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Abstract—Due to the increasing abstraction gap between the
initial system model and a final implementation, the verification of
the respective models against each other is a formidable task. This
paper addresses the verification problem by proposing a stepwise
application of combined refinement and verification activities in
the context of synchronous model of computation. An implemen-
tation model is developed from the system model by applying pre-
defined design transformations which are as follows: 1) semantic
preserving or 2) nonsemantic preserving. Nonsemantic-preserving
transformations introduce lower level implementation details,
which are necessary to yield an efficient implementation. Our
approach divides the verification tasks into two activities: 1) the
local correctness of a refined block is checked by using formal
verification tools and predefined properties, which are developed
for each nonsemantic-preserving transformation, and 2) the global
influence of the refinement to the entire system is studied through
static analysis. We illustrate the design refinement and verification
approach with three transformations: 1) a communication refine-
ment mapping a synchronous channel to an asynchronous one
including a handshake mechanism; 2) a computation refinement,
which introduces resource sharing in a combinational computa-
tion block; and 3) a synchronization demanding refinement, where
an algorithm analyzes the influence of a local refinement to the
temporal properties of the entire system and restores the system’s
correct temporal behavior if necessary.

Index Terms—Design refinement, formal verification, synchro-
nization, system design.

I. INTRODUCTION

A CONTINUOUS trend in design methodologies is to
start the design process at a higher abstraction level that

allows us to turn more attention to the system functionality,
independent of any certain implementation architecture. Since
the system description at this level is too abstract for today’s
synthesis tools, the designer has to create a proper highly
detailed model for the soft- and hardware synthesis. Due to the
large size of the system and the huge abstraction gap between
the initial system model and an implementation model, the
verification of these two models against each other is a very
complex task.

In this paper, we advocate a system development process
which, in the first step, describes the system as a synchro-
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Fig. 1. System design through design transformations.

nous deterministic model with unlimited resources like ideal
functions, memories, and data types. This system model is
later on refined by using design transformations that add the
necessary implementation details (Fig. 1). Refinement-based
design development was introduced to the electronic design
automation community by Gajski et al. in the context of the
SpecC methodology [1]. A final implementation model has to
satisfy the given design constraints and to be ready for the
synthesis in soft- and hardware. As long as we apply only
semantic-preserving transformations, we can assume that the
refined models are correct. However, nonsemantic-preserving
transformations which, for example, replace an unlimited mem-
ory element with a finite one or extend an ideal arithmetic
function with an overflow behavior are an inseparable part of
the design process. Since the semantics of a model is changed
after a nonsemantic-preserving transformation, the verification
of its correctness becomes very important.

We propose to verify formally only the local proper-
ties of a refined system block immediately after applying a
nonsemantic-preserving transformation. Therefore, we define
to every nonsemantic-preserving transformation in the design
library a set of verification properties and proper abstraction
techniques. If the refinement influences the rest of the system,
we study this influence by using methods of static analysis.
For example, in Fig. 2, a refinement separates process P4

into processes P5 and P6. The verification task is to check
whether the pair of new processes calculates the same results
as process P4. The computation in processes P5 and P6 may
take more time than in process P4 and, therefore, cause delayed
data arrival at the lower input of process P3. Based on the
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Fig. 2. Local refinement, verification of local properties, and synchronization
of the model.

structure analysis of the refined model M ′
i+1, a synchronization

algorithm adds a delay process at the upper input of P3, which
makes the model Mi+1 latency equivalent to the original one.

In this paper, we present an extended picture about the
refinement-based verification approach [2] that we have pro-
posed for formal system design methodologies. In addition
to the development of verification properties for local block
level correctness checking [2], [3], in this paper, we show how
synchronization techniques [4] can be applied for preserving
the correct system behavior in the global sense.

In Section II, we give an overview about synchronous lan-
guages and system level design methodologies, verification
and abstraction techniques, and synchronization approaches.
In Section III, we describe the accompanied design and ver-
ification process. In Section IV, we introduce the design and
verification process through communication, computation, and
synchronization demanding refinements. In Section V, we il-
lustrate the verification and synchronization techniques in the
context of a digital audio equalizer design process. Section VI
concludes this paper.

