
Run-time Partitioning of Hybrid Distributed Shared Memory
on Multi-core Network-on-Chips

Xiaowen Chen†,‡, Zhonghai Lu‡, Axel Jantsch‡ and Shuming Chen†
†Institute of Microelectronic and Microprocessor, School of Computer,
National University of Defense Technology, 410073, Changsha, China

‡Department of Electronic Systems, School of Information and Communication
Technology, KTH-Royal Institute of Technology, 16440 Kista, Stockholm, Sweden

†{xwchen,smchen}@nudt.edu.cn ‡{xiaowenc,zhonghai,axel}@kth.se

Abstract—On multi-core Network-on-Chips (NoCs), mem-
ories are preferably distributed and supporting Distributed
Shared Memory (DSM) is essential for the sake of reusing huge
amount of legacy code and easy programming. However, the
DSM organization imports the inherent overhead of translating
virtual memory addresses into physical memory addresses,
resulting in negative performance. We observe that, in parallel
applications, different data have different properties (private
or shared). For the private data accesses, it’s unnecessary
to perform Virtual-to-Physical address translations. Even for
the same datum, its property may be changeable in different
phases of the program execution. Therefore, this paper focuses
on decreasing the overhead of Virtual-to-Physical address
translation and hence improving the system performance by
introducing hybrid DSM organization and supporting run-time
partitioning according to the data property. The hybrid DSM
organization aims at supporting fast and physical memory
accesses for private data and maintaining a global and single
virtual memory space for shared data. Based on the data
property of parallel applications, the run-time partitioning
supports changing the hybrid DSM organization during the
program execution. It ensures fast physical memory addressing
on private data and conventional virtual memory addressing on
shared data, improving the performance of the entire system
by reducing virtual-to-physical address translation overhead
as much as possible. We formulate the run-time partitioning
of hybrid DSM organization in order to analyze its perfor-
mance. A real DSM based multi-core NoC platform is also
constructed. The experimental results of real applications show
that the hybrid DSM organization with run-time partitioning
demonstrates performance advantage over the conventional
DSM counterpart. The percentage of performance improve-
ment depends on problem size, way of data partitioning
and computation/communication ratio of parallel applications,
network size of the system, etc. In our experiments, the
maximal improvement is 34.42%, the minimal improvement
3.68%.

Keywords-Run-time Partitioning; Hybrid Distributed Shared
Memory (DSM); Multi-core; Network-on-Chips (NoCs)

I. INTRODUCTION

As a general trend, processor development has been
shifted from single sequential processor to parallel multi-
core systems [1][2]. NoC based multi-core systems are
promising solutions to the modern and future processor
design challenges [3][4][5]. For instance, in 2007, Intel

researchers announced their research prototype McNoC
architecture containing 80 tiles arranged as a 10x8 2D
mesh network [6]. In Multi-core Network-on-Chips, espe-
cially for medium and large scale system sizes, memories
are preferably distributed, featuring good scalability and
fair contention and delay of memory accesses, since the
centralized memory has already become the bottleneck of
performance, power and cost [7]. In order to reuse huge
amount of legacy code and facilitate programming, it’s
essential to support Distributed but Shared Memory (DSM).
From the programmers’ point of view, the shared memory
programming paradigm provides a single shared address
space and transparent communication, since there is no need
to worry about when to communicate, where data exist and
who receives or sends data, as required by explicit message
passing API.

The key technique of Distributed Shared Memory or-
ganization is to maintain an address mapping table of
translating virtual addresses into physical addresses and
hence to implicitly access remote shared data and to provide
software programmers with a transparent and global shared
memory space. The Virtual-to-Physical address translation
table (V2P Table) fully reveals how the DSM space is
organized. However, the Virtual-to-Physical (V2P) address
translation costs time, which is the inherent overhead of
DSM organization. Every memory access operation contains
a V2P address translation, increasing the system’s processing
time and hence limiting the performance. We observe that
different data in parallel applications have different proper-
ties (private or shared) and it’s unnecessary to introduce V2P
address translations for private data accesses. According to
the data property, we can obtain two observations:

(1) During the entire execution of parallel applications,
some data processed by the local processor core are
shared and need to be accessed by other remote pro-
cessor cores, while other data are private and only used
by the local processor core.

