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ABSTRACT Connecting smart industrial components to computer networks revolutionizes business opera-
tions. However, in the Industrial Internet of Things (IIoT), the sharing of data has bandwidth, computational,
and privacy issues. Researchers presented cloud computing and fine-grained access control to overcome
these challenges. However, traditional centralized computing systems involve single points of failure. To
mitigate these challenges, we have proposed a secure and incentive-based data-sharing framework for
IIoT systems using blockchain technology. We leverage blockchain due to its ability to provide secure
and tamper-resistant data storage and sharing as participants store their data on a distributed ledger (DL),
preventing unauthorized access. A security protocol is designed that utilizes the properties of elliptic curve
cryptography (ECC). Moreover, Shapley value is employed to calculate revenue and distribute it fairly.
To perform the formal security evaluation, we have conducted extensive simulations using the Automated
Validation of Internet Security Protocols and Applications (AVISPA) and Scyther protocol simulation tools,
which demonstrated that our protocol is robust against various adversarial attacks. The experimental results
show that the proposed incentive distribution framework demonstrated fairness in the distribution of revenue
among participants.

INDEX TERMS Data Sharing, Game Theory, Profit Distribution, Elliptic Curve, Industrial IoT

I. INTRODUCTION

THE IIoT is a complicated system made up of inter-
connected smart industrial components and computer

platforms [1]. The goal of IIoT is to monitor industrial pro-
cesses to improve overall system performance. In an indus-
trial setting, a significant number of devices, such as sensors
and actuators, generate a large volume of data [2] that is
used for better decision-making and to maintain productivity
and improve efficiency within the industry. Thus, the het-
erogeneous nature of data from various sources is frequently
offloaded to the cloud for analysis purposes. To share data
with users, the traditional framework faces some challenges,
such as bandwidth or computational overheads leading to
inaccurate analysis, resulting in poor decision-making and
economic losses as well as the efficiency of the system [3].

Moreover, there may be a threat to data in terms of privacy
preservation due to unauthorized access. Different methods
have been used to mitigate privacy and security threats [4], in
which either the sender has to use security protocols to secure
the data transmission or leaves no choice for the receiver to
trust the data [5] [6]. Though some existing schemes resolve
some issues, there is still a threat posed by participants in the
sharing system regarding trusted and accurate data sharing
[7]. To address privacy concerns, many researchers presented
various solutions comprised of different techniques, but many
emphasized the use of a cloud computing environment to
create platforms to share data in a secure way on customer
demand [8] [9]. Various security models, such as deploying
fine-grained access control mechanisms, have been proposed
to ensure secure data storage in a cloud environment [10].
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Cloud computing is a centralized environment, and all the
data resides at a single point for storage and processing.
Traditional centralized data-sharing systems have a single
point of failure and raise grave privacy concerns. Hence, these
challenges require a secure and trustworthy platform that
provides data security and privacy protection and prevents
attackers from acquiring and disclosing information about the
data or system participants. Recent research trends [11] [12]
[13] show that blockchains provide reliable security to data
storage and sharing that significantly reduces privacy threats
during data sharing by controlling unauthorized access to data
via access control measures [14]. Overall, blockchain inte-
gration in IIoT enhances data security and provides identity
verification for the participants [15]. A fair incentive distribu-
tion mechanism is important for a collaborative environment
that prevents manipulation of data sharing for individual gain.
Similarly, Maintaining data privacy in collaborative settings
requires controlling access rights to secure individual data.

Our objective is to evaluate how blockchain technology
might enhance IIoT systems, focusing on data sharing. The
decentralized and tamper-proof nature of blockchain technol-
ogy helps to achieve trust and consensus for resource sharing
among the participants. The security features of blockchain
such as precisely recording the transactions on the distributed
ledger (DL) create a trusted environment that meets the need
for a data-sharing framework. A consortium blockchain helps
to control data access using an access control mechanism. It
manages user’s identities to limit unauthorized access to data
so that shared data is only visible to authorized participants
of the system. So, to increase data availability by preserving
privacy blockchain provides an efficient solution.

In addition, to guarantee the delivery of accurate and trust-
worthy data an incentive distribution mechanism is needed
that fairly distributes incentives among data providers. For
this purpose, in our research, we show that Shapley value
estimates the contribution of each participant of the con-
sortium and achieves fairness during incentive distribution
based on provided data. Thus, we proposed a consortium
blockchain-based incentive distribution framework for secure
data sharing that uses the game theoretic approach Shapley
value to solve the consortium incentive distribution problems.

Our secure framework integrates blockchain and Shapley
value to design a collaborative environment to exchange data
between different participants of the system. Our study ad-
dresses two main issues in industrial data-sharing systems.
First, an attacker may obtain and misuse data. A trustwor-
thy platform that guarantees privacy and prevents attackers
from accessing and modifying data is essential. Equal profit
distribution among data suppliers is a second concern when
sharing data with consumers [16]. This research provides a
safe, incentive-based IIoT distribution mechanism that uses
blockchain to store data providers’ data on a secure DL that
limits unauthorized access. We also employed HMAC and
ECDHhashingmethods to prevent unauthorized transmission
of data between parties.

We have summarized our contributions as follows:

• We propose an efficient and anonymous authentication
framework for data-sharing system participants that uti-
lizes HMAC and ECC for anonymity and integrity. It re-
sists impersonation, replay, and secret disclosure attacks.
In addition, it secures participant data transmission and
protects from unauthorized access.

• We used permission blockchain to develop an efficient
ecosystem that provides a resources-sharing platform
to ensure consensus and trust among the participants.
It guarantees the visibility of data to the authorized
participants and protects the privacy of sensitive data.

• We have developed an incentive distribution framework
based on the Shapley value [17] for data sharing among
multiple participants. We consider the collaboration of
participants and develop the revenue distribution model.

• We have conducted extensive simulations to verify
the performance of the proposed incentive distribution
framework against the factors that affect the distribution
of revenue among the participants.

The remaining paper is as follows: II presents a summary
of existing work, III describes the preliminaries, IV describes
problem formulation, in V and VI proposed methodology is
presented, VII and VIII described the performance evaluation
and conclusion of the paper, respectively.

II. REVIEW OF RELATED LITERATURE
In this section, we have briefly described the existing work in
two sections and summarized in Table 1.

A. SECURITY PROTOCOLS FOR SECURE DATA SHARING
There are various solutions proposed to address the security
challenges by using blockchain technology, papers [18] pro-
pose an authentication protocol for cross-domain IoT device
interaction using Merkle tree structure to store sensitive in-
formation. Similarly in [19] author proposes an authentica-
tion protocol for secure cross-domain data exchange in IIoT.
However, this paper does not provide a potential solution to
incorporate the large number of IIoT devices. To solve the
scalability and security problems in cross-domain networks
various blockchain-based frameworks are proposed in [20]
[21] [22] [23]. In [20] Wang et al. proposed a scheme that
addresses efficiency and security challenges in cross-domain
IIoT by using edge servers to assist smart devices in achieving
cross-domain authentication, while the lightweight message
authentication algorithm guarantees message security with
low computational overhead. In [24] the author presented a
lightweight authentication protocol based on ECC for fault-
tolerant wireless sensor networks. It provides secure com-
munication between resource-constrained devices for data
sharing. Though it provides the minimum trade-off between
communication and computation complexities, it does not
consider the load balancing and adversarial attack scenario.
In [25] author proposes a security framework for IIoT that
leverages ECC, hashing, bitwise XOR operation, and PUF to
protect the system against physical attacks and address the
challenges of resource-constrained IIoT environment. Saleem
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et al. [26] used hashing, the PUF condition, and bitwise
operations to construct a vehicular network data security
protocol. Although computationally inadequate, it protects
the confidentiality of personal data. Wang et al. proposed an
IIoT privacy solution in [27]. This framework uses blockchain
technology to record transactions securely and safeguard sen-
sitive data during transmission. In [28], the author proposed
a key aggregate searchable encryption (KASE) data-sharing
technique for fog-enabled IoT environments. It preserves
data confidentiality, integrity, and availability while allowing
authorized users to communicate data in a secure setting
[29] [30]. Yi et al. [31] developed an authentication mech-
anism for wireless sensor networks (WSNs) in IIoT to secure
data. However, IIoT systems need scalability, usability, and
computational overhead. The authors created a blockchain-
based data-sharing approach in [32] and [33] to solve security
and privacy issues with decentralized data. Zero-knowledge
proofs isolate data providers from their shared data to avoid
data tampering. Tanveer et al. introduced a lightweight and
efficient authentication protocol for IIoT in [34] to solve
security problems such as limited resources and rapid authen-
tication processes [35].

