
Highway in TDM NoCs
Shaoteng Liu

liu2@kth.se
KTH Royal Institute of Technology

Zhonghai Lu
zhonghai@kth.se

KTH Royal Institute of Technology

Axel Jantsch
axel.jantsch@tuwien.ac.at

Vienna University of Technology, Austria

Abstract—TDM (Time Division Multiplexing) is a well-known
technique to provide QoS guarantees in NoCs. However, unused
time slots commonly exist in TDM NoCs. In the paper, we
propose a TDM highway technique which can enhance the slot
utilization of TDM NoCs. A TDM highway is an express TDM
connection composed of special buffer queues, called highway
channels (HWCs). It can enhance the throughput and reduce
data transfer delay of the connection, while keeping the quality
of service (QoS) guarantee on minimum bandwidth and in-order
packet delivery. We have developed a dynamic and repetitive
highway setup policy which has no dependency on particular
TDM NoC techniques and no overhead on traffic flows. As a
result, highways can be efficiently established and utilized in
various TDM NoCs.

According to our experiments, compared to a traditional TDM
NoC, adding one HWC with two buffers to every input port of
routers in an 8×8 mesh can reduce data delay by up to 80%
and increase the maximum throughput by up to 310%. More
improvements can be achieved by adding more HWCs per input
per router, or more buffers per HWC. We also use a set of MPSoC
application benchmarks to evaluate our highway technique. The
experiment results suggest that with highway, we can reduce
application run time up to 51%.

I. INTRODUCTION

Time Division Multiplexing (TDM) technique is frequently
used for guaranteed data transfer in NoCs [1]–[5]. TDM
NoC means that a physical link can be shared by different
connections, with each connection allocated one or several
specific time slots in a finite repeating time window. A
connection can span many links from source to destination,
by allocating slot(s) at each of the links in a consecutive
manner. As illustrated in Fig. 1, connection v1 passes link
1 and link 2. If slot 0 and slot 2 of link 1 is allocated to
v1, then slot 1 and slot 3 of link 2 must be allocated to v1.
Once a TDM connection is established, packet delivery on the
connection is free from contention. It can therefore provide
hard guarantees on delay, throughput and in-order delivery.
However, in TDM NoCs, quite often the TDM slot utilization
is low due to unused slots including both unallocated and idle
slots.

Firstly, unallocated slots commonly exist inside a TDM
NoC. TDM NoC requires that reserved slots on the links
of a connection must follow a consecutive sequence. Such
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Fig. 1. Illustration of connections in TDM NoC

mandatory sequence makes it difficult to utilize all the slots
of links. For example, suppose there is a connection v4 wants
to use link 3 and link 2 in Fig. 1, although both link 3
and link 2 have unallocated slots, they cannot be allocated
to v4 since they are not consecutive. Also, when mapping
an application onto a TDM NoC, it is common that some
links have more bandwidth reservation requirements and some
links less. Such unbalanced bandwidth requirements inside a
network also cause slots of some links unallocated.

Secondly, idle slots are common for a connection with
dynamic fluctuation of network traffic. Idle TDM connections
withhold all the pre-reserved slots even if they have no data to
deliver. For example, as shown by Fig. 1, suppose connection
v2 becomes idle, it still occupies one slot on link 1 and link 2,
respectively. Also, busy TDM connections can just use their
pre-reserved slots for data transfer. For example, no matter
how many data flits are waiting on connection v1, connection
v1 can still just use the two reserved time slots in a time
window, even if there are free slots available along link 1 and
link 2.

In the paper, we develop a new technique called highway
which can enhance the performance of TDM NoCs by utilizing
free slots. With this technique, a TDM connection can dynam-
ically acquire both idle and unallocated time slots to enhance
its throughput, while keeping its QoS guarantee on minimum
bandwidth and packet order. In particular, our contributions
are:

• We develop the concept of highway to efficiently use time
slots, which is applicable to many kinds of TDM NoCs.

• We propose a distributed, run-time highway setup and
reclaim policy. Whenever the necessary resources for
building a highway become available, a TDM connection
can make use of it.

• We have made an efficient implementation of our pro-



posed technique. By taking advantage of the contention-
free property of TDM NoCs, we can set up a highway
with 2D + 2 cycles and without head flits, where D
is the distance between source and destination. Besides,
our HighWay Channel (HWC) allocation only needs a
very simple allocator, since our highway setup method
promises contention free. Thus, our hardware implemen-
tation has a relatively short critical timing path.

