. IPSIM [CCGM03] developed on top of SystemC
3.0 supports an object-oriented methodology and establishes two inter-modulecommunication layers.
The message box layer concerns generic and system-specific communication, while the driver layer
implements higher level application-dependent communications. The SpecC methodology defines four
levels of abstraction, namely at the specification, architecture, communicationand implementation level,
and the refinement transformations between them [DGG02]. Jerraya et al. achieved communication re-
finement via a generic wrapper concept [YNL+01]. In the course of communication refinement, methods
to allow architecture exploration and communication protocol selection can be found in [LSvdWD01]



and [KM99], respectively. These works do not assume a synchronous specification, thus are not applica-
ble to our context.

With synchronous communication, latency insensitive theory [CMSV01] targets synchronized HW
design where synchronization can still be achieved even if interconnecting synchronous IP blocks ex-
periences indefinite wire latencies; Desynchronization for SW design wasaddressed in [BCG00]. Fur-
thermore, some mathematical frameworks were developed to support refinement-based design methods.
Benveniste et al. present a theoretical framework for modeling heterogeneous systems, and derive suf-
ficient conditions to maintain semantic-preserving transformations when deploying a synchronous spec-
ification onto GALS and the loosely time-triggered architectures [BCCSV03].Another framework is
proposed in [GTL03] concerning the refinement of a polysynchronous specification, which allows mul-
tiple clocks instead of a single clock. All these works are complementary to ourwork but none of them
provides a detailed refinement approach targeting a NoC platform.

3 Refinement Overview

In this section, we first introduce the functional specification with perfectsynchrony and the digital
equalizer. Then we describe the Nostrum communication services. Finally weoutline the refinement
procedure.

3.1 Functional Specification with Perfect Synchrony

The synchronous modeling paradigm is based on an elegant and simple mathematical model, which has
been shown successful and is the ground of synchronous languages such as Esterel, Signal, Argos and
Lustre. The basis is the perfect synchrony hypothesis, i.e., both computation and communication take
no observable time. A system is modeled as a set of concurrent communicatingprocesses via signals.
Processes use ideal data types and assume infinite buffers. Signals areordered sequences of events.
Each event has a time slot as a slot to convey data. If the data contains useful information, the event
is presentand called atoken; otherwise, the event isabsentand modeled as a⊥ representing a clock
tick. Each signal can be related to the time slots of another signal in an unambiguous way. The output
events of a process occur in the same time slot as the corresponding input events. Moreover, they are
instantaneously distributed in the entire system and are available to all other processes in the same slot.
Receiving processes in turn consume the events and emit output events again in the same time slot. A
signal can thus be viewed as an ideal communication channel which has no delay for any event data types
(unlimited bandwidth)1. A process specified in the synchronous paradigm is a synchronous process. For
feedback loops, the perfect synchrony creates cyclic dependencybetween output and input, and thus
leads to deadlock, which is resolved with an initial event in the specification. Asynchronous model is
deterministic, i.e., given the same input streams, it generates the same output streams.
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Figure 2: The Digital Equalizer

As a tutorial example, Fig. 2 shows the functional model of an equalizer. Itadjusts the bass and
treble volume of the audio stream according to button control levels. In addition it prevents the bass level

1For convenience, we use the termsignalto express either a sequence of events or the ideal communication medium.



from exceeding a predefined threshold to avoid damaging the speakers.Its function can be described
by the following set of equations, where the initial value ’1’ is used to resolve the feedback loops. This
model is specified in functional language Haskell and executable.

AudioOut = Equalizer(Buttons,AudioIn)
where
AudioOut = Sum(AudioBass,AudioTreble)
(Bass,Treble) = LevelControl(Buttons,AudioOut)
AudioBass = BassFilter(AudioIn, init : Bass)
AudioTreble = TrebleFilter(AudioIn, init : Treble)
init = 1