II. RELATED WORK

Today’s design languages, like SystemC, SystemVerilog, or
Esterel, are only some examples indicating that the starting
point of system design moves to higher levels of abstraction.
This corresponds to the following statements of Edwards et al.
[5]: 1) In a successful system design methodology, the initial
system model has to be described at a high abstraction level;
2) in addition, verification has to be done at a higher level of
abstraction. At many system level design languages, the system
verification issues are kept in mind; and 3) the final implemen-
tation has to be derived through correct-by-construction design
decisions. A good example is the work in [6], where correct-
by-construction design transformations refine the initial model
into a final implementation

In this paper, we target the design methodologies, where
the design flow starts at a high abstraction level and systems

are described with the synchronous model of computation ac-
cording to the terminology of Lee and Sangiovanni-Vincentelli
[7]. In addition to the application of semantic-preserving de-
sign transformations, we also allow nonsemantic-preserving
transformations. Since the latter class of design refinements
by their nature can produce models, which are not correct-by-
construction or do not satisfy the given design constraints, the
correctness of refined models has to be verified.

Several languages and design methodologies are developed
to make the application of formal verification methods easier.
Esterel [8] is a synchronous language to describe systems at
a high abstraction level. Based on the formal semantics, an
Esterel model can be verified through theorem proving or a se-
mantic check method, where the verified property is defined as
a syntactic rule. Lustre [9] is a synchronous data flow language
that is used to describe the behavior of reactive systems. The
model in Lustre can be considered as a finite state structure,
where the local states in processes form the global state for
the system. In order to verify Lustre models, binary decision
diagram (BDD)-based approaches similar to model checking
can be used. A good example of verification-oriented languages
is Lava [10]. Based on the functional language Haskell, Lava
describes both hardware and the required properties that the
hardware has to satisfy in the same model. In order to verify
formally a Lava program, theorem proving is applied.

In contrast to our approach, these methodologies do not
address the application of nonsemantic-preserving refinements
nor target the systematic verification of refined models. We
give guidelines to the designer in the verification questions
providing the right verification and abstraction techniques for
predefined nonsemantic-preserving design transformations.

The SpecC methodology addresses transformational design
refinement between models at different levels of abstractions.
In SpecC, an implementation that has the expected functionality
and satisfies the design constraints can be developed auto-
matically. In order to verify that the expected implementation
is correct, Abdi and Gajski [11] show that all used transfor-
mations preserve the system’s correct behavior. Compared to
our approach where the designer has to choose between the
design transformations but, in such a way, can build different
implementations, the SpecC method derives an implementation
on a very certain architecture and leaves less freedom to the
designer to decide over the implementation options.

In verification, simulation is the most popular technique, but
only a limited amount of system behaviors can be observed
in this way. In order to have a complete picture of the system
behavior, formal methods have to be applied. Theorem proving
[12], [13] can be considered as the most powerful verification
technique, since even systems with an infinite state space at dif-
ferent levels of abstraction can be analyzed. However, working
with theorem proving requires special skills and knowledge,
which the designer usually does not have. In contrast, model
checking [14] is easy to use and efficient to find errors in finite
state systems, but it is sensitive to the number of states in
the model. Roughly estimated, the time and memory needed
for verification grows exponentially with the number of states.
Therefore, all unnecessary behaviors have to be abstracted away
before we verify properties in a model.
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In order to use model checking efficiently, we define a
set of properties to every design transformation and combine
the properties with proper abstraction strategies to check the
correctness of the refined design block. Quite often, this re-
quires us to devise new abstraction techniques like polynomial
abstraction [3] that we have developed for verification of refined
arithmetic computation blocks at a high level of abstraction.
Transformations that introduce resource sharing, pipelining,
and split or merge of processes with arithmetic functionality
are only some examples of them.