(2) Some data are private and only accessed by the local
processor core in a certain phase of the entire execution



of parallel applications. However, they may change to
be shared and accessible to other remote processor cores
in another phase of the entire program execution.

The conventional DSM organizes all memories as shared
ones, regardless of whether the processed data are only
used by its local processor core or not. That is, each
memory access operation in the system with conversional
DSM organization includes a translation of virtual address
to physical address, even if the accessed object is just local.
If we get rid of the address translation overhead when the
processor core handles the data which only belong to it (i.e.
the data are private), the system’s performance is expected
to improve.

Motivated by aforementioned considerations, regarding
the observation (1), we introduce a hybrid organization of
Distributed Shared Memory in the paper. The philosophy of
our hybrid DSM organization is to support fast and physical
memory accesses for private data as well as to maintain
a global and single virtual memory space for shared data.
Considering the observation (2), we propose a run-time par-
titioning technique. This technique supports programmable
boundary partitioning of private region and shared region of
the Local Memory to change the hybrid DSM organization,
based on the data property of parallel applications. It ensures
fast physical memory addressing on private data and conven-
tional virtual memory addressing on shared data, improving
the performance of the entire system by reducing V2P ad-
dress translation overhead as much as possible. We analyze
its performance by formulating the run-time partitioning of
hybrid DSM organization. The experimental results of real
applications show that the hybrid DSM organization with
run-time partitioning demonstrates performance advantage
over the conventional DSM counterpart. The percentage of
performance improvement depends on problem size, way
of data partitioning and computation/communication ratio
of parallel applications, network size of the system, etc. In
our experiments, the maximal improvement is 34.42%, the
minimal improvement 3.68%.

The rest of the paper is organized as follows. Section II
discusses related work. Section III introduces our multi-core
NoC platform and its hybrid DSM organization. Run-time
partitioning is proposed in Section IV. Section V reports
simulation results with application workloads. Finally we
conclude in Section VI.

II. RELATED WORK

As one form of memory organization, Distributed Shared
Memory (DSM) has been attracting a large body of re-
searches. However, we note that up to today there are
few researches on NoC based multi-core chips. In [8], our
previous work implemented a Dual Microcoded Controller
to support flexible DSM management on multi-core NoCs.
It off-loads DSM management from the main-processor to
a programmable co-processor. In [9], Matteo explored a

distributed shared memory architecture suitable for low-
power on-chip multiprocessors. His work focused on the en-
ergy/delay exploration of on-chip physically distributed and
logically shared memory address space for MPSoCs based
on a parameterizable NoC. In our view, we envision that
there is an urgent need to support DSM because of the huge
amount of legacy code and easy programming. Monchiero
also pointed out that the shared memory constitutes one
key element in designing MPSoCs (Multiprocessor System-
on-Chips), since its function is to provide data exchange
and synchronization support [9]. Therefore, in the paper, we
focus on the efficient organization and run-time partitioning
of DSM space on multi-core NoCs.