The motivation behind this research is to enhance the
security of data-sharing systems in IIoT which can be im-
plemented in two ways such as actual and simulation-based
implementation. To secure the underlying system three differ-
ent types of cryptographic methods can be used: symmetric
encryption, asymmetric encryption, and hybrid encryption
which uses both symmetric and asymmetric encryption tech-
niques. Among these techniques, ECC provides promising
security solutions for resource-constrained devices due to its
characteristics of efficient use of bandwidth and computation.
These properties make ECC suitable for IIoT devices with
minimal processing power and communication.

B. INCENTIVE DISTRIBUTION MECHANISMS
Zhang et al. [36] presented a smart contract-based quality-
driven incentive system for secure data exchange across IoT
devices. Blockchain verifies data integrity, while smart con-
tracts apply the incentive system. Mai et al. [37] introduced
a federated learning auction technique. Data owners offer
their data and processing resources to users via a double-
auctionmethod. The proposed approach balances data owners
and consumers while maintaining dependability and effec-
tiveness. Chen et al. [38] developed COMSA to tackle profit
distribution concerns in micro-edge computing and ensure
users get high-quality end-to-end service. In [39], [40], the
author’s strategy considers spectrum allocation and data rout-
ing for best service quality, but it does not address possible
security and privacy issues during the double auction [41] [42]
[43]. Kang et al. [44] address the challenges of privacy and
data correctness in the domain of the healthcare metaverse.
The author aims to provide an efficient solution to counter
the privacy issue using a decentralized model. In addition,
it promotes active user participation and collaboration by
incentivizing the process that encourages the data owners to

provide truthful data.
Our main contribution to this research domain is to de-

velop a fair incentive distribution mechanism using Shap-
ley value that fairly distributes the profit among the data
owner. There are some solutions already been proposed using
Shapley value for different industries. S. Li et al. [45] and
Yang et al. [46] provide a solution to distribute profit fairly
to improve supply chain management. Similarly, in other
domains, research incorporated Shapley value to improve the
performance of the system. Dang et al. improve the accuracy
and collaboration using Shapley value by incentivizing co-
operation among the clients [47]. Chai et al. [48] proposed
a Shapley value-based computation offloading framework in
edge computing.

III. PRELIMINARIES
A. ELLIPTIC CURVE
Suppose a large prime number p > 3 that defines the finite
field Fq and 4a3 + 27b2 ̸= 0 only if a group of points
a, b ∈ Fp, ECp is the elliptic curve that satisfies these points
on curve ECp(a, b) : y2 = x3 + ax + bmod P. Our technique
is based on the one-way Elliptic Curve Discrete Logarithm
Problem (ECDLP), which is hard to compute. Understanding
the cyclic group and its features helps create Discrete Log-
arithm Problems (DLPs). G is cyclic if G ⇔ ∃ α ∈ G and
ord(α) = |G|. α has the same cardinality as the basic ele-
ment group G. The DLP requires cyclic groups with closure,
associativity, identity, and inverse. DLP in a cyclic group G
to find x such as αx ≡ β mod p.

B. ECDLP
In a cryptosystem, the finite groups or cyclic groups play
an essential role in building the structure that is considered
during the construction of any system. To define DLPs more
precisely, we first need to understand the cyclic group and its
properties. A G group is cyclic, G ⇔ ∃ α ∈ G, such that
ord(α) = |G|. It means that α has the same cardinality as
the group G. A group must satisfy the following properties in
order to use it for constructing the DLPs.

• Closure:A group is closed,∀a, b ∈ G such that a◦b = c.
• Associativity: A group is associative if and only if it

holds (a ◦ b) ◦ c = a ◦ (b ◦ c),∀ a, b, c ∈ G.
• Identity: There exists an element 1 called identity ele-

ment such that a ◦ 1 = 1 ◦ a,∀ a ∈ G.
• Inverse: ∀a ∈ G has an inverse element that exists in that

group, such that a ◦ a−1 = a−1 ◦ a.
After describing the cyclic group properties, it is clear that
one-way functions, the Discrete Logarithm Problem (DLP),
can quickly be evaluated in a cyclic group..

Definition 1.1: Discrete Logarithm Problem: For a finite
cyclic group Z∗

p with the order p − 1 having a primitive
element α ∈ Z∗

p , and another element β ∈ Z∗
p . The DLP

is to determine the element x, such that 1 ⩽ x ⩽ p− 1.

αx ≡ β mod p (1)
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TABLE 1. Summary of Existing Work

Ref Problem Statement Proposed Solution Cryptographic and Incentive Technique Limitation

[18]
Privacy protection in cross-domain
data sharing system

Blockchain-based authentication man-
agement system

UtilizedMerkle tree structure to store sensitive
information

Requires high computational cost

[19]
Security and privacy protection dur-
ing data transmission in IIoT

Authentication protocol to ensure mes-
sage authenticity and privacy protection

Utilized hashing, Chebyshev polynomial op-
erations and bitwise-XOR

Does not support untraceability and
unlinkability

[20]
Efficiency and security challenges
in IIoT

Lightweight message authentication
framework for edge nodes in IIoT

Utilized ECC and hash function Does not provide robust protection
against advanced attacks

[21]
Critical security vulnerabilities in
centralized system

Hyperledger based framework to en-
hance security

Utilized NuCypher threshold re-encryption
mechanism

It has high communication overhead

[22]
To address the challenge of sensitive
data privacy in IIoT

Permissioned blockchain based frame-
work to protect the privacy

Bilinear Pairing and computational Diffi-
Helman Problem

Does not support scalability and mu-
tual authentication

[23]
Security challenges in resource-
constrained devices in IIoT

Symmetric key based authentication
framework for key agreement

Utilized hash functions and XOR operations Does not provide security against
traceability and unlinkability attacks

[24]
Communication and computational
complexities for secure data sharing

Lightweight authentication framework Utilized ECDH and ECC Does not provide scalability and adapt-
ability

[25]
Eliminate the security threats to pro-
vide anonymity and untraceability

Provable secure authentication frame-
work in IIoT

Utilized PUF, bitwise XOR, and ECC Does not support interoperability

[26]
Focus on reducing computational
overhead and privacy protection

Physically secure key agreement proto-
col in Ad-networks

PUF, hash functions, and fuzzy extractor Lack scalability feature, does not sup-
port unlinkability

[27]
To securely share the private infor-
mation in smart factories

Blockchain-based security solution for
privacy protection in IIoT

Intelligent Elliptic Curve Digital Signature
(IECDSA)

Does not support forward secrecy and
length extension attack

[28]
To protect the data sharing process
from adversarial attacks

Blockchain-based key-aggregation
scheme for data communication

Utilized bilinear pairing Require high computational cost, does
not support unlinkability

[29]
Protect communication of sensitive
information against security threats

Three-factor based secure and anony-
mous authentication protocol for WSN

Utilized PUF and hashing Does not support unlinkability and
traceability

[30]
Ensures the data privacy from expo-
sure during cloud storage

Efficient authentication protocol for IIoT
based WSN

Utilized PUF and Bloom filter Does not support scalability require
high computational resource

Incentive Distribution Techniques

[36]
Sharing of quality data among IoT
devices for social welfare

A blockchain-based incentive driven data
sharing scheme

Stackelberg game theoretic approach Lack of fairness in incentive distribu-
tion

[37]
Integration of AIoT and FL to ad-
dress the privacy issues

A iterative double-auction (IDA) mecha-
nism to maximize social welfare

Reinforcement learning based double auction
mechanism

Lack of fairness and require computa-
tional overhead

[38]
To incentives server resources and
ensure the quality of services

End-to-End service auction mechanisms
for edge computing

COMputing Service Auction (COMSA) Does not provide collaboration envi-
ronment

[44]
To address the privacy and data
freshness challenges in healthcare
metaverse

Blockchain-based user-centric incentive
mechanism approach for optimal data
freshness

Age of Information (AoI)-based contract
model under Prospect Theory (PT)

Require trust assessment to share data,
does not support data exchange secu-
rity

[45]
To allow Pareto improvements in
supply chain members for collabo-
ration

Blockchain-based three-level collabora-
tive framework for supply chain

Shapley value Require secure environment for data
exchange, does not support data trust-
worthiness

[46]
To improve the trade-off between
Pareto efficiency and distribution

Federated learning based incentive distri-
bution mechanism

Shapley value and Pareto Optimality Lack of distribution fairness, scalabil-
ity issues

[47]
To achieve high accuracy and im-
prove the efficiency of crowd-
sourced system

Federated learning based enhanced in-
centive mechanism

Shapley value and contract theory Require secure sharing mechanism,
lacks verification of truthful data

Our Contribution: In this paper we proposed a secure collaborative data sharing framework using consortium blockchain technology. To control access to data we proposed an
authentication protocol using ECC and HMAC to preserve the integrity of data and user anonymity. To ensure data truthfulness we employed an incentive distribution mechanism
using the Shapley value that ensures fairness in profit distribution among data providers. In addition, consortium blockchain provides an efficient and secure environment for data
sharing and storing of transactions on the ledger.