3.2 Nostrum Communication Services

In Nostrum, each resourceRi (i = 1,2, · · · ,n) is equipped with a Resource-Network-Interface (RNI) in
order to access the network, as shown in the lower part of Fig. 3. The RNI and the network belong to the
Nostrum protocol stack. Nostrum provides a message passing platform with two unicast communication
services, i.e., best-effort and guaranteed bandwidth. The BE service[NMÖJ03] is implemented by rout-
ing packets. It has no guarantee on timely delivery, but has an upper bound on delivery time. To this
end, we assume a network admission protocol that prevents the network from saturation and guarantees
bounds on delay. It is connectionless and does not reserve network resources such as storage and link
bandwidth, thus has a lower cost. The GB service is implemented by using looped containers and tem-
porally disjoint networks [MNTJ04]. It guarantees bandwidth, which is negotiated during the connection
establishment phase. It is connection-oriented and reserves the network resources before transmission
and thus has a higher cost. The RNIs hide the service implementation details andmake the services
transparentlyaccessible to applications. The access methods as a standard interface are communication
primitives.

Within Nostrum, we define a set of communication primitives for message passingas follows:

• int open(int src, int dst, int service, struct bandwidth): it opens a simplex channel between a source
src process and a destinationdstprocess. Theservicedenotes the channel service class, 0 for the
BE service, 1 for the GB service. Thebandwidthis a user-defined record with three fields{int
min_bw, avg_bw, int max_bw}which specifies the minimum, average and maximum bandwidth
(Bytes/second) requirement of the channel. The method returns a unique channel identity number
(cid) upon successfully opening the channel; otherwise, it returns variousreasons of failure, such
as a destination invalid, or performance not satisfied.

• bool write(int cid, void msg): it writes msgto the specified channelcid. The size of messages is
bounded. It returns the status of the write.

• bool read(int cid, void *msg): it reads channelcid and writes the received data to the address
starting atmsg. It returns the status of the read.

We have implemented these primitives with the BE service using SystemC in our layered NoC sim-
ulator Semla[TMJ03]. Currently the write() and read() are implemented with nonblockingsemantics.
Semla is programmable as to network topology, process-to-resource allocation, routing algorithm, re-
source/network clock frequency, and traffic pattern. The current implementation opens channels stati-
cally during compile time and the opened channels are never closed.

3.3 The Refinement Procedure

Given a synchronous system specification, our objective is to refine thesynchronous communication
model onto the Nostrum best-effort (BE) service. To this end, we propose a three-step procedure:channel



refinement, process refinement, andcommunication mapping. We illustrate the procedure via a pair of
producer-consumer processes in Fig. 3. The three steps are marked by a circle with a step number inside
it.
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Figure 3: Communication Refinement Overview

Step 1: Withchannel refinement, we first abstract the behavior of Nostrum best-effort service as
that of stochastic service channels which are then used to replace the ideal communication channels, i.e.,
the signals. In Fig. 3, the signals between the producerP and the consumerQ is refined to a BE service
channelch. As a consequence, signals becomes signals′, which is a derived version ofs, after being
delivered via the service channel. Furthermore,sands′ are no longer synchronous.

Step 2: Withprocess refinement, we deal with how a process can be connected to the service
interfaces as well as how its synchronization property can be satisfied byadapters. Particularly, to
guarantee the correctness of the refinement, the process synchronization property from the specification
model to the refined model must be consistent. Maintaining this synchronizationproperty is the focus
of this paper. Moreover, we consider feedback loops where the process synchronization may be relaxed
since a synchronous specification may over specify the system. In Fig. 3,P andQ are adapted with
a write and read adapter, respectively. Note that the adapters contain components to interface with the
service channels and components for synchronization whenever necessary.

Step 3: Finally, together with a process-to-resource allocation scheme, thecommunication mapping
is to implement both the adapters and service channels on a NoC, in this case, the Nostrum simulator
Semla. In Fig. 3, the refined processesP′ andQ′ are mapped to the resourcesR1 andRn, respectively. Ac-
cordingly, the service channelch is implemented via the interfaces provided by the RNIs of the resources
R1 andRn.

4 Channel Refinement

We first abstract the behavior of the Nostrum best-effort service resorting to a stochastic approach, then
analyze the impact of stochastic channels on the system model, particularly, the disruption of the perfect
synchrony assumption.