• We evaluated our highway technique using both synthetic
traffic and application benchmarks and suggest how to
efficiently use highways.

II. RELATED WORK

Goossens et al. [9]. tried to increase the slot utilization of
TDM NoC by introducing best effort (BE) traffic into a TDM
NoC (Æthereal), free slots can be utilized to deliver best effort
packets. However, the main issue with this mixed guaranteed
and BE traffic scheme is that it may cause disorder of arrival
packets, as observed in [6]. Eg., suppose a sender sends a
BE packet first and sends a guaranteed packet second. At the
receiver side, it is possible that the guaranteed packet arrives
before the BE packet. This is due to that the transfer delay
of a guaranteed packet is bounded, whereas a BE packet has
no QoS guarantee. Besides, this solution is not cost-effective,
as observed by Goossens et al. themselves [1]. The cost for
supporting BE traffic is relatively high due to virtual channels
and their allocation. But the service given to BE traffic is low.
Since TDM NoC has to prioritize guaranteed traffic, the BE
packets can be blocked for a very long time.

To solve the packet disorder problem as in Æthereal,
Marescaux et al. [6] proposed a source routing based TDM
NoC which provides a new QoS class called SuperGT to
increase the slot utilization while maintaining packet order.
However, this method suffers from several limitations. Firstly,
it is tightly coupled to a source routing based TDM NoC. It
forces the traffic flow of a connection to be divided into small
packets. The packet size is limited by the number of reserved
slots of the connection in a time window. Besides, each packet
must have a head flit, since the head flit’s information is
needed for source routing, virtual channel setup, connection
identification, and packet order maintenance. Secondly, it
requires that each TDM connection must have at least two
reserved TDM slots in a time window, and all reserved slots
must be adjacent. Otherwise, the superGT technique cannot
be utilized. Eg., connection v2 and v3 in Fig. 1 cannot use
superGT because they only reserve one slot per time window.
Connection v1 in Fig. 1 cannot use the superGT technique as
well, because its two reserved slots are not adjacent. Because
of these limitations, superGT can only be utilized in restrictive
situations. Moreover, this technique always wastes bandwidth
for head flit delivery, due to the limitation on packet size. As
an extreme case, suppose a connection has two reserved slots
in a time window, the packet size of this connection is limited
to 2 flits, which means 50% of the throughput has to be wasted
on the head flits.
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Fig. 2. The function of highway

In contrast, our highway technique can make use of unused
TDM slots while keeping the packet order and minimum
throughput guarantee. It needs no head flits, has no limitation
on packet size, introduces no interference to normal TDM
traffic flows, puts no constraint on TDM slot allocation and
configuration method, and does not rely on particular routing
mechanism or router architecture. As a result, our technique
has no architecture dependency and thus can bring benefits to
many different kinds TDM NoCs.

III. HIGHWAY CONCEPT AND DESIGN CONSIDERATIONS

A. Additional Motivation

As we analysed in Section I, low utilization due to unused
TDM slots is a common problem in TDM NoCs. Besides,
this technique has to be leveraged in order to suit the needs of
dynamic and mixed traffic scenarios. Consider the following
practical situations: 1) Dynamic traffic: For streaming appli-
cations [7], [8], e.g., H.264 decoding, we just need the NoC’s
promise on the lower bound communication bandwidth. The
upper bound of a traffic flow can be dynamically and readily
adjusted by applying a flow control mechanism or adding flow
regulation components. 2) Mixed traffic: As demonstrated in
[6], consider a system with a guaranteed connection between a
L1 cache and L2 cache. Since cache misses are not completely
predictable, it is common practice to over-allocate bandwidth.
Thus we might want a mechanism which can keep the guar-
antee on minimum throughput and on the predictable traffic
flow, while offering additional non-guaranteed bandwidth to
enhance the overall system performance or absorb peaks of
less predictable traffic flows.

B. The Concept of Highway

Our proposed highway is an express path for a TDM
connection. Based on an established TDM connection, it can
speed up data transfer by using unused time slots along the
links of the connection. This is made possible because a
highway consists of one buffer queue at the input port per
router. Arbitration is performed to use the free time slots of
the output link of a router. We name these buffer queues as
highway channels (HWCs).