Roughly speaking, x must exist because α is a primitive
element that must have the power x that generates the element
of the group. so x is said to be the discrete logarithm of β with
the base of α. It can be denoted as:

x = logαβ mod p (2)

It is tough to compute discrete logarithm problems when sig-
nificant parameters are used. It needs extensive computation
to solve the problem with the different attacks. In practice,
DLP always considers in the cyclic group Z∗

p which is vul-
nerable to Pohling-Hellman attack. The cardinality of Z∗

p with
the large prime number p is p− 1 which is not a prime.

Definition 1.2: Generalized Discrete Logarithm Problem:
For a finite cyclic group (G, ◦) of the order n and a primitive
element α having same order as a G. There is another element
β ∈ G, DLP is to find a integer x, as 1 ⩽ x ⩽ n, such that:

β = α ◦ α ◦ α ◦ ... ◦ α = αx (3)

C. SHAPLEY VALUE
Game theory offers numerous profit distribution decision-
making frameworks, including the Shapley value, which eval-
uates each coalition data provider’s marginal contributions
and equation to calculate participants’ contributions.

φi(N ,w) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)

N !
[w(s ∪ {i} − w(s)]

(4)
The Shapley value helps distribute revenue fairly in col-

laborative atmospheres. Thus, our model uses the Shapley
value to calculate revenue based on estimating resource use,
fairness, and avoiding equalitarianism. To evaluate the perfor-
mance certain requirements must be met as follows:

• Efficiency: The total worth of all participants equals the
total money earned by the grand alliance. In other words,
the sum of each participant’s Shapley value equals the
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group’s overall revenue, as shown by
∑

i∈N φi(w) =
w(N ).

• Symmetry: If two coalition participants i and jmake the
same contribution, then their Shapley values should be
the same s.t., w(S ∪ i) = w(S ∪ j).

• Linearity: If two coalitions have revenue functions v
andw, the gain distribution derived from both coalitions’
worth functions should be equal to the sum of the gain
distributions derived from each worth function individ-
ually, as in φi(v+ w) = φi(v) + φi(w) ∀i ∈ N .

• Null Player: The profit for a player i in a game is zero if
the player’s contribution is zero,w(S∪i) = w(S) ∀i /∈ S.

IV. PROBLEM DEFINITION AND SCOPE
A. SYSTEM MODEL
As shown in Figure.1, the proposed system model has
participants, including data providers, data consumers, and
blockchain authenticator.

• Blockchain Authenticator (BA): The blockchain au-
thenticator is a critical component of our designed
blockchain-based data-sharing system. It controls sys-
tem communication and initializes when it receives a
request from a user. It registers and authenticates the
participants to restrict data access to authorized entities.

• Data Provider (P): Data providers hold dynamic indus-
trial data. This data may be utilized for market research
and industry monitoring. Data providers give data to
consumers’ requests for incentives.

• Data Consumer(C): Data consumers utilize data to get
insights or make optimal decisions. Data consumers re-
quest and get data from data providers via the blockchain
in return for incentives.

• Smart Contracts: These self-executing, programmable
contracts have coded terms and conditions. They re-
duce transaction costs, boost trust, and eliminate in-
termediaries. Business communication and transaction
platforms use smart contracts. In traditional business
models, payments are made indirectly through multi-
tiermodels. However, in blockchain-based systems, pay-
ments are made directly through smart contracts.
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FIGURE 1. Proposed system Model of Data Sharing System

Registering with the blockchain authority secures partic-
ipant communication. When users register, the blockchain

broadcasts public parameters to the network. Both data
providers and consumers need to register with the blockchain
network to participate in data sharing. Consumers who have
registered can send data requests to providers using the secure
communication channel established by the blockchain.

B. THREAT MODEL
As per the Dolev-Yao [49] and CKadversary [50] threat mod-
els, our securitymodel assumes an adversary capable of active
and passive attacks. This adversary can intercept, modify,
delete, and insert messages between entities. The attacker can
also determine the communicating entities’ long-term private
key for more complex attacks.

C. SECURITY REQUIREMENTS
For secure data transmission, security and privacy procedures
are required. The following are the security requirements that
we consider for our model:

• Authenticity: In a sharing system, participants can ver-
ify the identity of each other as data is shared with the
consumer that may be malicious or legitimate and needs
verification because the unauthorized access is a threat
to the privacy of data. So, we considered this security
requirement while designing the security protocol for the
data-sharing system.

• Impersonation Attack: To impersonate a legitimate
participant, the attacker needs to generate secret keys
used for authentication and verification. However, an
attacker cannot manipulate the communication between
the parties as the intended receiver first verifies the
sender’s authenticity using agreed parameters.

• Replay Attack: In this attack, the attacker pretends to
be a legitimate participant and replaces the message sent
by an actual legitimate party. The attacker reuses the
parameters of the previous session to hijack the current
session. Hence, our proposed protocol provides security
against replay attacks.

• Unlinkability Attack: It is a privacy attack that dis-
closes communication links between system participants
are called unlinkability attacks. An attacker attempts
to disclose the anonymity of communication between
them.

• Traceability Attack: An attempt by an attacker to trace
back the communication flow between the participants
to discover the identities of the communicating partici-
pants.

• DDoS Attack: As we have used blockchain technology,
our protocol is resistant to DDoS attacks due to the
decentralized nature of the network. The attacker may
attack a single gateway that does not pose a threat to sys-
tem performance in the presence of multiple gateways.

• Length Extension Attack: The attacker tries to calcu-
late the hash of the message without knowing the actual
message. The attacker generates the internal state by
using the hash value. HMAC is resistant to this attack by
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truncating the hash value with SHA256/512. Hence, Our
protocol prevents the system from this type of attack.

TABLE 2. Notations used in the proposed framework

Notations Description
ECP Elliptic Curve of prime order
α Primitive element
BA Blockchain Authenticator
Pi, Ci Data provider and consumer i, respectively
ka, kp Secret keys associated with BA and P
PKa,PKp Public keys of BA and P
P̂i, Ĉi Assigned IDs to Pi and Ci, respectively by BA
RE i Data request from Ci
SKap,SKac Shared secret keys of P and C with BA, respectively
ma,ma1 Messages initiated by BA
mc,mc1 Messages initiated by C
mp Message initiated by P
Ra, Rc, Rp Random numbers of BA, C, and P , respectively
ζi Transaction ID of Ci
Ti Access Token generated for Ci
ATPi , ATCi Encrypted Tokens to P and C, respectively from BA
S Coalition of Pi

Fj Data value factors
VPi Data value held by Pi

w(S) Worth function generated by S
MPi Marginal contribution of Pi

ϕ(P i, S) Shapley value for P i ⊆ S
ℜPi Allocated revenue to each player

V. DESCRIPTION OF THE PROPOSED SECURITY
FRAMEWORK
In this section, we have briefly described our security mech-
anism for data-sharing systems.