Regarding memory partitioning, in [10], Xue explores a
proactive resource partitioning scheme for parallel applica-
tions simultaneously exercising the same MPSoC system.
His work combined memory partitioning and processor par-
titioning and revealed that both are very important to obtain
best system performance. In [11], Srinivasan presented a
genetic algorithm based search mechanism to determine a
system’s configuration on memory and bus that is energy-
efficiency. Both Xue and Srinivasan addressed memory par-
titioning in combination with other factors, e.g. processors
and buses. In [12], Mai proposed a function-based memory
partitioning method. Based on pre-analysis of application
programs, his method partitioning memories according to
data access frequencies. Different from Xue’s, Srinivasan’s
and Mai’s work, this paper considers memory organization
and partitioning according to data property of real appli-
cations running on multi-core Network-on-Chips. In [13],
Macii presented an approach, called address clustering, for
increasing the locality of a given memory access profile,
and thus improving the efficiency of partitioning and the
performance of system. In the paper, we improve the system
performance by partitioning the DSM space into two parts:
private and shared, for the sake of speeding up frequent
physical accesses as well as maintaining a global virtual
space. In [14], Suh presented a general partitioning scheme
that can be applied to set-associative caches. His method
collects the cache miss characteristics of processes/threads
at run-time so that partition sizes are varied dynamically
to reduce the total number of misses. We also adopt the
run-time adjustment policy, but we address partitioning
the DSM dynamically according to the data property in
order to reduce Virtual-to-Physical (V2P) address translation
overhead. In [15], Qiu also considered optimizing the V2P
address translation in a DSM based multiprocessor system.
However, the basic idea of his work is to move the address
translation closer to memory so that the TLBs (Translation
Lookaside Buffers: supporting translation from virtual to
physical addresses) do not have consistency problems and
can scale well with both the memory size and the number
of processors. In the paper, we address reducing the total
V2P address transaction overhead of the system as much as



Figure 1. (a) Multi-core Network-on-Chips, and (b) Processor-Memory
Node

possible by ensuring physical accesses on private data.

III. MULTI-CORE NETWORK-ON-CHIPS WITH HYBRID
DISTRIBUTED SHARED MEMORY

In our Multi-core Network-on-Chips (NoCs), memories
are distributed at network nodes but partly shared. Fig.
1 (a) shows an example of our multi-core NoCs with
hybrid organization of Distributed Shared Memory. The
system is composed of 16 Processor-Memory (PM) nodes
interconnected via a packet-switched mesh network, which
is a most popular NoC topology proposed today [16].
The microarchitecture of a PM node is illustrated in Fig.
1 (b). Each PM node consists of a processor core with
tightly coupled caches, a network interface, a programmable
memory controller and a local memory. As can be observed,
memories are distributed in each node and tightly integrated
with processors. All local memories can logically form a
single global memory address space. However, we do not
treat all memories as shared. As illustrated in Fig. 1 (b),
the local memory is partitioned into two parts: private and
shared. And two addressing schemes are introduced: phys-
ical addressing and logic (virtual) addressing. The private
memory can only be accessed by the local processor core
and it’s physical. All of shared memories are visible to all
PM nodes and organized as a DSM addressing space and
they are virtual. For shared memory access, there requires
a Virtual-to-Physical (V2P) address translation. Such trans-
lation incurs overhead. The philosophy of our hybrid DSM
organization is to support fast and physical memory accesses
for frequent private data as well as to maintain a global and
single virtual memory space for shared data.

We illustrate the organization and address mapping of
hybrid DSM in Fig. 2. As can be seen, a PM node may
use both physical and logical addresses for memory access
operations. Physical addresses are mapped to the local pri-
vate memory region, and logical addresses can be mapped to
both local shared and remote shared memory regions. For #k
Node, its hybrid DSM space is composed of two parts. The
first one is its private memory which is physical addressing.
So the logic address is equal to the physical address in the

Figure 2. Hybrid organization of Distributed Shared Memory

private memory. The second part maps all shared memories.
The mapping order of these shared memories is managed by
the Virtual-to-Physical address translation table. Different
PM nodes may have different hybrid DSM space. For in-
stance, in the hybrid DSM space of #k Node, its local shared
memory region is mapped logically as Shared Memory i+1
following Shared Memory i which is corresponding to the
remote shared memory region in #l Node.

IV. RUN-TIME PARTITIONING

To support the hybrid DSM organization, the multi-core
NoC architecture maintains two registers for each PM node:
Local PM Node No. and Boundary Address (see in Fig. 3).
In each PM node, Local PM Node No. denotes the number
of the local PM node, while Boundary Address denotes
the address of boundary of the private region and the shared
region in the Local Memory. Boundary Address can be
configured at run-time to support dynamic re-organization
of hybrid DSM space.