4.1 The Behavior Model of Nostrum Best-Effort Service

The performance of the Nostrum BE service isnondeterministicin nature since the message delivery
experiences dynamic contention scenarios in the RNIs and network. Nevertheless, the message delivery



time is not completely indeterminate. Given the characteristics of a packet-switched network such as
topology, routing algorithm and flow control scheme, the behavior of message delivery is a function of
the network traffic (both total traffic amount and traffic patterns). For theGB service, the bandwidth is
guaranteed but the delay may be jittery.

To capture the performance characteristics of the best-effort service, we resort to a stochastic ap-
proach. Formally, we develop a unicast BE service channel as a point-to-pointstochasticchannel: given
an input signal of messages{m1,m2, · · · ,mn} to a service channel, the output signal is{d1,m1,d2,m2, · · ·,
dn,mn}, wheredi denotes the delay of messagemi (i = 1,2, · · · ,n) which may be expressed in terms of
the number of absent (⊥) values;di is subject to a distribution with a minimumdi,min and maximumdi,max

value determined by the service implementation, network traffic and the distanceof the two ends of the
service channel. Ifdi = n (n is a natural number), it means that there aren absent values between mes-
sagemi−1 and messagemi . We identify two important properties of the behavior of the service channel:
(1) di is varying; (2)di is bounded. This behavior is purely viewed from the perspective of application
processes and its implementation details are hidden. In addition, the stochastic channel model is generic.

4.2 Impact of the Stochastic Channels

Replacing the ideal channel (zero delay and unlimited bandwidth) with a stochastic channel (varying
delay and limited bandwidth) leads to the violation of the synchrony assumption. In the specification, a
channel is ideal so that we can use asinglesignals to connect a producer to a consumer process. After
replacing it with a service channel, the signal can be seen as beingsplit into a pair of signals, the original
signals and its derived signals′, as shown in Fig. 3. For a process with two synchronous input signals,
for example, theSumprocess of the equalizer (Fig. 2), if both signalss3 ands4 are delivered via a service
channel, they are split, resulting in two derived signalss′3 ands′4, which are now the input signals to the
Sumprocess. Apparently, the two pairs of signals,s3 ands′3, s4 ands′4, and the two derived signalss′3
ands′4 are not synchronous. A synchronous system becomes globally asynchronous, leading to possibly
nondeterministic behavior which deviates from the specification. It is therefore important to maintain
synchronization consistencyduring the refinement for correctness.

5 Process Refinement

We first briefly consider how to interface with the service channels in general, and then discuss the syn-
chronization property of processes and methods to achieve synchronization consistency. The granularity
of a process in this context is a synchronous domain resulting from the clustering. At the system level (a
composition of processes), we discuss feedback loops.

5.1 Interfacing with the Service Channels

Once an ideal channel is replaced by a service channel, the processes can not be directly connected to
the interface of the service channel. They must beadaptedin terms of data and control because (1)
the input/output data type of a service channel is a bounded message while asignal in the specification
assumes an ideal data type, whose length is finite but arbitrary, e.g., a 32/64-bit integer, a 64-bit floating
point or a user-defined 256-bit record type etc.; (2) the service channel has bounded buffers and limited
bandwidth while a signal uses unlimited resources. The sending and receiving of messages use shared
resources and thus control functionality has to be added to maintain the message delivery properties
such as reliability and causality etc. The control function typically enables to allocate shared resources,
schedule multiple threads and achieve thread-level synchronization. These adaptations are achieved by
a writer and reader process. Specifically, to interface with the service channels, a producer needs to be
wrapped with awriter, a consumer with areader.



5.2 Process Synchronization Property

In the system model, all signals of each process are synchronous. In spite of this, whether or not the
input signals of a process must be synchronous, i.e., the synchronization property of a process, is subject
to the evaluation condition of processes, specifically, the local condition(s) to evaluatethe input events.
Because of the tight synchronization in the model, some processes may be over specified, limiting the
implementation alternatives. During the refinement, the designer(s) must closely inspect and determine
the synchronization property of the processes.