Let P = {P1,P2,P3, ...Pi} represent the set of data
providers, and C = {C1, C2, C3, ...Ci} represent the set of data
consumers. BothPi and Ci can participate in data sharing after
registering. Our protocol comprises two phases as follows:

A. REGISTRATION PHASE
Pi registers with BA during this phase by sending a regis-
tration request. When BA receives Pi’s request, it generates
registration parameters. BA selects the secret key ka ∈ Z∗

p and
calculates public key PKa = ka. α, assigns new ID ( P̂i) to
Pi, such that Pi ̸= P̂i, and hashes it along with PKa and T .

ma = H(PKa ∥ P̂i ∥ T ) (5)

BA sends (ma, PKa, ECP, α) toPi to complete the registra-
tion process. When P receives the parameters, it first verifies
the message ma by computing a hash and comparing it with a
received message (ma = m

′

a) under the assumption that H(.)
is publicly known.

m
′

a = H(PKa ∥ P̂i ∥ T ) (6)

Now, Pi chooses the secret key kp ∈ Z∗
P and computes

its public key PKp = kp. α transmits PKp to BA in order to
compute the shared secret between BA and P . In addition,
when BA receives PKp from P , it computes the shared secret.

SKap = kp. PKa (7)

SKap = ka. PKp (8)

Both Pi and BA now have the same secret (SKap) computed
in Equations 7 and 8. When BA shares the secret key (SKap)
with P , it becomes eligible to join the blockchain network.

Algorithm 1: Registration Phase
Input : Data provider Pi, Authority BA
Output: Registered Pi, Shared secret SKap

Pi initiates registration by sending a request to BA;
BA generates registration parameters:;

- Selects secret key ka ∈ Z∗
p ;

- Computes public key PKa = ka · α;
- Assigns a new unique ID P̂i to Pi;
- Hashes P̂i along with PKa and T to compute ma

as: ma = H(PKa ∥ P̂i ∥ T );
BA sends (ma, PKa, ECP, α) to Pi to complete the
registration;
Pi verifies the received message by computing m

′

a:;
m

′

a = H(PKa ∥ P̂i ∥ T );
if ma = m

′

a then
Pi selects secret key kp ∈ Z∗

P and computes its
public key PKp = kp · α;
Pi transmits PKp to BA for shared secret
computation;
BA computes the shared secret SKap as follows:;

SKap = kp · PKa;
SKap = ka · PKp;

Pi and BA now possess the same secret SKap;
Upon sharing SKap with Pi, it becomes eligible to
join the blockchain network;

end if
else

Registration failed; abort the process;

end if

B. AUTHENTICATION PHASE
Ci must register with BA to obtain a data access token (AT )
to access the data from Pi. Now Ci → (RE , θ

Pi) → BA.
After receiving RE , BA checks to see if Ci already exists in
the DL, if this is the case, BA will end the process. Otherwise,
BA generates a random number or nonce Na and SKac.

SKac = H(Ĉi ∥Na ∥ ka) (9)

Secret key ka ∋ BA and is utilized to compute the shared
secret key SKac with Ci. BA encrypts the requested C’s ID (Ĉi),
RE , and T with SKac and stores this encrypted message as
transaction ID (ζi) on the blockchain ledger for verification.

ζi = ESKac(Ĉi ∥ RE ∥ T ) (10)
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Data Provider (P)

If not exists: 
calculates 

𝑆𝐾𝑎𝑐 = 𝐻(C𝑖 ∥𝑁𝑎 ∥ 𝑘𝑎)  
 

𝜁𝑖 = 𝐸𝑆𝐾𝑎𝑐 (C𝑖 ∥ RE ∥ 𝑇) 
  :stored on ledger

{𝜁𝑖, 𝑆𝐾𝑎𝑐}

Generate: 𝑅𝑐 
𝑚𝑐= E𝑆𝐾𝑎𝑐 (𝜁𝑖 ∥ 𝑅𝑐) 

Generate: 𝑅𝑝 
𝑚p =

𝐻𝑀𝐴𝐶(𝑅𝑝∥𝑅𝑐∥𝑚𝑐,
𝑆𝐾𝑎𝑝)

{𝑅𝑐, 𝑚𝑐}

𝑚′𝑝 = 𝐻𝑀𝐴𝐶(𝑅𝑝∥𝑅𝑐∥𝑚𝑐, 𝑆𝐾𝑎𝑝) 
check:  

𝑚𝑝 ≠ 𝑚′𝑝 : Terminated 
otherwise 

𝑚𝑐 = D𝑆𝐾𝑎𝑐 (𝜁𝑖 ∥ 𝑅𝑐) 
check: if 

𝜁𝑖𝑠𝑡𝑜𝑟𝑒𝑑 = 𝜁𝑖𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 

Generates: 𝑅𝑎  

𝑚𝑎1 = 𝐻𝑀𝐴𝐶(𝑅𝑎∥𝑅𝑐∥𝜁𝑖, 𝑆𝐾𝑎𝑝)

(4)  (𝑚𝑝, 𝑅𝑝, 𝑅𝑐, 𝑚𝑐)

𝑚′𝑎1 = 𝐻𝑀𝐴𝐶(𝑅𝑎∥ 𝑅𝑐∥ 𝜁𝑖,
𝑆𝐾𝑎𝑐)
Verify:  

(𝑚𝑎1 = 𝑚′𝑎1) 
𝑚𝑐1 = 𝐻𝑀𝐴𝐶(𝑅𝑎, 𝑆𝐾𝑎𝑐)

𝑚′𝑐1 = 𝐻𝑀𝐴𝐶(𝑅𝑎, 𝑆𝐾𝑎𝑐) 
if (𝑚𝑐1 = 𝑚′𝑐1)

Token creation: 
𝐴𝑇C𝑖 = 𝐸𝑆𝐾𝑎𝑐 (T𝑖∥ 𝑇 ∥ 𝑅𝑐)

𝐴𝑇P𝑖 = 𝐸𝑆𝐾𝑎𝑝 (T𝑖∥ 𝑇 ∥ 𝑅𝑝)

(5)  {𝑚𝑎1}

𝐴𝑇C𝑖𝐴𝑇P𝑖

Data Request 
𝐴𝑇C𝑖

verify 
(access granted)

𝐴𝑇C𝑖

Received 
& 

Stored

(1)

(2)

Registration Request 
(ID,RE)

(3)

(6)  {𝑚𝑐1}

(7)(8)

(9)

Blockchain Authenticator(BA) Data Consumer (C)

FIGURE 2. Authentication and Token Generation Phase

Now, ζi and SKac are shared with Ci via a secure connection
to begin the process of obtaining the token. C encrypts mc =
ESKac(ζi ∥Rc) and sends this messagemc toPi. After receiving
the message mc from Ci, it generates Rp and then uses SKap to
calculate the HMAC of the message.

mp = HMAC(Rp∥Rc∥mc, SKap) (11)

Pi : mp,Rp,Rc,mc → BA, if BA : mp ≡ m
′

p. Then BA
verifies ζi by decryptingmc : Kac and comparing it to ζi stored
in DL. If ζstoredi = ζreceivedi , the loop continues.

m′
p = HMAC(Rp∥Rc∥mc, SKap) (12)

After verifying the Transaction ID (ζi),BA computesma1 =
HMAC(Ra∥Rc∥ζi, SKap) sends ma1 → Ci. ζi represents the
transaction ID associated with Ci’s request. When ma1 is
received, Ci verifies ma1 ≡ m

′

a1 = HMAC(Ra∥ Rc∥ ζi, SKac)
If yes, then Ci uses SKac to determinemc1 = HMAC(Ra, SKac)
of received Ra and sends mc1 → BA. BA verifies mc1

?
=:

m
′

c1 = HMAC(Ra, SKac) after receiving it from Ci. If mc1 ≡
m

′

c1, BA produces token Ti, T , encrypts with SKac → Ci. Also,
compute it for Pi encrypts with SKap.