Fig. 3 shows the memory addressing flow of each PM
node. As shown in the figure, each PM node can respond
to two memory access requests concurrently from the local
PM node and the remote PM node via the network. In the
beginning, the local PM node starts a memory access in its
hybrid DSM space. The memory address is logic. The local
PM node firstly distinguishes whether the address is private
or shared. If private, the requested memory access hits the
private memory. In the private memory, the logic address is
just the physical address, so the address is forwarded directly
to the Port A of the Local Memory. If the memory access is
“write”, the datum is stored into the Local Memory in the
next clock cycle. If the memory access is “read”, the data is
loaded out of the Local Memory in the next clock cycle. The



Figure 3. memory addressing flow

physical addressing is very fast. In contrast, if the memory
address is shared, the requested memory access hits the
shared part of the hybrid DSM space. The memory address
first goes into the Virtual-to-Physical address translation
table (V2P Table). The V2P Table records how the hybrid
DSM space is organized and is responsible for translating
the logic address into two pieces of useful information:
Destination Node No. and Physical Address Offset. As
shown in Fig. 2, the shared part of hybrid DSM space is
composed by all shared memory regions of all PM nodes.
Destination Node No. is used to obtain which PM node’s
shared memory is hit by the requested memory address.
Once the PM node with the target shared memory is found,
Physical Address Offset helps position the target memory
location. Physical Address Offset plus Boundary Address
in the target PM node equals the physical address in the
target PM node. As shown in the figure, Destination Node
No. and Physical Address Offset are obtained out of the V2P
Table. Firstly, we distinguish wether the requested memory
address is local or remote by comparing Destination Node
No. with Local Node No.. If local, Physical Address Offset
is added by Boundary Address in the local PM node to get
the physical address. The physical address is forwarded to
the Port A of the Local Memory to accomplish the requested
memory access. If the requested memory access is remote,
Physical Address Offset is routed to the destination PM node
via the on-chip network. Once the destination PM node
receives remote memory access request, it adds the Physical
Address Offset by the Boundary Address in it to figure out
the physical address. The physical address is forwarded to
the Port B of the Local Memory. If the requested memory
access is “write”, the data is stored into the Local Memory.

Figure 4. A short example of run-time DSM partitioning

If the requested memory access is “read”, the data is loaded
from the Local Memory and sent back to the source PM
node.

Our multi-core NoCs support configuring Boundary Ad-
dress at run-time in order to dynamically adjust the DSM
organization when the program is running. Programmers can
insert the following inline function in their C/C++ program
to change the Boundary Address register.

void Update_BADDR(unsigned int Value);

Fig. 4 shows a short example of run-time partitioning of
hybrid DSM space. Assume that there are two PM nodes
in a 1x2 network. The hybrid DSM space of PM Node
0 contains its private memory region, its shared memory
region and the shared memory region of PM Node 1, while
the hybrid DSM space of PM Node 1 equals its Local