Inspired by [LP95], we usefiring rules to discuss the synchronization property ofsynchronous
processes. For a synchronous process withn input signals,PI is a set ofN input patterns,PI =
{I1, I2, · · · , IN}. The input patterns of a synchronous process describe its firing rules, which give the
conditions of evaluating input events at each event cycle.Ii (i ∈ [1,N]) constitutes a set of event patterns,
one for each ofn input signals,Ii = {Ii,1, Ii,2, · · · , Ii,n}. A patternIi, j contains only one element that can
be either a token wildcard∗ or an absent value⊥, where∗ does not include⊥. Based on the definition
of firing rules, we propose four levels of process synchronization properties as follows:

• Strict synchronization. All the input events of a process must be present before the process
evaluates and consumes them. The only rule that the process can fire isPI = {I1} whereI1 =
{[∗], [∗], · · · , [∗]}.

• Nonstrict synchronization. Not all the input events of a process are absent before the processfires.
The process cannot fire with the patternI = {[⊥], [⊥], · · · , [⊥]}.

• Strong synchronization. All the input events of a process must be either present or absent in order
to fire the process. The process has only two firing rulesPI = {I1, I2}, whereI1 = {[∗], [∗], · · · , [∗]}
andI2 = {[⊥], [⊥], · · · , [⊥]}.

• Weak synchronization. The process can fire with any possible input patterns. For a 2-input process,
its firing rules arePI = {I1, I2, I3, I4} where I1 = {[∗], [∗]}, I2 = {[⊥], [⊥]}, I3 = {[∗], [⊥]} and
I4 = {[⊥], [∗]}.

We can identify processes with astrict, strong, andweaksynchronization property in the equalizer
(Fig. 2). TheBassFilter(s0 ands1) andTrebleFilter (s0 ands2) have a strict synchronization. Both
filters are composed of a FIR filter and an amplifier. The FIR filter is specifiedas an FSM, whose state
transition is sensitive to time, thus a⊥ value in an audio stream can change the values of its output
sequence. Meanwhile, the amplifier must have an amplification level, thus a⊥ value makes the amplifier
undefined. TheSumprocess (s3 ands4) has a strong synchronization. It is a combinational process and
thus tolerable to events with a⊥ value. However, the two events ofs3 ands4 must be synchronized
before being processed since they represent the low and high frequency parts of the same audio sample.
TheLevelControl(sb ands5) process has a weak synchronization. It can fire even when either orboth of
the events ofsb ands5 are absent since pressing buttons happens irregularly and the bass level surpassing
the threshold occurs only aperiodically.

5.3 Achieving Synchronization Consistency

Apparently, for processes with a strict or strong synchronization, theirsynchronization properties can
not be satisfied if any of the input signals passes through a service channel since the delays via the
channel are stochastic. Although globally asynchronous, the processes can be locally synchronized by
using adapters to satisfy their synchronization properties. To achieve strong synchronization, we use a
synchronizer processsync; to achieve strict synchronization, we use three processes,sync, deSyncand
addSync. We use a two-input process to illustrate these processes in Fig. 4. A synchronizer processsync
aligns the tokens of its input events, as shown in Fig. 4a. It does not change the time structure of the
input signals. A desynchronizerdeSyncremoves the absent values, as shown in Fig. 4b. All its input



signals must have the same token pattern, resembling the output signals of thesyncprocess. Removing
absent values implies that the process isstalled. The desynchronizer changes the timing structure of
the input signals, which must be recovered in order to prevent from incurring unexpected behavior of
other processes that use the timing information. An add-synchronizeraddSyncadds the absent values
to recover the timing structure, as shown in Fig. 4c. It must be used in relationto adeSyncprocess. If
the input events of thedeSyncis a token, theaddSyncreads one event from its internal buffers for each
output signal; otherwise, it outputs a⊥ event. As can be seen, the two processesdeSyncandaddSyncare
used as a pair to assist processes to fulfill strictness.

b) A de-synchronization process
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We can now use these synchronizers in connection with thereaderandwriter processes to wrap the
original processes to interface with the service channels and maintain the synchronization consistency
from the specification model to the refined model. For instance, as shown in Figure 5, we use async
process together with a pair ofreader/writer processes to wrap thesumprocess in the equalizer model
to maintain its strong synchronization. We use the three processes,sync, deSyncandaddSync, together
with a pair ofreader/writer processes to wrap theBass/Treble Filterprocess (Fig. 2) to maintain their
strict synchronization.



The refinement of processes with a nonstrict synchronization should beindividually investigated
according to their firing rules.