The function of a TDM highway is illustrated in Fig. 2. The
two connections, v1 and v2 share link 2 in such a way that
v1 reserves two slots (slot 1 and 3) of link2; v2 reserves one
slot (slot 2) of link 2. Then, v1 also builds up a highway path
by occupying one HWC in router 1 and one HWC in router
2. Thus, v1 can additionally use slots of link 1 and link 2
whenever they are free. For example, it can acquire slot 1 and
3 on link 1 and slot 0 on link 2. It can also acquire the slot
2 of link 2, if v2 does not use it. In contrast, connection v2



has no HWC and thus can only use the reserved one slot for
data delivery.

A HWC functions like an input queue: if the output link
of a router is occupied, incoming flits of a connection with a
highway will be buffered in the HWC. When the output link
becomes free, or a reserved slot of the connection is coming,
the output link can immediately serve the HWC.

C. Design Considerations

The idea of our highway technique sounds simple. How-
ever, the details are complicated, especially when we try to
make it commonly used for TDM NoCs. The principles and
considerations are listed as follows:

1) With or without a highway, a TDM connection is
promised to use its pre-reserved slots to offer a guaran-
teed service. Due to this principle, if a highway is used
for a TDM connection, whenever any of the pre-reserved
slots arrives, the queue of the corresponding HWC will
be served. For example, as Fig. 2 suggests, connection
v1 has an established highway. Therefore, at slot 1 or
3, its HWC in router 2 is guaranteed to be served. This
is in contrast to normal virtual channels which have no
service guarantee. Moreover, this principle also requires
that the dynamic highway setup/release process should
incur no additional traffic to the guaranteed traffic flow.

2) We must guarantee that reordering of a traffic flow never
happens in any situation. This rule sounds easy but it
is tricky to follow. In Section IV-D, we will show our
solution to keep flits ordered during the highway release
process.

3) A highway accelerates data transfer only if one HWC
per router is allocated along the path of a connection, all
the way from the source to the destination. This is due
to that individual HWCs cannot ameliorate performance.
For example, suppose connection v1 in Fig. 2 gets a
HWC in router 1 but fails to get a HWC in router 2,
then link 2 will be the throughput bottleneck, since still
only the two reserved slots of link 2 can be used. Thus,
during the highway setup process, our HWC allocation
follows a win all or nothing principle that, if we fail
in allocating one HWC in any of the routers along a
connection, all allocated HWCs are canceled as soon as
possible.

IV. HIGHWAY IN TDM NOCS

A. Design Overview
An overview of a TDM router with highway is depicted in

Fig. 3. Each input link has an input manager, which manages
all the incoming flits of that input. We can have one or several
HWCs per input manager. With more than one HWC, the
input manager needs additional logic for internal arbitration
between the HWCs. To support our highway technique, each
input /output link needs to have a flag signal and a credit
signal coupled with the data path. The flag signal is in parallel
to the data path. It is used for highway setup, transfer and
release. The credit signal goes in the opposite direction of
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Fig. 3. The micro-architecture of a TDM router with highway

the data path. It is used for flow control in the data transfer
phase and for Ack/Nack purpose in the highway setup phase.
As Tables I and II suggest, we use 3 bits for the flag signal
and 2 bits for the credit signal.

Because of the design considerations listed in Section III-C,
we do not use head flits in our highway technique. Instead, we
use the 3-bit flag signal for highway setup and release purpose.
Unlike the information bits of a flit, a flag associated to a flit
can be changed during the transfer process. It does not need
to be buffered together with the flit. Instead, it is regenerated
when a flit leaves a router, based on the router’s current status.

Inside each HWC, there is a set of registers. The ”next HWC
Id” register stores the id of the HWC in the next router1. The
”out dir.” register stores the output direction to reach the the
next router. The credit counter records the available queue
size of the downstream HWC. All of these 3 registers are
commonly used in virtual channel techniques. The ”release
mark” register is used in our highway release process. The
”allocated slot” register uses a vector of bits to mark which are
the reserved slots in a time window of a connection. The size
of the bit vector equals the time window size. For example, as
Fig. 3 describes, if the reserved slots for a connection are slot
0 and slot 2 inside a time window of size 4, the ”allocated
slot” register is configured as ”0101”.

In our design, HWCs are dynamically allocated and re-
claimed for connections. Note that, a HWC can only be
assigned to one connection at a time.

When a TDM connection has a certain amount of data
buffered in the network interface, it may set up a highway for
acceleration. The general operation for using a highway in a
TDM NoC consists three phases, namely, setup, data transfer,
and release.

1We do not need this register if each input manager only has one HWC.