Memory plus the shared memory region of PM Node 0.
In the beginning (see Fig. 4 (a)), datum ‘X’ is in the private
region of the Local Memory in PM Node 1, while datum
‘Y’ and ‘Z’ are in the shared region of the Local Memory
in PM Node 1. Therefore, ‘X’ is invisible to PM Node 0,
while ‘Y’ and ‘Z’ are accessible to PM Node 0. When PM
Node 0 access ‘Y’, the Destination Node No. (i.e. PM Node
1) and Physical Address Offset of ‘Y’ are obtained from
the V2P Table of PM Node 0 in the first phase. A remote
request of memory access is sent to PM Node 1. Once PM
Node 1 receives the request, the Physical Address Offset
plus the Boundary Address in PM Node 1 equals the real
physical address of ‘Y’. Assume that the Boundary Address
in PM Node 1 is re-configured to a larger value during the
program execution (i.e, the private memory part is enlarging)
so that ‘Y’ becomes private. In this situation (see Fig. 4 (b)),
PM Node 0 cannot access ‘Y’. The procedure illustrated by
Fig. 4 can be used to improve the system performance. For
instance, PM Node 0 acts as a producer, PM Node 1 as a
consumer. PM Node 0 produces several data which will be
consumed by PM Node 1. In the beginning, the property of
these data are shared, PM Node 0 firstly stores them into the
shared region of the Local Memory of PM Node 1. After
that, these data are only used by PM Node 1, it’s unnecessary
for PM Node 1 to access them in logic addressing mode.
By changing the boundary address, we can make them be
private. The Virtual-to-Physical address translation overhead
is averted so that the system performance is improved.

The boundary address configuration is flexible to soft-
ware programmers. When changing the boundary address,
programmers need to pay attention to guarantee memory
consistency. In the example of Fig. 4, changing the boundary
address must be after PM Node 0 accomplish storing ‘Y’.
This can be guaranteed by inducing a synchronization point
before PM Node 1 starts re-writing the Boundary Address
register.

Following the example shown in Fig. 4, we formulate the
run-time partitioning of hybrid DSM organization of PM
Node 1 and discuss its performance. To facilitate the analysis
and discussion, we first define a set of symbols in TABLE
I.

We firstly formulate the data access delay of conventional
DSM organization. Memories are thought to be shared in
conventional DSM organization and hence V2P address
translation overhead is involved in every local or remote
memory access. In Fig. 4, PM Node 1’s accessing ‘X’,
‘Y’, ‘Z’, and ‘R’ includes V2P address translation overhead.
Therefore, we can obtain its data access delay by Formula
(1) below.

T1 = N · (x+ y + z) · tls +N · r · trs
= N · tmem +N · tv2p +N · r · tcom

(1)

Formula (1) is subject to

Table I
DEFINITIONS AND NOTATIONS

N data size processed by PM Node 1.
x ratio of private data (e.g. ‘X’ in Fig. 4) to total

data.
y ratio of data with changeable property (e.g. ‘Y’

in Fig. 4) to total data.
z ratio of local shared data (e.g. ‘Z’ in Fig. 4) to

total data.
r ratio of remote shared data (e.g. ‘R’ in Fig. 4)

to total data.
tmem cycles of accessing the Local Memory once.
tv2p cycles of Virtual-to-Physical address translation.
tcom cycles of network communication.
tp cycles of accessing a private datum. (tp =

tmem)
tls cycles of accessing a local shared datum. (tls =

tv2p + tmem)
trs cycles of accessing a remote shared datum. (trs

= tv2p + tmem + tcom)
tbp cycles of changing the Boundary Address once.
m number of boundary address configuration dur-

ing program execution.

x+ y + z + r = 1

For our introduced hybrid DSM organization and its
run-time partitioning, Virtual-to-Physical address translation
overhead is only included when shared data are accessed.
Therefore, in Fig. 4, PM Node 1’s accessing ‘X’ and ‘Y’
doesn’t need V2P address translation. However, the data
access delay contains the extra overhead of changing the
boundary address. We can get the data access delay by
Formula (2) below.

T2 = N · (x+ y) · tp +N · z · tls +N · r · trs + tbp ·m
= N · tmem +N · (z + r) · tv2p +N · r · tcom + tbp ·m

(2)

Formula (2) is subject to{
x+ y + z + r = 1

m 6 N · y

Then, we can obtain the performance gain (γ: defined as
average reduced execution time of accessing a datum) by
Formula (3) below.

γ =
T1 − T2

N
= (x+ y) · tv2p −

tbp ·m
N

(3)

From Formula (3), we can see that
(i) Compared with conventional DSM organization, our

hybrid DSM organization gets rid of Virtual-to-
Physical (V2P) address translation of private memory
accesses and hence obtain performance improvement.
Run-time partitioning further eliminate the V2P ad-
dress translation of memory accesses of data whose
data property is changeable, but it induces extra over-
head of changing the boundary address.