ATCi = ESKac(Ti∥ T ∥ Rc) (13)

ATPi = ESKap(Ti∥ T ∥ Rp) (14)

Algorithm 2: Authentication and Token Generation
Phase
Input : Data consumer Ci, Authority BA
Output: Data access token ATCi , Data access token

ATPi

Ci initiates registration with BA for obtaining a data
access token (AT ) to access data from Pi;
BA checks the existence of Ci in the DL;
if Ci does not exist in the DL then

BA generates a nonce Na and a secret key SKac;
SKac = H(Ĉi ∥Na ∥ ka);
ζi = ESKac(Ĉi ∥ RE ∥ T );
Ci receives ζi and SKac via a secure connection;
Ci encrypts mc = ESKac(ζi ∥ Rc) and sends it to Pi;
Pi receives mc from Ci and computes
mp = HMAC(Rp∥Rc∥mc, SKap);
Pi : mp,Rp,Rc,mc → BA;
if BA verifies mp ≡ m

′

p then
BA decrypts mc using SKac to obtain ζi;
if ζstoredi = ζreceivedi then

BA computes
ma1 = HMAC(Ra∥Rc∥ζi, SKap) and
sends ma1 to Ci;
Ci verifies
ma1 ≡ m

′

a1 = HMAC(Ra∥Rc∥ζi, SKac);
if ma1 ≡ m

′

a1 then
Ci computes mc1 = HMAC(Ra, SKac)
and sends mc1 to BA;
BA verifies
mc1 ≡ m

′

c1 = HMAC(Ra, SKac);
if mc1 ≡ m

′

c1 then
BA generates token Ti and encrypts
it with SKac → Ci;
Pi encrypts Ti, T , and Rp with
SKap;
ATCi = ESKac(Ti ∥ T ∥ Rc);
ATPi = ESKap(Ti ∥ T ∥ Rp);

end if

end if

end if

end if

end if

VI. PROFIT AND REVENUE ASSESSMENT STRATEGIES
A. PROFITABILITY FRAMEWORK
Let C = {Ci | i = 1, . . . , C} be the set data consumers
submits the request RE = {rj | j = 1, . . . ,R} to data
providers P = {Pi | i = 1, . . . ,P} such that Ci = rj
and rj = (d ,ijt,ATCi) → Pi. Then, P form a coalition S as,
Pi ⊕ S ⊆ P ∧ |S| ≤ |P|. dij is the requested data type and
t is the life span. Each Pi ⊆ S ⇐⇒ dAi

ij , here Ai data
held by Pi ∈ P . Let A be a set of data characteristics such
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that Pi = Ai. Then Pi is with A = {a1, a2, . . . , an}, where
an is data held by Pi number of attributes. We can determine
the value of data by defining data uniqueness, quantity, and
quality. By aggregating these factors we can define data value.

1) Uniqueness (U)
Lets UPi is data uniqueness held by Pi and we can define a
function that quantifies UPi = f (cp, danp , cr) where cp, danp ,
and cr are frequency of occurrence, distinct attribute of data,
and alignment of data with existing data, respectively. If the
value of f is high such as, f (cp, danp , cr) ⇐⇒ dp, danp >
cp ∧ cr = 1, then UPi :

UPi = β · cp − γ · danp + δ ·
n∑

i=1

·cir (15)

Here, β, γ and δ are weighting factors that define the
relative importance of cp, dp, and cr respectively. β ·cp denotes
the frequency of occurrence which mean if cp > danp thenUPi

decreases because data is more prevalent. However, −γ · danp
indicates that if its increase offsets the value of cp. This trade-
off recognizes that uniqueness is not exclusively defined by
cp or danp but by their relative significance and balance.

2) Data Quality (Qi)
The quality of data held by Pi depends on its dimensions
such as accuracy (Â), life span (t), validity (v), and uniqueness
(UPi ). Â ∈ [0, 1] is accuracy score for dij such that 0 ≤ Â ≤ 1.
Similarly, we can determine the life span or timeliness of data
by mapping the time difference ∆t . Suppose, t is the total
score, then the linear mapping is:

t = g(∆t) = 1− (
∆t
T

) (16)

Here, T represents the maximum acceptable threshold of
∆t . If the value of g(∆t) ≃ T means smaller the ∆t ,
therefore, greater the t . If g(∆t) > T then dij has low t . For
example, we have doij having the ∆t = 12h and we have set
T = 24h. Now the value of t = 1 − 12

24 = 1 − 0.5 = 0.5,
which means that the dij has 50% by considering T 24 hours.
By aggregating the values F = UPi+Â+ t+υ, we can define
the Qi as:

Qi =

n∑
i=1

m∑
j=1

wi · Fj ∀i, j = 1, 2, 3....n (17)

Here,wi denotes the relative importance of each dimension
for an overall assessment of data quality. Now we can calcu-
late data value VPi held by Pi by aggregating these factors.

VPi = ρ ·
P∑
i=1

(UPi +Qi + υ) (18)

The value ρ is defined based on importance of dij by Pi
based Ci preferences. So, SVPi

⊆ P generates w(S):

w(S) =
n∑
i∈S
VPi(S) (19)

B. REVENUE ESTIMATION METHODOLOGY
After determining the worth function w(S) for coalition S,
we can calculate the incentive of each Pi ∈ S upon joining
the coalition S. For each Pi its marginal contribution mc is
determined for all possible permutations θ. In other words,
MPi is a difference of worth generated by S when Pi joined
or when absent from the S. It can be calculated as:

Mθ(Pi) = w(S ∪ Pi)− w(S) (20)

Wherew(S∪Pi) denotes theworth function of S whenPi ∈
S, and w(S)whenPi /∈ S. The shapely value ϕ(Pi, S),∀Pi ∈
S across θ by averaging Mθ(Pi).

ϕ(Pi, S) = 1

N !

∑
θ∈Θ

Mθ(Pi) (21)

Where N is the total number of players in S, Θ is the
set of all permutations of Pi ∈ S, and Mθ(Pi) represents
the marginal contribution of Pi in a specific permutation θ.
By normalization of ϕ(Pi, S) it ensures that profit is fairly
distributed among Pi ∈ S such as:

ϕ̄(Pi, S) =
ϕ(Pi, S)∑

Pi∈S ϕ(Pi, S)
(22)

Based on ϕ̄(Pi, S) for each Pi we can determine the total
incentive or revenue ℜPi allocated to each player as:

ℜPi = ϕ̄(Pi, S)× w(S) (23)

C. REVENUE DISTRIBUTION AMONG DATA PROVIDES
To determine the contribution of each Pi, then we have to
measure the change in the marginal contribution of data
providers of the coalition. Therefore, to calculate this factor
we measure the performance of the sharing system as that
evaluates the worth function in Equation 4. To measure the
performance, we will use the F1-score as it can evaluate
the performance of the model more efficiently in various
scenarios.
It should be noted that a model with a high F1-score is

considered better in performance. The contribution of data
providers is based on the impact of their shared data conse-
quently affecting revenue.
Here we assume that each Pi ∈ P have the same type of

data in a coalition such that,RE = Di that generates the rev-
enue w(P). The contribution of data providers is considered
as an impact factor assuming that all the data providers share
data with a positive impact on the system for the legality of
Shapley value forPi. We evaluate the F1-score for data shared
by coalition data providers.
The relation between F1-score and Shapley value for a

game (P,w) is described as:

φi(P,w) =
∑
S∈P

w(|S|)F1(S ∪ {i} − F1(S))
F1(P)

(24)
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Equation 24 w(|S|) is the weighted factor as described in
Equation 19,F1(S) shows the F1-score produced by coalition
(S ⊆ P) S of P . So, from above equations we can determine
the fi(P) =

∑
S∈P w(|S|)

F1(S∪{i}−F1(S))
F1(P) is participants i

impact factor to the coalition S. Also the aggregated Shapley
value for participants i can be defined as:

ϕi(P) =
∑
Pi∈P

φi(w) (25)

Above mention equation satisfies the property of efficiency
meaning that the sum of all revenue generated by participants
is equal to the grand coalition as:

φP1
(w)+φP2

(w)+φP3
(w)+ ...+φPi(w) = ϕP(w) (26)

As from Equation 20 we can determine the marginal con-
tribution of participant i. According to this intuition, we can
also calculate the marginal contribution of participants i in
F1-score such as:

∆i(F1, S) = F1(S ∪ {i})− F1(S) (27)

To satisfy Equation 4 we have to normalize the marginal
contribution of participant i to the F1-score.We need to divide
∆i(F1, S) = F1(S ∪ {i}) − F1(S) with F1(P) to hold the
Equation 19, i.e., ϕ(P) = φi(P). Here it is important to men-
tion that F1(P) is the maximum F1-score by the coalition.
fi(P) is the impact factor of participant i that eventually used
to determine the participants percentage contribution to F1-
score. In a considered data-sharing system Pi generates the
revenueφ(P) by sharing data. The Shapley value to distribute
the revenue among the Pi, then the Shapley value for data
providers ϕP =

∑
Pi∈P

φPi is define in this way.