5.4 Feedback Loops

In the specification, feedback loops are resolved by using initial events.If the feedback signals pass
through a service channel, the delays are nondeterministic. If following theinitial event approach in
the refinement procedure, we encounter a problem since we are not certain how many initial events are
required to resolve the deadlock. Consider theBass/Treble Filter, if the tokens ofs1/s2 are not available,
it can not fire. This implies it may not be able to process enough audio samplesin time, leading to
violate the system’s performance constraint. However, if the amplification level signals,s1 (Bass) ands2

(Treble), are delayed and thus not available, the amplifiers should continue functioning by, for example,
using the previous amplification level or simply using a constant level like 1. Inthis case, the effect of
pressing buttons may be delayed several cycles. This is tolerable since thehuman sensing of the changes
in the audio volume takes some time.

By this observation, we can in factrelax the strict synchronization of the processesBass/Treble
Filter, using a relax-synchronization processrelax illustrated in Fig. 4d. If the input event is a token,
it outputs the token; otherwise, a tokenx0 is emitted. The exact value ofx0 is application dependent.
Relaxing synchronization is a design decision leading to behavior discrepancy between the specification
and the refined model. It must be used carefully to ensure that it does notcause to violate the system
requirements.

6 Communication mapping

The inputs to this task are the refined model as well as a process-to-resource allocation scheme; the
output is a communication implementation on Semla.

6.1 Channel Mapping

With a resource allocation scheme, all processes are allocated to resources in a one-to-one manner. Note
that this is not a limitation but due to the assumption on the clustering and resources (refer to Section
1). With such a clustering, inter-process signals, which represent inter-resource communications, are
mapped to service channels. Since the processes may be hierarchical, weneed to flatten the hierarchy
to the level that each signal mapped to a service channel can be uniquely identified with a pair of a
producer and a consumer process withfiner granularity. For simplicity, we do not consider mapping
multiple service channels to one implementation channel. Mapping channels is thusstraightforward.
Each pair of processes communicating via a service channel in the refinedmodel results in its dedicated
unicast implementation channel, which is mapped to the open channel primitiveopen(). For example,
with the producer-consumer case, a BE channel setup is fulfilled by a single line of code:int ch[1] =
open(P,Q,BE_SERVICE,NULL).

6.2 Communication Process Mapping

After the process refinement, the refined processes consist of the original computational process, the
writer and reader, and perhaps the synchronizer(s) to satisfy their synchronization properties. Our re-
finement keeps the original processes intact. Therefore, the tasks of communication process mapping
are to implement the adapters for writing (writer), reading (reader), and the synchronizers such assync,
deSync, addSyncandrelax, and to coordinate the writing and reading operations if needed.

In SystemC, processes are implemented as modules. The readers/writers maybe implemented as
separate modules or in the same modules as processes. We implement a process and its adapter(s) in



a single module. For implementation, execution control in the module must be considered. Suppose
the module has a single thread of control, we need to find a Periodic Admissible Sequential Sequence
(PASS) for process executions [LSJ02]. For the process in Fig. 6, aPASS could be PASS={reader, sync,
desync, compute, addsync, writer}. Besides, a control signalwrite_rdy must be asserted by thewriter to
thereaderto enable the reading from the channel(s) for the next-round execution of the PASS, as shown
in Fig. 6. This leads to a local feedback loop, and we adopt the initial eventapproach to deal with. In
this case,write_rdy is initially asserted. Using the communication primitives defined in Section 3.2, the
SystemC module for Fig. 6 is sketched as follows, with each component explained in commentary:

p r o c e s s _ c l a s s : : P r o c e s s ( ) {
/ / i n i t i a l l y w r i t e _ r d y =1;
/ / read_ch0_rdy =0; read_ch1_rdy=0
/ / sync_ rdy =0; compute_done =0;
i f ( w r i t e _ r d y ==1){
/ / ( 1 ) reade r : nonb lock i ng read ch1 and ch2

i f ( read_ch0_rdy ==0)
i f ( ( r ead ( ch [0 ] ,& r_msg1 ) )==t rue )

read_ch0_rdy =1;
i f ( read_ch1_rdy ==0)

i f ( ( r ead ( ch [1 ] ,& r_msg2 ) )==t rue )
read_ch1_rdy =1;