TABLE I
USAGE OF THE FLAG SIGNAL

Flag message Usage
000 Idle –
001 Setup try to book a HWC

010 HWC-RS Incoming flit has a HWC and
sent/received at a reserved slot (RS)

011 HWC-NS Incoming flit has a HWC and
sent/received at a non-reserved slot (NS)

100 No HWC Incoming flit has no HWC
101 Release Release the allocated HWC

TABLE II
USAGE OF THE CREDIT SIGNAL

Credit Usage during highway setup Usage after highway is built
00 Idle –
01 – credit updating
10 Nack (highway setup failed) –
11 Ack (highway setup success) –

B. Highway Setup Phase

Fig. 4 illustrates the setup process for a 2-hop TDM
connection which has 2 reserved slots inside a time window
of 4. From the source node, when a reserved slot (slot 0) is
coming, a data flit is sent out with flag signal ”setup”. This
flit travels by using reserved slots of links, at a constant speed
of one slot per hop. If it can acquire a HWC when arriving at
a router during the traversal, its flag remains ”setup”. When
the destination node receives a flit with flag ”setup”, it will
send back an ”Ack” message by using the credit signal of the
allocated HWC in the destination node. Such a message will
be delivered backward to the source node hop by hop, through
the credit signal of each allocated HWC along the forward
path of the flit. When the source node receives ”Ack” , it can
begin to use the established highway for data transfer.

The following is worth mentioning.

1) The HWC allocation performs one hop in advance. For
example, as suggested by Fig. 2, router 1 is responsible
to allocate the HWCs at the input port of router 2. The
allocation decision is put into ”next HWC Id” reg. This
technique is inherited from the virtual channel allocation
technique [12].

2) If the flit with flag ”setup” fails to acquire a HWC
in a router, the highway setup process stops. The flit
continues its traversal with flag changed into ”No
HWC”. Meanwhile, a ”Nack” signal will be sent back
towards the source node hop by hop through the credit
signals of the allocated HWCs in routers. As the ”Nack”
signal travels, it will release the allocated HWCs.

3) Since ”setup” flits are delivered without contention by
pre-reserved slots of links, arbitration is not needed in
the setup phase. Thus, we can simplify the logic for the
HWC allocation inside each input manager. Moreover,
the highway setup time is predictable. It is 2D + 2
cycles (assuming each slot is one cycle), where D is
the distance between source and destination.

4) The whole setup process just utilizes flag and credit
signals, it generates no additional traffic flow overhead.

5) Our highway setup method is architecture independent.
We do not care about how flits of a connection are routed
or how connections are established. As long as a flit is
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Fig. 4. Highway setup, data transfer, and release process. With highway,
the RSs (reserved slots) on a link are still guaranteed to use, while a NS
(non-reserved slot) can be acquired by wining an arbitration.

delivered without contention to the destination with a
flag as ”setup”, a highway has been established 2.

The highway configuration process configures the registers
inside each allocated HWC. During the setup phase, the flit
with flag ”setup” configures the register ”next HWC Id” and
”out dir.” The ”allocated slots” register configuration takes
place in data transfer phase.

In the case of failed highway setup due to HWC unavail-
ability, we use a simple retry scheme until success.

C. Highway Data Transfer Phase
After a highway is established, flits sent at a reserved

slot have the flag ”HWC-RS”, whereas flits sent at non-
reserved slots have the flag ”HWC-NS”, as illustrated in Fig. 4.
Arbitration for a non-reserved slot is needed, if it is requested
by multiple input managers.

The ”allocated slots” register of a HWC is configured
by multiple ”HWC-RS” flits arrived after the highway setup
process, if the connection has multiple reserved slots. When
a flit with flag ”HWC-RS” arrives at a HWC, it will set
the corresponding bit of the HWC’s ”allocated slots” register
according to the ID of the current slot, if the bit is unset (”0”
means unset and ”1” set)3. For example, if a ”HWC-RS” flit
arrives at a HWC on slot 0, it will set the bit 0 of the register.

The function of a HWC in the data transfer phase is some-
how similar to input queue based virtual channel. Incoming
data flit of a HWC is pushed into a queue according to the flit’s
HWC ID. If the desired output channel is granted, one flit
will be popped from the queue and sent with a valid HWC ID
pointing to the HWC in the downstream.

One specialty is that, when a reserved slot of an HWC
comes, the queue of the HWC is guaranteed to be served.
Besides, the transfer of ”HWC” flits does not interfere with
”No HWC” flits, since our arbitration mechanism prioritizes
the data flit sent by using reserved slots.