Figure 5. (a) Memory allocation for matrix multiplication, (b) conventional DSM organization, and (c) Hybrid DSM organization with run-time partitioning

Figure 6. Speedup of matrix multiplication

(ii) If private data or data whose data property is change-
able take a lager proportion in parallel programs (i.e. x
and y increase), the hybrid DSM organization demon-
strates higher performance advantage.

(iii) For the same size of parallel programs (x, y, z, and r
are fixed) on hybrid DSM organization, hardware im-
plementation of V2P address translation obtains higher
performance gain than software implementation (tv2p
of hardware solution is greater than that of software
solution).

(iv) The re-configuration of Boundary Address induces
negative performance. However, avoiding frequently
changing the boundary address results in little value
of tbp·m

N and hence alleviates its negative effect on
performance.

V. EXPERIMENTS AND RESULTS

A. Experimental Platform

We constructed a multi-core NoC experimental platform
as shown in Fig. 1. The multi-core NoC uses the LEON3
[17] as the processor in each PM node and uses the Nostrum
NoC [18] as the on-chip network. The LEON3 processor
core is a synthesizable VHDL model of a 32-bit processor
compliant with the SPARC V8 architecture. The Nostrum
NoC is a 2D mesh packet-switched network with config-
urable size. It serves as a customizable platform.

Figure 7. Performance improvement for matrix multiplication

B. Application 1: Matrix Multiplication

The matrix multiplication calculates the product of two
matrix, A[64, 1] and B[1, 64], resulting in a C[64, 64]
matrix. We consider both integer matrix and floating point
matrix. As shown in Fig. 5 (a), matrix A is decomposed
into p equal row sub-matrices which are stored in p nodes
respectively, while matrix B is decomposed into p equal col-
umn sub-matrices which are stored in p nodes respectively.
The result matrix C is composed of p equal row sub-matrices
which are respectively stored in p nodes after multiplication.

Fig. 5 (b) shows the conventional DSM organization and
all data of matrix A, C and B are shared. Fig. 5 (c) shows
the hybrid DSM organization. The data of matrix A and C
are private and the data of matrix B are shared. Because
the sub-matrices of matrix A and C are only accessed by
their own host PM node and matrix B are accessed by all
PM nodes. In this experiment, the system size increases by
a factor of 2 from 1, 2, 4, 8, 16, 32 to 64. While mapping
the matrix multiplication onto multiple cores, we perform a
manual function partitioning and map the functions equally
over the cores.

Fig. 6 shows the performance speedup of the matrix
multiplication with conventional DSM organization. When
the system size is increased from 1 to 2, 4, 8, 16, 32 and
64, the application speedup (speedup Ωm = T1core/Tmcore,
where T1core is the single core execution time as the



Figure 8. (a) Memory allocation for 2D DIT FFT, (b) conventional DSM organization, and (c) Hybrid DSM organization with run-time partitioning

baseline, Tmcore the execution time of m core(s).) is from
1 to 1.983, 3.938, 7,408, 10.402, 19.926 and 36.494 for
the integer computation, and from 1, 1.998, 3.985, 7.902,
13.753, 27.214, 52.054 for the floating point computation.
The relative speedup for the floating point multiplication
is higher than that for the integer computation. This is as
expected because when increasing the computation time, the
portion of communication delay becomes less significant,
thus achieving higher speedup. Fig. 7 shows performance
improvement of the hybrid DSM organization with respect
to the conventional DSM organization. We calculate the
performance improvement using the following formula:

Perf. Impr. =
Speeduphybrid DSM - Speedupconventional DSM

Speeduphybrid DSM

For the integer matrix, the performance increases by
34.05%, 29.82%, 29.59%, 28.79%, 25.66%, 22.77%, and
20.03%, for 1x1, 1x2, 2x2, 2x4, 4x4, 4x8 and 8x8 sys-
tem size, respectively. For the floating point matrix, the
performance is increased by 7.71%, 4.74%, 4.69%, 4.58%,
4.13%, 3.97%, and 3.68% for 1x1, 1x2, 2x2, 2x4, 4x4, 4x8
and 8x8 system size, respectively. The improvement for the
floating point is lower because the floating point has a larger
percentage of time spent on computation, thus reducing
the communication time in memory accesses achieves less
enhancement. Note that, the single core case has a higher
improvement because all data accesses are local shared
for the conventional DSM organization and private for the
hybrid DSM organization.

C. Application 2: 2D DIT FFT

We implement a 2D radix-2 DIT FFT. As shown in Fig. 8
(a), the FFT data are equally partitioned into n rows, which
are stored on the n nodes, respectively. According to the 2D
FFT algorithm, the application first performs FFT on rows
(Step 1). After all nodes finish row FFT (synchronization
point), it starts FFT on columns (Step 2). We experiment
on two DSM organizations. One is the conventional DSM
organization, as shown in Fig. 8 (b), for which all FFT data
are shared. The other is the hybrid DSM organization, as

Figure 9. Speedup and performance improvement of 2D DIT FFT

illustrated in Fig. 8 (c). Since the data used for row FFT
calculations at step 1 are stored locally in each node and
are only to be used for column FFT calculations at step
2, we can dynamically re-configure the boundary address
(BADDR in Fig. 8) at run time, such that, the data are private
at step 1 but become shared at step 2.

Fig. 9 shows the speedup of the FFT application with
the conventional DSM organization, and performance en-
hancement of the hybrid DSM organization with run-time
partitioning. As we can see, when the system size increases
from 1 to 2, 4,, 8, 16, 32, and 64, the speedup with the
conventional DSM organization goes up from 1 to 1.905,
3.681, 7.124, 13.726, 26.153 and 48.776. The speedup
for the hybrid DSM organization is normalized with the
single core with the conventional DSM organization. As
Fig. 9 shows, for the different system sizes, 1, 2, 4, 8,
16, 32 and 64, the performance improvement is 34.42%,
16.04%, 15.48%, 14.92%, 14.70%, 13.63% and 11.44%,
respectively. Note that, the single core case has a higher
improvement because all data accesses are local shared the
conventional DSM organization and private for the hybrid
DSM organization, and there is no synchronization overhead.



VI. CONCLUDING REMARK

DSM organization offers ease of programming by main-
taining a global virtual memory space as well as imports
the inherent overhead of Virtual-to-Physical (V2P) address
translation, which leads to negative performance. Observing
that it’s unnecessary to perform V2P address translation for
private data accesses, this paper introduces hybrid DSM
organization and run-time partitioning technique in order to
improve the system performance by reducing V2P address
translation overhead as much as possible. The philosophy of
our hybrid DSM organization is to support fast and physical
memory accesses for private data as well as to maintain a
global and single virtual memory space for shared data. The
run-time partitioning supports re-configuration of the hybrid
DSM organization by dynamically changing the boundary
address of private memory region and shared memory region
during the program execution. The experimental results of
real applications show that the hybrid DSM organization
with run-time partitioning demonstrates performance advan-
tage over the conventional DSM counterpart. The percentage
of performance improvement depends on problem size, way
of data partitioning and computation/communication ratio of
parallel applications, system size, etc. In our experiments,
the maximal improvement is 34.42%, the minimal improve-
ment 3.68%. In the future, we shall extend our work to cover
more applications.

ACKNOWLEDGMENT

The research is partially supported by the FP7 EU
project MOSART (No. IST-215244), the Major Project of
“Core electronic devices, High-end general purpose pro-
cessor and Fundamental system software” in China (No.
2009ZX01034-001-001-006), the Innovative Team of High-
performance Microprocessor Technology (No. IRT0614),
the National Natural Science Foundation of China (No.
61070036), and the National 863 Program of China (No.
2009AA011704).