/ / ( 2 ) sync : s y n c h r o n i z e t h e two e v e n t s
i f ( read_ch0_rdy ==1 && read_ch1_rdy ==1)

sync_rdy =1;
e l s e sync_rdy =0;
/ / ( 3 ) deSync : d e s y n c h r o n i z a t i o n by guard
i f ( sync_rdy ==1 && compute_done ==0){

/ / p r o c e s s compu ta t i on
/ / r e t u r n w_msg and s e t compute_done t o 1
w_msg=compute ( r_msg1 , r_msg2 ) ;
w r i t e _ r d y =0; compute_done =1; }

}
/ / ( 4 ) addSync : f i l l s y n c h r o n i z a t i o n

i f ( sync_rdy ==1 && compute_done ==1) {
/ / ( 5 ) w r i t e r : nonb lock i ng w r i t e ch3

i f ( w r i t e _ r d y ==0)
i f ( w r i t e ( ch [ 3 ] , w_msg)==t rue ) {

w r i t e _ r d y =1;
sync_rdy =0; compute_done =0;
read_ch0_rdy =0; read_ch1_rdy =0; }

}
}

In the implementation domain, whether to emit and pass⊥ as a message via a service channel or not
can be a design decision that must be handled carefully. To preserve thesemantics,⊥ must be emitted
and passed. However, it incurs too much overhead on computation and communication, and may not
be useful since its value is useless. Therefore it is usually neglected. Only in cases where the timing
information carried by⊥ is used by other processes, it must be emitted and passed as a special value. In
the equalizer case,⊥ is neglected since its timing information is not used by any of the four processes,
therefore it does not affect the system behavior.

We have implemented the equalizer in Semla. The purpose is to validate the concepts of our refine-
ment approach. Fig. 7a illustrates the mapped equalizer in a 4x4 mesh NoC. Allthe five inter-resource
signalss1,s2, · · · ,s5 (Fig. 2) use the BE service. To simplify the discussion on performance, theresources
and the network use the same clock frequency. The network switches operate in a synchronous manner
with the switching per hop taking one cycle. The message streams ons3 ands4 are injected into the
network conservatively so that a new audio sample will not be processedby the filters until the previous
sample has been handled by theSumprocess. This implies that the audio samples are not processed in
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Figure 7: The Equalizer Mapped on A NoC

a pipeline fashion in the network. In addition, we inject background trafficwith uniformly distributed
random destinations in the network. The motivation is to load the network with reasonable amount of
traffic since the equalizer example can only make use of a small fraction of thenetwork capacity. Fig.
7b shows the equalizer performance, where the network load is the average percentage of active links
per cycle. The process computations are function calls and complete instantly. We observe the average
delay that is the time (in cycles) to process one sample. Since the audio processing is not pipelined, the
throughput (samples/cycle) is simply the inverse of the average delay. In Fig. 7b, the first row shows
the case where there is no background traffic. As expected, when the network is increasingly loaded,
the average delay is increased and the throughput decreased. The average delay can be seen as the time
to respond to a button press or to activate bass control. We noted that the audio output sequences are
different from those observed from the specification due to relaxing thesynchronization for the feedback
loops. We conducted other experiments in which we removed the feedback loops, and could validate that
the output sequences agree with each other in all traffic setting cases.

7 Conclusions and Future Work

Communication refinement is a crucial step in a NoC design flow. We have presented a refinement ap-
proach that enables us to map a perfectly synchronous communication modelonto the NoC best-effort
service accessible through communication primitives. Particularly we classifythe synchronization prop-
erties of processes and describe methods to achieve synchronization consistency during the refinement
upon the violation of the perfect synchrony hypothesis. For feedbackloops, we relax the synchroniza-
tion with the tolerance of system requirements. In this paper we use Nostrum as our target, but with few
adjustments, the approach should be applicable for other NoC platforms as well.

In future work, we plan to realize automatically analyzing the synchronizationproperties of pro-
cesses, and then during refinement, we take either automatic analysis that yields correct synchronization
and system behavior, or manual analysis with manual design decisions on the synchronization refinement
combined with a systematic verification of the resulting implementation. For the refinement of feedback
loops, we intend to use Nostrum GB service to achieve a systematic solution. Moreover, we will consider
optimization of the communication refinement for performance enhancement.