2In source routing based TDM NoCs, we need to add a slot pointer inside
each router to obtain the ID of the current slot for the ”allocated slots” register
configuration.

3Due to slots are reserved consecutively along the links of a connection,
when an HWC receives a ”HWC-RS” flit from its upstream node, it means
its own reserved slot is met.



A FIFO is implemented in an HWC for flit buffering.
However, we also add a bypass way to the FIFO. If the FIFO
is empty and the desired output is ready, an incoming flit can
be directly forwarded, without being buffered in the FIFO.

The credit based flow control policy used in our HWCs
is similar to that in Chapter 13.3.1 of [11], except that
sending data flit at reserved slots neither consumes credits nor
generates credit updating signal to the upstream.

D. Highway Release Phase
If a connection no longer requires a highway, it should

release all the occupied HWCs.
To release a highway, the source node sends out a ”release”

flag. If a HWC is empty when a ”release” flag arrives, the
”release” flag will reset the HWC and get forwarded to the
downstream node. However, if a HWC still has buffered data,
the ”release” flag will set the ”release mark” register and halt
its forwarding until the HWC becomes empty.

As mentioned in Section III-C, it is tricky to maintain flit
order of a connection during its highway release process. Let’s
consider the following situation: Suppose the source node of a
connection has sent out a ”release” flag. After that, the source
node continues to send flits with the flag ”No HWC”. The
HWC release process is relatively slow, since the ”release” flag
may wait inside a HWC until it becomes empty. However, the
flit sent by the source node with the flag ”No HWC” travels
at a guaranteed speed of one slot per hop. Therefore, a ”No
HWC” flit of a connection may arrive at a router which still
has an unreleased HWC for that connection. In this situation,
this ”No HWC” flit should go into the unreleased HWC to
maintain the flit order. However, since all the upstream HWCs
have been released, this flit arrives without a valid HWC ID.
How can we find the HWC for this flit?

Unlike [6], we do not use a head flit for carrying the con-
nection ID. Instead, we use the reserved slot information for
connection identification. Let us also consider the following
facts:

1) ”No HWC” flits are delivered by using reserved consec-
utive slots of links.

2) ”allocated slots” register of a HWC can be used to claim
which slot is the reserved slots on a link of a connection.

Therefore, when a ”No HWC” flit arrives at an input manager
of a router, normally it will be directly forwarded to an output.
However, if a HWC at the same input manager also claims that
it meets a reserved slot and must be served, the incoming flit
and this HWC must belong to the same connection and thus
the incoming flit should go into the HWC. In this way, we can
identify whether or not a ”No HWC” flit has an unreleased
HWC.

E. Implementation Cost
Our highway TDM router is built on top of a base TDM

router (similar to [2]) used for mesh topology. The additional
components are 1) one input manager per input port, 2) an
external arbitrator for the arbitration between all the input
managers. Note the buffer size per HWC should be large
enough to cover the round-trip delay of credit updating (see

TABLE III
SYNTHESIS RESULTS WITH 45 nm TECHNOLOGY WITH FLIT WIDTH OF

128-BIT AND A BUFFER SIZE OF 2 FLITS

Component Comb. Non-
comb. Flip-flops Total

(um2)
Total

(gates)
HWC 298 1588 282 1886 2694

Other logic 457 28 5 485 693
Input manager total 755 1616 287 2371 3387

Chapter 13.3.1 of [11]). Thus, suppose that each slot is one
clock cycle, and the credit-updating signal is one cycle per
hop. Depending on the implementation details, the round-
trip delay is at least two cycles4. Thus, the minimum buffer
requirement is two flits. We evaluate the additional costs in
this section. The synthesis results are reported under 45 nm
technology.

The area costs of an input manager containing one HWC
with 2 buffers and with a data flit width of 128-bit and 16-slot
window size are listed in table III. In our implementation, each
slot represents one clock cycle. As Table III shows, the total
area cost of a HWC manager is 2371 um2, among which 1886
um2 is spent on the HWC. Inside a HWC, FIFO constitutes
about 92% of the area. In our implementation, FIFO is built
by using flit-flops. If we use SRAM cells, it can be a factor
of 3 or 4 less expensive. The cost of the external arbitrator is
only 161 um2. It does not scale up with the HWCs per input.

The critical timing path of a router consists of 3 compo-
nents: an input manager, the external arbiter and the crossbar.
The latter two components contribute a latency of 0.15 ns. The
latency of a input manger varies with the number of HWCs it
has. E.g., with one HWC, its latency is 0.36 ns; with 8 HWCs,
its latency is 0.54 ns.