Here we assume that, P is sharing same type of data and
S iP = {P ′ | P ′ ⊆ P/{Pi}} is a set of data providers P
excluding the player Pi. According to the F1-score, we can
define the revenue distribution for a set of players using the
Shapley value:

φPi(P,w) = φiP(P)w(P) (28)

Equation 28 shows that revenue of each participant in a
coalitional game, i.e., φiP = {φ1

P , φ
2
P , ...φ

|P|
P }. So, we can

define φiP for each Pi ∈ P in term of F1-score as follow:

φiP(P) =
∑

P′∈S iP

w(
∣∣∣P ′

∣∣∣)∆Pi(F1,P
′
)

F1(P)
(29)

Normalizing the equation 29 by dividing it with F1(P) to
receive percentage of Pi contribution to F1-score. Moreover,
φiP is not the same for the data providers because of their
contribution. Hence, the aggregated Shapley value shows that
the sum of all contributions is equal to the grand coalition
contribution, i.e., ϕP = wiP(S).

VII. EVALUATION OF SECURITY AND PERFORMANCE
In this section, we performed a security evaluation of our pro-
posed security protocol using formal and informal methods.

Algorithm 3: Data Sharing System Algorithm
Input : Request RE from data consumers
Output: Data block and revenue distribution among

data providers
Initialize blockchain authenticator and data providers;
for each data provider P do

P registers with blockchain authenticator;

end for
for each data consumer C do

C registers with blockchain authenticator and
obtains data access token;
C sends request RE for desired data;
for each data provider P do

if P has data with attributes matching RE then
P publishes attributes of held data and
monetary value;
Coalition S forms with all data providers
having matching data attributes;
if all P in S verify commitment from C
then

Data block is generated;
C pays incentive to access data block;
Revenue is generated and distributed
among P according to their
contribution;

end if

end if

end for

end for

A. FORMAL SECURITY VERIFICATION USING ROR MODEL
This section describes an approach to formally validating the
security of the data access token using the RORmathematical
model proposed by Abdulla et al. [51]. This proposed proto-
col involves three participants:P , C, and BA. Let us denoteP r
and Cs as examples that correspond to r and s, respectively.
The adversary, denoted as A, commences targeted inquiries
as a component of the adversarial activity.
Theorem 1:Assume that the adversaryA intends to obtain

the token AT within a feasible period of time. The adversary’s
advantage AdA is constrained by the following expression
AdA ≤ q2H

|F| + 2AdECDDHA . Here, qH , |F |, and AdECDDH repre-
sent the hash query, the range for the hash function H(·), and
the adversaryA′s advantage in solving the ECDLP problem,
respectively.
Proof: We perform the proof of our proposed protocol to
verify the security of the access token (AT ). To demonstrate
we consider three games such asGi, where i ∈ [0, 2] and event
EAGi which can be described as it can predict the random bit
c and Pr [EAGi ] describe as competitive advantage.
Game (G0): This game is designed to launch a real-time
attack, with the initial selection of bits c being chosen at
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random. Therefore, semantic analysis can be used to derive
insights.

AdA = [2Pr [EAGi ]− 1] (30)

This game is designed to launch a real-time attack, with the
initial selection of bits c being chosen at random. Therefore,
semantic analysis can be used to derive insights.
Game (G1): In this game A intercepts the message that is
being exchanged between participants by running Execute
query. Then it executes the REVEAL and TEST queries to
verify the correctness of AT generated and shared between
P and C. However, the AT is comprised of long secret and
randomnumbers that are not known to the attacker. Therefore,
intercepting the communication will not disclose the AT ,
and eventually, it provides equivalence between G0 and G1

winning probability.

Pr [EAG1
] = Pr [EAG0

] (31)

Game (G2): In this scenario, the attacker formulates an active
attack query by executing a HASH query. As the messages
sent between all participants, P , C, and BA, are either hashed
or encrypted, the attacker is unable to compromise the con-
fidentiality of AT . In addition, the protocol utilizes three
randomized integers, namely Rc, Rp, and Ra, which makes
it impossible for the attacker to determine them because of
the ECDLP. To obtain AT , an attacker must computationally
determine Rc, Rp, and Ra, and then carry out the hash query
to identify a collision. Therefore, G2 is identical to G1 in
terms of winning probability, except for the hash collision.
Therefore, by merging the ECDLPwith the birthday paradox,
the subsequent conditions arise:

Pr [EAG1 ]− Pr [EAG2 ] ≤ AdAECDLP +
(q2H )
2F

(32)

Upon completing all the games,Amust possess the ability
to empirically determine the accuracy of c bits to derive the
inference of AT from it. Based on these facts, we have:

Pr [EAG2
] =

1

2
(33)

from equations (1) (2) and (4), we can obtain

AdA = |2Pr [EAG2 ]− 1| = Pr [EAG1 ]− Pr [EAG2 ] (34)

Thus, this demonstration shows that an attacker will be able
to ascertain the session key in polynomial time.

B. FORMAL VERIFICATION OF SECURITY
Python-integrated Scyther Tool protocol assertions verified
a security protocol. Scyther claims specify protocol secu-
rity as shown in Table 3 including Secret, Nisynch, and
Niagree claims. Our protocol specified consumer, provider,

TABLE 3. Considered claim events for proposed protocol

Security
Claims

Description

Secrecy The information is sent using an untrusted communica-
tion channel, the adversary cannot reveal original infor-
mation. Role executes this event in role specification.

Nisynch This claim (R, Nisynch’, R’) ensures that the message
sent from a sender is received by the intended receiver.

Niagree It is a form of authentication that is based on an agree-
ment between sender and receiver on data exchange that
remains unchanged during the communication.

and authenticator roles utilizing Scyther’s Security Protocol
Description Language (SPDL).
The claim events for which the proposed protocol is ana-

lyzed and its verification result is shown in Figure. 3.

FIGURE 3. Security Analysis results of proposed Protocol

The widely used simulation tool "AVISPA" will be used
to verify the formal security of our proposed protocol. The
protocol is written in High-Level Protocol Specification
Language (HLPSL) for AVISPA. Four models can verify
protocol security: "Constraint Logic-based Attack Searcher
(CLAtSe)," "SAT-based Model Checker (SATMC)," "Tree
Automata based on Automatic Approximations for Analy-
sis of Security Protocol (TA4SP)," and "On-the-Fly Model
Checker (OFMC)." Figure. 4 shows that our proposed proto-
col is safe and resistant to adversarial attacks.

C. INTUITIVE SECURITY ANALYSIS
In this section, our security protocol is evaluated theoretically
against various malicious threats.
Replay Attack: When the ka, kp, and ATPi , ATCi are gener-
ated, bothPi, Ci use predefined parameters. The association of
SKap, SKac andRc,Rp,Ra in the exchange ofmessages between
parties differs for each session. Hence, the session between
parties is prevented from being hijacked.
Secret DisclosureAttack:As token (ATCi ,ATPi ) is encrypted
using (SKap, SKac). An attacker cannot guess the keys gen-
erated by BA. If the attacker managed to trace the partic-
ipants but cannot disclose ATCi ,ATPi as it does not know
the (SKap, SKac). Also, Pi, Ci,BA use these keys to hash the
messages ( mc,mp,ma1, mc1) by generating HMAC.
Unlinkability Attack: In our protocol, each Ci has separate
shared secret with BA to generate Ti for each Ci. If one of
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FIGURE 4. AVISPA Security Analysis results of proposed Protocol

Ci’s Ti is compromised, the other will not be threatened by
this vulnerability. So, our protocol provides security against
this attack by verifying Ti as BA sends (ATPi ,ATCi ) encrypted
with ( SKap,SKac). P first verify the Ti and calculate the T if
verified then grant access to data, otherwise discard the Ti.
Traceability Attack:Given that random numbers Rc,Rp, and
Ra are used during message sharing and that these numbers
are generated new for each session, an adversary cannot
identify a fixed value to link parties. In addition, the adversary
is unable to access any information during the current session
because the parameters for each session are unique.
Authenticity of Message: Using HMAC provides an extra
security layer during communication. Both P and C share
the symmetric i.e, SKap, SKac with BA and send mp =
HMAC(Rp∥Rc∥mc, SKap) andmc1 = HMAC(Ra, SKac) to BA,
respectively. Also, BA sends ma1 = HMAC(Ra∥Rc∥ζi, SKac)
to Pi. If an attacker can capture messages (mp,mc1,ma1)
but can not disclose the information as HMAC is verified
using symmetric keys. Moreover, participants can verify ⇔
HMACSKap

BA ≃ HMACSKac
BA ,∃ ∀Pi ∥ Ci.