REFERENCES

[1] M. Horowitz and W. Dally, “How scaling will change
processor architecture,” in Int’l Solid-State Circuits Conf.
(ISSCC’04), Digest of Technical Papers, 2004, pp. 132–133.

[2] S. Borkar, “Thousand core chips: A technology perspective,”
in Proc. of the 44th Design Automation Conf. (DAC’07), 2007,
pp. 746–749.

[3] A. Jantsch and H. Tenhunen, Networks on chip. Kluwer
Academic Publishers, 2003.

[4] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of network-on-chip,” ACM Comp. Surveys, vol. 38,
no. 1, pp. 1–51, Mar. 2006.

[5] J. D. Owens, W. J. Dally et al., “Research challenges for on-
chip interconnection networks,” IEEE MICRO, vol. 27, no. 5,
pp. 96–108, Oct. 2007.

[6] S. Vangal, J. Howard, G. Ruhl et al., “An 80-tile 1.28tflops
network-on-chip in 65nm cmos,” in Int’l Solid-State Circuits
Conf. (ISSCC’07), Digest of Technical Papers, 2007, pp. 98–
100.

[7] E. Marinissen, B. Prince, D. Keltel-Schulz, and Y. Zorian,
“Challenges in embedded memory design and test,” in Proc.
of Design, Automation and Test in Europe Conf. (DATE’05),
2005, pp. 722–727.

[8] X. Chen, Z. Lu, A. Jantsch, and S. Chen, “Supporting
distributed shared memory on multi-core network-on-chips
using a dual microcoded controller,” in Proc. of the Conf. on
Design, automation and test in Europe (DATE’10), 2010, pp.
39–44.

[9] M. Monchiero, G. Palermo, C. Silvano, and O. Villa, “Ex-
ploration of distributed shared memory architecture for noc-
based multiprocessors,” in Proc. of the 2006 Int’l Conf. on
Embedded Computer Systems: Architectures, Modeling and
Simulation, 2006, pp. 144–151.

[10] L. Xue, O. Ozturk, F. Li, M. Kandemir, and I. Kolcu,
“Dynamic partitioning of processing and memory resources
in embedded mpsoc architectures,” in Proc. of the Conf. on
Design, automation and test in Europe (DATE’06), 2006, pp.
690–695.

[11] S. Srinivasan, F. Angiolini, M. Ruggiero, L. Benini, and
N. Vijaykrishnan, “Simultaneous memory and bus partition-
ing for soc architectures,” in Proc. of IEEE Int’l Conf. on SoC
(SoCC’05), 2005, pp. 125–128.

[12] S. Mai, C. Zhang, and Z. Wang, “Function-based memory
partitioning on low power digital signal processor for cochlear
implants,” in Proc. of IEEE Asia Pacific Conf. on Circuits and
Systems (APCCAS’08), 2008, pp. 654–657.

[13] A. Macii, E. Macii, and M. Poncino, “Improving the ef-
ficiency of memory partitioning by address clustering,” in
Proc. of the Conf. on Design, automation and test in Europe
(DATE’03), 2003, pp. 18–23.

[14] G. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning
of shared cache memory,” J. Supercomputing, vol. 28, no. 1,
pp. 7–26, Apr. 2004.

[15] X. Qiu and M. Dubois, “Moving address translation closer
to memory in distributed shared-memory multiprocessors,”
IEEE trans. Parallel and Distributed Systems, vol. 16, no. 7,
pp. 612–623, 2005.

[16] P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Per-
formance evaluation and design trade-offs for network-on-
chip interconnect architectures,” IEEE Trans. on Computers,
vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[17] “Leon3 processor,” in http://www.gaisler.com.

[18] A. Jantsch et al., “The nostrum network-on-chip,” in
http://www.ict.kth.se/nostrum.