ACKNOWLEDGEMENTS

The work reported in this paper was supported by the Swedish government within the SOCWARE pro-
gram.

References

[BCCSV03] A. Benveniste, L. Carloni, P. Caspi, and A. Sangiovanni-Vincentelli. Heterogeneous reactive systems modeling
and correct-by-construction deployment. InProceedings of the Third International Conference on Embedded
Software, 2003.

[BCG00] A. Benveniste, B. Caillaud, and P. Le Guernic. Compositionality indataflow synchronous languages: specifica-
tion and distributed code generation.Information and Computation, 163:125–171, 2000.

[BKK +00] J.-Y. Brunel, W.M. Kruijtzer, H.J.H.N. Kenter, F. Petrot, L. Pasquier, E.A. de Kock, and W.J.M. Smits. COSY
communication IP’s. InProceedings of the 37th Design Automation Conference, Los Angeles, California, June
2000.

[CCGM03] Marcello Coppola, Stephane Curaba, Miltos Grammatikakis, and Giuseppe Maruccia. IPSIM: SystemC 3.0
enhancements for communication refinement. InProceedings of Design Automation and Test in Europe, 2003.

[CMSV01] Luca P. Carloni, Kenneth L. McMillan, and Alberto L. Sangiovanni-Vincentelli. Theory of latency-insensitive
design.IEEE Transactions on Computer-Aided Design of Integrated Circuits andSystems, 20(9):18, September
2001.

[DGG02] Rainer Dömer, Daniel D. Gajski, and Andreas Gerstlauer. SpecC methodology for high-level modeling. In
Proceedings of the Ninth IEEE/DATC Electronic Design Processes Workshop, April 2002.

[GTL03] Paul Le Guernic, Jean-Pierre Talpin, and Jean-ChristopheLe Lann. Polychrony for system design.Journal of
Circuits, Systems and Computers, 12(3):261–303, December 2003.

[KM99] P.V. Knudsen and J. Madsen. Integrating communication protocol selection with hardware/software codesign.
IEEE Transactions on Computer-Aided Design of Integrated Circuits andSystems, 18(8):1077 – 1095, 1999.

[LP95] Edward A. Lee and Thomas M. Parks. Dataflow process networks. Proceedings of the IEEE, 1995.

[LSdJ+00] C.K. Lennard, P. Schaumont, G. de Jong, A. Haverinen, and P.Hardee. Standards for system-level design:
practical reality or solution in search of a question? InProceedings of Design Automation and Test in Europe,
March 2000.

[LSJ02] Zhonghai Lu, Ingo Sander, and Axel Jantsch. A case study of hardware and software synthesis in ForSyDe. In
Proceedings of the 15th International Symposium on System Synthesis, October 2002.

[LSvdWD01] Paul Lieverse, Todor Stefanov, Pieter van der Wolf, and Ed Depretter. System level design with SPADE: an
M-JPEG case study. InProceedings of the IEEE/ACM International Conference on Computer-Aided Design,
2001.

[MNTJ04] Mikael Millberg, Erland Nilsson, Rikard Thid, and Axel Jantsch. Guaranteed bandwidth using looped containers
in temporally disjoint networks within the Nostrum network on chip. InProceedings of the Design Automation
and Test Europe Conference (DATE), 2004.

[NMÖJ03] Erland Nilsson, Mikael Millberg, Johnny Öberg, and Axel Jantsch. Load distribution with the proximity con-
gestion awareness in a network on chip. InProceedings of the Design Automation and Test Europe (DATE),
pages 1126–1127, 2003.

[TMJ03] Rikard Thid, Mikael Millberg, and Axel Jantsch. Evaluating NoCcommunication backbones with simulation.
In Proceedings of the IEEE NorChip Conference, 2003.

[YNL +01] Sungjoo Yoo, Gabriela Nicolescu, Damien Lyonnard, Amer Baghdadi, and Ahmed A. Jerraya. A generic wrap-
per architecture for multi-processor SoC cosimulation and design. InProceedings of the Ninth International
Symposium on Hardware/Software Codesign, Copenhagen, Denmark, 2001.