DDoS Attack: We have used a blockchain platform instead
of a centralized platform reduces the probability of attack. Pi
and Ci are distributed to BA’s that minimize the attack surface.
An attacker may target a single BA that does not affect the
others. That eliminates the changing secret (SKac, SKap) for
each session and prevents system desynchronization.
Impersonating Attack: The identity of legitimate partici-
pants is forged to use for unauthorized data access. If the
attacker manages to acquire the secret key of Ci during the
registration process. Random numbers (Rc,Ra) are involved
for each message preventing attackers from using the same
key for a future session. Participant can verify message in-
tegrity through nonce, such as SKac = H(Ĉi ∥Na ∥ ka). Also
messages (mc,mp,ma1, mc1) are hashed before it is delivered.
Length Extension Attack: In this attack, an attacker uses the
hash of message M1 e.g., H(message ∥ secret) to reveal the
length of the message and modify it to M

′

1. MD5 or SHA-1

is vulnerable to this attack until the SHA512-256 variant is
proposed that calculates 512-size output and truncates it with
a 256-bit extension. Such as,HMAC(SKap,mp) = H((SKap⊕
opad) ∥ H((SKap ⊕ ipad) ∥ mp)). If the attacker can
know the inner hashed message digest without using secret
key SKap it can not calculate the outer fixed length digest
(SKap ∥ inner − hash).

D. COMPARATIVE PERFORMANCE ANALYSIS
We have assessed the performance of our proposed security
protocol for secure data sharing among system participants in
terms of communication and computational cost. Our anal-
ysis was conducted on a laptop with an 11th Gen Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz 2.70 GHz processor, 12.0
GB RAM, and Windows 11 Home operating system.
To implement our proposed protocol, we have used Py-

Charm 2022.1.2 (Community Edition) and Python crypto-
graphic library called "cryptography" by importing its func-
tions such as "Fernet" (such as: from cryptography.fernet
import Fernet) to use encrypt/decrypt functions. For hashing,
we have used the "hashlib" library and cryptographic function
HMAC of cryptography such as from cryptography.fernet im-
port HMAC. To record the time for cryptographic operations
we have used the python time library.

1) Computational Complexity Analysis
Computational cost refers to the time taken by the protocol
to execute its predefined operations. To evaluate the compu-
tation cost for the registration, authentication, and token gen-
eration process we have calculated the total execution time
required to perform some significant cryptographic primitives
involved during protocol implementation. The computation
time to perform the point multiplication on an elliptic curve
is Tm, one-time hashing and HMAC operations are Th, the
computational time for symmetric and asymmetric encryp-
tion/decryption is Te, and the HMAC verification time is Tv.
In our protocol, there are three point-multiplication func-

tion operations, hashing three times, four times encryp-
tion/decryption, and four-time HMAC generation and verifi-
cation. The data providerPi performs the point multiplication
function (PKa = ka. α) during the initialization of the regis-
tration process. After receiving parameters from BA it calcu-
lates the shared secret (SKap = ka.PKp) and the calculation on
BA is (SKap = kp. PKa). Again these operations are performed
during the registration process of data consumer Ci. During
the authentication and token generation process Pi perform
hashing operation ma = H(PKa ∥ P̂i ∥ T ) to agree on shared
secret with BA, and one operation during authentication phase
such as SKac = H(Ĉi ∥Na ∥ ka). The computational costs for
corresponding operations are Tm = (3 ∗ 0.43) ≈ 0.13ms,
Th = (3 ∗ 0.01) ≈ 0.03ms, Te = (4 ∗ 0.07) ≈ 0.28ms, and
Tv = (4 ∗ 0.01) ≈ 0.04ms. Hence, the total computational
cost of the proposed protocol is Tc = Tm + Th + Te + Tv,
which is Tc = (0.09 + 0.39 + 1.12 + 0.04) ≈ 1.64ms.
The block creation time depends on the frequency of data
requests from the consumers so block verification time is
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TABLE 4. Comparison of Security Features

Security Features [25] [18] [26] [19] [20] [21] [22] [23] [31] [32] Ours
Mutual Authentication ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Forward Secrecy ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓
Resilient to Impersonation Attack ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Resilient to Unlinkability Attack ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✓
Resilient to Traceability Attack ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓
Resilient to Replay Attack ✓ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✓ ✓

Resilient to Secret Disclosure Attack ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓
Resilient to DoS and DDoS ✗ ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✓
Resilient to Length Extension ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓

TABLE 5. Computation Cost Comparison

Ref Platform Total Computational Cost Approx Time
[18] Blockchain 2Th + 5Tm + 4Te + 2Tv 1.92 ms
[19] Non-Blockchain 14Th + 3Tm + 9Te 3.33 ms
[20] Blockchain 8Th + 3Tm + 5Te + 3Tv 2.15 ms
[21] Blockchain 3Th + 7Tm + 6Te + 3Tv 2.80 ms
[22] Non-Blockchain 4Th + 8Tm + 6Te 2.84 ms
[23] Non-Blockchain 9Th + 5Tm + 5Te 2.32 ms
[24] Non-Blockchain 13Th + 2Tm + 8Te 2.89 ms
[31] Non-Blockchain 12Th + 8Tm + 6Te 3.11 ms
[34] Non-Blockchain 5Th + 2Tm + 9Te 2.93 ms
Ours Blockchain 3Th + 3Tm + 4Te + 4Tv 1.64 ms

Constants: Th = 0.03 ms, Tm = 0.13 ms, Te = 0.28 ms, Tv = 0.04 ms

considerably low. Table 5 clearly describes the operations
involved during the registration and authentication phases of
our proposed protocol. It is important to mention here that the
concatenation operations are omitted due to negligible effect
on computation as compared to other operations. From Fig. 5
it is illustrated that our proposed protocol is computationally
efficient by comparing it with [26], [31], and [34] having
the time cost ≈ 1.64ms. In comparison with other protocols,
percentage improvement can be described by calculating the
difference in times of protocols. For [26] our protocol has
46.24%, with [31] it has 83.23%, and with [34] it has 65.23%
less computational costs.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Approx Time (ms)

[18]

[19]

[20]

[22]

[24]

[25]

[26]

[31]

[34]

[Ours]

Pr
ot

oc
ol

s

1.92 ms

3.33 ms

2.15 ms

2.80 ms

2.84 ms

2.32 ms

2.89 ms

3.11 ms

2.93 ms

1.64 ms
Average Time

FIGURE 5. Computational cost comparison

2) Communication Overhead Analysis
We assumed the parameters to carry out secure communica-
tion among the system’s participants to evaluate the commu-
nication cost for our proposed protocol. The cost of commu-

Our Protocol [18] [19] [20] [22] [23] [24] [25] [26] [31] [34]
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FIGURE 6. Communication cost comparison

nication refers to the bits utilized to send messages among
participants throughout the registration and authentication
phases. As a result, communication overhead is obtained
from the exchange of messages among participants. Certain
assumptions are taken into account to help with the evaluation
process. We assume that the consumer identity is 32 bits long,
the timestamp is 8 bits long, the random number is 128 bits
long, the elliptic curve point or hash function (SHA-256) is
256 bits long, and the ciphertext generated by the encryp-
tion/decryption function is 128 bits long. In our proposed
protocol, Ci sends the two messagesMc ←− {ID, RE} and
Mc1 ←− {mc1}to BA, which needs (32+128) + 160= 320 bits
for message transmission. Similarly, Ci also sends two mes-
sagesMc2 ←− {Rc,mc} andMc3 ←− {ATCi} to Pi which
requires (128+256) + 256 = 640 bits. In same way, BA send
messages to Ci such asMb ←− {ζi, SKac},Mb1 ←− {ma1},
andMb2 ←− {ATCi}, which requires (160 + 160) + 160 +
160 = 640 bits for message transmission.Pi sends message to
BA such asMp ←− {mp} which needs 160 bits to transmit
message. So, the accumulative communication overhead for
the proposed protocol is 320+640+640+160 = 1760 bits.
Communication overhead for other protocols is calculated
using the same method. Fig. 6 shows that the communication
overhead of [18], [19], [20], [21], [22], [23], [24], [25], [34],
and [35]. The efficiency of the protocol proposed in [21] is
best compared to our proposed protocol. However, the proto-
col proposed in [19] can not protect the privacy of data com-
munication. Our protocol provides better security and privacy
features as a trade-off and has greater efficiency compared
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to other schemes. With the comparison of these protocols,
our protocol has less communication overhead from [26] and
[31], which is 42.66% and 34.52%, respectively. Similarly,
with the comparison of blockchain-enabled protocols our pro-
tocol has less communication overhead from [19] by 56.32%,
[23] by 23.11%, and [25] by 37.43%.
The time spent for various cryptographic processes and

blockchain tasks during protocol implementation is depicted
in Figure. 7. We ran 50 transactions to record the execu-
tion times of activities like encryption, decryption, HMAC
verification, block construction, and block verification. The
image depicts how the execution times differ between the
processes and how much variance occurs as shown in Figure.
7. The execution timings for encryption and decryption are
rather consistent, whereas the times for HMAC generation,
HMAC verification, and blockchain verification vary sub-
stantially. The blockchain creation process has the longest
average execution time and the most substantial variability
of any operation.
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FIGURE 7. Time comparison of overall system operations