Compared to the base TDM router, our highway TDM
router (adding 1 HWC with 2 buffers per inport) causes an
area overhead of 12016 um2. This is the cost of leveraging
the static inefficient QoS guarantees.

There are also additional costs on the network interface
(NI) when applying the highway technique. We need a state
machine to control the setup/release of highways, as well
as credit based flow control logic for data transfer. If a NI
uses more than one highway, arbitration logic is also needed.
However, since we do not need to increase the flit buffers
inside a NI, the additional costs in total are still relatively
small.

V. PERFORMANCE EXPERIMENTS AND RESULTS

We present experiments and results concerning the benefits
of using highways in different configurations, under different
test scenarios, and with different TDM NoC technologies. We
utilize a popular mesh topology in our evaluation. To facilitate
our evaluation, we assume that each slot is one clock cycle,
and each HWC should have more than 2 buffers to cover
the credit round-trip delay. The performance enhancements
brought about by our highway technique are evaluated with
both synthetic traffic patterns and application benchmarks.

4In this case, the credit updating signal needs to be sent out as soon as the
arbitration succeeds.
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Fig. 5. Performance evaluation under uniform traffic in an 8x8 mesh, with a window size of 16 slots. Each connection reserves 2 slots in a window. The
packet size is 32 flits for (b) and (c). Injection rate is in flit/connection/cycle (fcc)

0.06

0.12

0.24

0.15
0.17

0.26

0.16
0.18

0.26

0.17
0.18

0.27

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4

M
a

x
im

u
m

 T
h

ro
u

g
h

p
u

t

Slot per connection

No HW HWC1

HWC2 HWC4

(a) Uniform random

0.06

0.12

0.24

0.15

0.18

0.27

0.22

0.25

0.29

0.25
0.27

0.3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4

M
a

x
im

u
m

 T
h

ro
u

g
h

p
u

t

Slot per connection

No HW HWC1

HWC2 HWC4

(b) Tornado

0.06

0.12

0.24

0.19
0.21

0.250.24 0.24
0.26

0.24 0.24
0.26

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 4

M
a

x
im

u
m

 T
h

ro
u

g
h

p
u

t

Slot per connection

No HW HWC1 HWC2 HWC4

(c) Shuffle
Fig. 6. Throughput evaluation under different traffic patterns and different connection width and a packet size of 32 flits

A. Performance Evaluation with Synthetic Traffic

We assume that the static TDM NoC has an architecture
similar to [2]. We designed a depth first searching algorithm
similar to [10] to do path searching and slot allocation for
connections. After all the connections are configured, we can
launch our NoC for data transfer by using these statically
reserved connections.

For a uniform random traffic pattern, we randomly gener-
ated 64 connections and scheduled them in an 8×8 mesh with
a window size of 16 slots. If a generated connection cannot be
scheduled, we will regenerate it until it can be scheduled. We
also use the Tornado and Shuffle traffic patterns for which
connections are generated according to the relationship of
source and destination nodes as described in the Chapter 3.2
of [11].

Packets generated for each connection obey a Poison dis-
tribution. Therefore, the traffic injection rate of a flow can be
controlled by adjusting the inter arrival time between packets,
while the burstiness of the traffic flow can be controlled by
varying the number of flits in a packet. We vary the packet size
from 16 to 64 flits, the reserved number of slots per connection
per time window from 1 to 4 slots, the HWC per input from
1 to 4 and buffer per HWC from 2 to 4.

In our evaluation, we define injection rate as average
flits/connection/cycle (fcc). The packet delay includes both the
waiting delay in the NI and the transfer delay of the network.
The throughput results are also given as flits/connection/cycle.

The results under uniform random traffic are shown in Fig.
5a. Our highway technique greatly reduces the average packet
delay. Eg. with a packet size of 16 flits, applying one HWC per
input with 2 buffer stages can achieve a delay reduction of 77%
at injection rate 0.1 fcc. As the packet size grows, the benefits

of using highways becomes more prominent. Eg. at packet size
of 32 flits, the delay reduction is 80% at injection rate 0.1 fcc,
while at packet size of 64 flits the reduction becomes 84%.
Besides, the maximum throughput improvement also increases
from 50% to 200%, when packet size increases from 16 to 64
flits. This is because when the packet size grows, the network
traffic becomes more and more bursty and thus unbalanced. As
a result, our highway technique gains more chances to utilize
free slots for busy connections.