E. EFFICIENCY OF PROFIT DISTRIBUTION MECHANISMS
We show the outcomes of the simulation profit distri-
bution framework. The simulations were carried out in
Python, with the libraries NumPy v1.23.5, Matplotlib
v3.3.2, and Pandas v1.1.3. We calculated the Shap-
ley value for data sources using the SHAP library.
The dataset used is (https://archive.ics.uci.edu/ml/machine-
learning-databases/adult/) from the UCI machine-learning
library.

Figure. 8 shows how each provider influences data value
for each of the five attributes. For attribute Age, Providers
A through E’s contributions are high as compared to other
attributes. Provider A contributes the most to Attribute Age,
followed by B, C, D, and E. The other attributes follow the
same trend, however, each data provider contributes differ-
ently. For example, Provider A still contributes the most to
attribute Relationship, but Providers B and C’s contributions
are considerably closer to Provider A’s contribution than they
were for attribute Age. The contribution of each data provider
depends on the data value they hold with different attributes.
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FIGURE 8. Value of Data according to attributes provided by data
providers
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FIGURE 9. Effect of the coalition and sample size on revenue percentage

Revenue percentages vary on coalition size as shown in
Figure. 9, which indicates that increasing sample size im-
proves revenue% for all coalition sizes. A larger sample size
yields more accurate data, which is used to predict coalition
revenue. It signifies that larger coalitions generate higher
revenue percentages, while the variations are small compared
to the generic pattern of increasing revenue % with sample
size. The marginal contribution for each data provider is the
difference between the total value generated by all players
(coalition value) and the value generated by the coalition ex-
cluding the current player, multiplied by the monetary value.
Cumulative contribution is all marginal contributions.

V (S) =
∑
i∈S

wi(xi)−
∑
i/∈S

wi(x̄i) (35)

Theweight (importance) of attribute i in the decisionmodel
is represented by wi in Equation 35. The attribute weights are
considered to add up to a total of one. The value of attribute i
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for data provider j is represented as xij. xage,j, e.g., reflects the
age of data provider j, and xrace,j, race of data provider j.
The difference between the coalition value with and with-

out data provider i is defined as the marginal contribution.

MCi = (ϕi(v(Si ∪ i))− ϕi(v(Si))) ·M (36)
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FIGURE 10. Marginal Contribution of Data Providers to the Coalition

The sum of all prior marginal contributions is the cumu-
lative contribution. Figure. 10 depicts the marginal contribu-
tions of each data provider, with DP2 and DP3 having the
highest monetary value contributions.

CCi =
i∑

j=1

MCj (37)

The data provider’s marginal contribution isMCj, whereas
the cumulative contribution is CCi. Figure. 10 shows theMCj
and CCi of seven data providers (DP1 to DP7) to a monetary
value (100). In Figure. 10, DP2 and DP3 have the biggestMCj
which implies their revenues. The line shows the data sources’
CCi relatively increase for other data providers (DP4 to DP7)
and measured as an overall contribution.

F. VERIFICATION OF REVENUE SCHEME
We examine the relationship between third-party revenue
ratio and model accuracy to assess data provider incentives.
Our main goal is to emphasize the importance of incentive
mechanisms and the relationship between data provider qual-
ity and revenue.

We used intelligent algorithms to construct a prediction
model to study how shared data affects data provider revenue.
We used the support vector machine (SVM), which is known
for its data classification and real-world applicability.

The adult dataset used in our study came from the UCI
Machine Learning Repository. To evaluate the prediction
model, we chose 6,043 training data samples and 932 test data
samples.

We divided the datasets into segments with 500–4500 data
samples from data providers. We performed 100 simulations
to calculate the data provider’s revenue distribution under
different data sample sizes for each value. With more data
samples, data provider P1 offered more data, therefore we
applied the method to calculate the distribution of revenue
under different proportions, as shown in Figure 11.

500 1000 1500 2000 2500 3000 3500 4000 4500
Data Sample Size

76%

78%

80%

82%

84%

86%

Re
ve

nu
e 

Pe
rc

en
ta

ge

Logistic Regression - P1
Logistic Regression - P2
Random Forest - P1
Random Forest - P2
SVM - P1
SVM - P2
XGBoost - P1
XGBoost - P2

FIGURE 11. Data Providers to the Coalition

According to the design goal and incentive scheme, in-
creasing the quantity of data samples shared by data provider
P1 increases revenue for both the data provider and others
under unchanging conditions. When the data provider in-
creases shared data samples, the learning algorithm’s pre-
diction model improves. This shows that the data provider’s
contribution increases, resulting in more revenue.

G. PERFORMANCE EVALUATION OF SMART CONTRACT
TRANSACTIONS
To test the usefulness of our approach, we built a blockchain
network and executed our data-sharing mechanism in real-
time. We utilized Remix IDE to create the solidity smart
contract for this purpose. We have used different ad-
dresses to simulate the operations. Blockchain authen-
ticators use $0xd9145CCE52D...9943F39138$ this
address to register both data providers and consumers.
The first data provider is registered with the address
$0xAb8483F64d9C...5835cb2$ and the data con-
sumerwith the address$0x5B38Da6a701c...6beddC4$
as shown in Figure. 12. The cost associated with the reg-

FIGURE 12. Registration of Data Provider and Consumer
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istrations of data providers and consumers is 23745 GAS.
Here GAS refers to the execution cost of a transaction in
a blockchain network. Figure. 13 illustrate GAS, transac-
tion, and execution costs for the operations involved in the
proposed system. It shows that uniform trend for smart
contract transaction submission and execution cost during
the registration of the participants. Moreover, it consumes
considerably less amount of GAS for withdrawal and data
count as compared to GAS consumed for identity operations.
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H. DISCUSSION
The proposed protocol solves the problems faced in data
sharing in IIoT against various security and privacy threats.
By using ECC along with its properties and HMAC it en-
ables the participants to share important data anonymously
and securely. Using a consortium blockchain for participant
approval ensures the safe and fair utilization of data in our
system. We devised an incentive system for flexible ben-
efit distribution across the platforms to encourage consor-
tium participants to share trustworthy data and collaborate.
However, the proposed framework can be extended to other
systems such as in vehicular networks [52] for resource al-
location as well as for providing efficient security protocol.
Similarly, in IoT networks, the major challenge that can arise
is the authentication of devices so this proposed protocol
can be implemented in this scenario [53]. Apart from the
applicability of the proposed framework in this paper, we
plan to include a machine learning model to predict the in-
centive more efficiently through Shapley value [54]. Because
IIoT generates an extensive amount of data with dynamic
properties there is a margin of improvement for the incentive
prediction and distribution.

VIII. CONCLUSION AND FUTURE WORK
In this paper, we proposed the framework for secure data
sharing and incentive distribution mechanism for the partici-
pants of the system.We designed the authentication and token
generation protocol using elliptic curve properties and keyed
HMAC that have considerably low computational and com-
munication costs that show the efficiency and effectiveness of

our protocol. Moreover, extensive simulations have been per-
formed using AVISPA and Scyther simulation tools to verify
the security features of the protocol. The simulation results
show that the protocol is resilient against various adversarial
attacks. We also design a profit generation and distribution
among the participants of the data-sharing system. We have
employed Shapley Value to distribute the profit among the
participants of the system. The distribution of profit is based
on the data contribution of each data provider to the coalition.
We have demonstrated that our profit distribution mechanism
efficiently distributes the profit among the data providers with
fairness.
In future work, we will apply our security framework to

other areas of fields such as vehicular networks, and employ
our incentive distribution mechanisms to the energy trading
framework.
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