We also observe that, increasing the number of HWCs per
input can further improve performance. As Fig. 5b shows,
increasing HWC from 1 to 2 can have a further 35% delay
reduction at injection rate 0.15. However, more HWCs do
not lead to apparent performance improvements, showing a
performance saturation phenomenon.

Compared with adding the buffers per HWC, increasing the
number of HWCs per input is more effective on performance.
As Fig. 5c suggests, two HWCs per input with 2 buffers in
each is far better than one HWC with 8 buffers.

Furthermore, we studied the effect of different number of
reserved slots per connection and different traffic patterns.
All of these results suggest that using our highway technique
can greatly reduce packet delay, which is similar to the delay
curves in Fig. 5a. For example, when each connection reserves
4 slots in a time window, we can still have 47% delay reduction
at injection rate 0.1 fcc and 70% delay reduction at 0.23 fcc
with uniform random traffic. We skip the delay results here
due to space limitation.

The effects on maximum throughput are shown in Fig. 6.
We find that the same HWC configuration under different
traffic pattern and with different reserved slots per connection
generates different throughput improvements, ranging from
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Fig. 7. Delay decomposition under uniform random traffic and a packet size
of 32 flits.

417% to 8%. We also observe that, as the reserved slots
per connection grows, the throughput improvements decreases.
This is due to that given a fixed number of connections, as
the reserved slot per connection increases, the unallocated slots
decrease.

Finally, in our experiments we separate the total delay
into: waiting delay and transfer delay. As shown in Fig. 7,
compared with the transfer delay, the waiting delay of a flit
is much bigger. For example, without a highway, the average
flit waiting delay is more than 300 cycles, which will also
increase dramatically when the injection rate increases, while
the transfer delay is always 6 cycles. The large waiting delay of
a flit is due to two reasons: (1) when a burst of flits arrives, the
FIFO order requires the flits waiting in a queue, if the service
rate of the output is not enough; (2)Without a highway, a TDM
connection mandates a flit to wait for one of the reserved slots.
The highway technique can reduce the waiting delay in both
scenarios, by increasing the service rate of a connection as
well as reducing the waiting time for a slot. As suggested by
Fig. 7, the waiting delay is reduced from above 300 cycles
to around 100 cycles, when applying 1 HWC with 2 buffers
per input. With HWC, the transfer delay of a flit may slightly
increased due to buffering delay in the HWCs, for example, at
injection rate 0.7 fcc, the average transfer delay with a highway
is 7 cycles, which is 1 cycle more than without highway.
However, when compared with the waiting delay reduction,
such increase can be neglected.

From these results, we find that adding 1 HWC per input
with two buffers can have up to 80% packet delay reduction
and up to 310% throughput enhancement. Increasing the
buffers per HWC does not have significant improvements,
whereas using more HWCs can further reduce the packet delay
from 10% to 40% and increase the throughput by 4% to 75%.
However, considering the doubled, even tripled area cost, as
well as the more than the 15% increase on the critical timing
path, we think it is not cost-effective to use more HWCs or
more buffers per HWC. Applying one or two HWC for each
input link, and 2 buffers in each HWC to cover the round-trip
delay seems to be a reasonable compromise.

B. Performance Evaluation with MPSoC Benchmarks

We experimented with the NoC benchmarks designed by
Pekkarinen et al [14] [15], to confirm the benefits of highways.
The NoC benchmark utilizes task communication graphs

TABLE IV
COMMUNICATION PROPERTIES OF THE APPLICATIONS

AV bench ERS UMTS OFDM
Connections 57 26 11 12

Avg. Burst size (flits) 531.60 12797.0 14.1 1.43
Total Request (MB/s) 6772 4488 94 196
Max Request (MB/s) 1168 512 246 80
Min Request (MB/s) 0.25 64 2 52

(TCGs) to model MPSoC applications. It contains a set of
processor and DSP models. Tasks can be mapped and running
on these processor and DSP models. [15] has already given
the task mappings. It mapped all the applications to either a
2×2 or a 4×4 mesh based MPSoC platform depending on the
size of the TCGs. Users of the NoC bench are required to use
their own NoC to connect all the processor/DSP cores to run
these applications for evaluation.

The NoC bench contains four applications which have
throughput requirements annotated on the edges of TCGs.
The details of the four applications have been described
in [14]. Their TCGs can also be found in [15]. Besides,
we list the communication properties of each application in
Table IV, in which Total Request means the total throughput
requirement of an application. Min/Max Request refers to the
minimum/maximum throughput requirement among all the
connections’ requirements of an application. Note that the
AV benchmark and Ericsson Radio System (ERS) are com-
munication intensive, their Total Request are 6772 MB/s and
4488 MB/s respectively, whereas the traffic flows generated
by the UMTS receiver and OFDM receiver are a magnitude
less, which are 96 MB/s and 196 MB/s respectively.

Before running an application on the statically scheduled
TDM NoC, we first establish TDM connections between
processor/DSP cores to satisfy all the communication needs
and throughput requirements described by the TCG of the
application. We use a depth-fist search algorithm to search
paths and allocate slots to connections. We can statically
optimize a TDM NoC for an application by tuning the NoC
clock frequency and the TDM window size, in order to avoid
too much bandwidth waste. For this reason, we gradually
increase the NoC clock frequency and the time window size
until reaching a condition where our search algorithm can
schedule all the connections of an application. The clock
frequency of the NoC ranges from 100 to 1000 MHz. The
time window size is between 2 to 32 slots.

As Fig. 8a shows, the highways significantly improve the
performance of AV benchmark and ERS. The average appli-
cation run time is reduced by 24% and 52%, respectively.
Meanwhile, as suggested by Fig. 8c, the throughput is en-
hanced by 6% in AV benchmark and 25% in ERS. Such
performance improvement is due to the highways in the TDM
NoC. For example, we see 14% (with one HWC per input
link) and 15% (with two HWCs per input link) average flit
delay reduction with AV bench. We also find about 20% (one
HWC per input link) and 52% (with two HWCs per input
link) delay reduction in the ERS application. For these two
applications, improvements on communication can also help
to enhance the overall system performance, which is reflected
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Fig. 8. Benchmark evaluation of our highway technique

by the shortening of application run time and the increase of
system throughput.

Applications like the OFDM receiver and UMTS receiver
have less communication needs and their performance mainly
depends on the processor speed. Therefore, from Fig. 8b,
we find that for the OFDM receiver, although our highway
technique can bring about 25% flit delay reduction, such
improvement on communication system does not help to
increase the application performance, as suggested by Fig. 8a
and Fig. 8c.

We further studied the network performance, as described
in Fig. 8b. We find when using highways, applications with
larger burst size tend to have more delay improvements. For
example, the biggest delay improvement happens with ERS,
since its traffic flows has an average burst size of 12797 flits. In
comparison, there is no improvement for the UMTS receiver,
since it has a low traffic generation rate and the average burst
size is only 1.43. In this situation, the highway setup process
is seldom initiated because of not enough flits waiting in the
network interface. Furthermore, we find that the transfer delay
of a flit is very small, ranging from 3 to 7 cycles on average.
However, the average waiting delay is relatively large, eg. it
can reach up to 213 cycles. Our highway technique can greatly
reduces the total delay by shortening the waiting delay, eg.
from 213 cycles to 104 cycles.

VI. CONCLUSIONS

We have proposed a TDM highway technique to utilize free
time slots in TDM NoCs. With the highway technique, the
upper bound throughput of a connection is adaptive to link
sharing situations, while it still offer QoS guarantees on the
lower bound throughput and flit order. The delay of packets
are greatly reduced. We can dynamically setup highways on
TDM connections. One prominent aspect of our highways is
that the dynamic setup method has no interference with the
normal TDM data transfer and no dependency on the TDM
NoC architecture. Thus, it can be utilized by TDM NoCs with
either a distributed or a centralized TDM connection setup
method, with either source routing or distributed routing by
using distributed slot tables.

We use both synthetic traffic pattern and application bench-
marks to evaluate our highway technique. With synthetic
traffic pattern we find a delay reduction up to 80% and a
throughput enhancement upto 417% in a statically scheduled
TDM NoC, as well as up to 80% delay reduction and 17%

throughput enhancement in a dynamically allocated TDM
NoC. Generally speaking, the more unused slots, the more
benefits; the larger the burst size, the more improvements.
Also, using more HWCs for a link and more buffers per
HWC can provide more performance enhancement. However,
the cost-performance study suggests that using one or two
HWCs per link and 2 buffers per HWC is most cost-effective
in our extensive experiments. With application benchmarks,
we confirm that highways can enhance the performance of a
TDM NoC. However, the enhancement on NoC can reduce
the run time of an application only if it is communication
intensive.
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