Several abstraction techniques have been proposed in the
past that can solve almost similar verification problems as
polynomial abstraction. The idea of uninterpreted function
symbols [15] is used to simplify model checking in [16]. The
actual values and instructions in a processor are replaced with
symbolic ones, and in such a way, an abstract model is created
for verification. Clarke et al. [17] present a methodology named
the counter example-guided abstraction refinement. They start
creating the initial abstract model by analyzing the control
structure of the system. If a model checker finds a counter
example in the abstract model, which is not faulty in the actual
system, the abstract model will be refined such that the error is
eliminated. This procedure continues until a real error is found
or the system correctness is proven.

Depending on the type of verification properties, control or
data, abstraction can be applied to respective variables. Hojati
and Brayton [18] present how to separate a design into control
and data part, and for verification of data-dependent properties,
they replace all data variables with one-bit variables. The latter
idea is further elaborated in [19], where, accompanied with
the interval propagation theory [20], verification of arithmetic
system blocks in Very High Speed Integrated Circuit Hardware
Description Language is addressed.

All of the previously mentioned abstraction techniques are
developed to solve certain verification problems that are not the
same as the problem raised by us. Therefore, either they are not
as easy to apply as polynomial abstraction or they cannot verify
refined models with the ideal data types at a high abstraction
level.

Although most of the design transformations refine only
one block at a time, the change in a single block may influ-
ence the entire system. For instance, the functionality of an
arithmetic block remains the same after introducing resource
sharing, but due to the feedback signals in resource sharing, the
refined block has an internal delay. Therefore, the data delivery
to other blocks is delayed, and the system behavior in the
synchronous computational model is changed. The described
problem is not solvable by the classical retiming techniques
[21], since these techniques address synchronization after re-
locating already existing delay elements. The problem can be
used by using desynchronization techniques [22], [23]. These
techniques map the original synchronous model to an asyn-
chronous one, for example, to the globally asynchronous and
locally synchronous (GALS) model, where the instant when a
process is executed depends on the availability of the necessary
input data. Although these kinds of models are less sensitive
to the computation and communication delays, the switching
to an asynchronous model may be impractical since formal

verification and formal design transformations in asynchronous
models are much more effort than in synchronous models.

An alternative solution to the delay problem is to use the
latency insensitive design (LID) [24] technique, which targets
the mapping of IP-block-based synchronous models to hard-
ware. Due to the high clock frequency and the difference in
wire lengths between IP blocks, concurrently produced data
items may reach destination blocks at different clock cycles,
which leads to unexpected system behaviors. LID surrounds IP
blocks with wrappers that stall processing if input data are not
available and replaces synchronous channels between IP blocks
by handshake channels including relay stations. The handshake
mechanism distributes stalling messages, and a relay station
stores data items if the destination process cannot consume
them. In order to avoid relay station, bridge-based communi-
cation channels can be used between IP blocks [25], or to use
schedulers at every wrapper [26]. Similar to GALS models, the
computation in a synchronous IP block is executed when the
block has received all necessary input data.

Although LID is a common practice in the system-on-chip
design implementation, we do not use this approach at system
level since models may contain a big number of small computa-
tion processes, and it is impractical to equip them with wrappers
and schedulers and replace simple synchronous signals with
handshake channels. Not only refinement but also verification
gets much more complex if the system’s functionality includes
additional stalling behaviors in a process execution mechanism.
In order to avoid discontinuities in the design process caused
by switching of computational models, we have proposed a
more proper synchronization technique for system level design
[4], [27]. Our technique adds only simple delay elements to
preserve the concurrent data arrival at destination processes and
preserves the same synchronous computational model.

In our previous publications, we have introduced the ap-
proach for local verification of refined design blocks after
nonsemantic-preserving design transformation [2], the poly-
nomial abstraction technique for computation refinements [3],
and the synchronization techniques for temporal refinements
[4], [27]. In this paper, we present the complete picture how
the local correctness of refined blocks can be checked by
using predefined properties and how the influence of a local
refinement to the whole system can be compensated by the
proposed synchronization techniques.

III. DESIGN AND VERIFICATION

A. Models and Design Flow

In this paper, we consider a system as a network of concur-
rent processes that communicate via synchronous signals, as in
Lustre, Esterel, and ForSyDe [28]. According to the synchro-
nous hypothesis, computation in processes and communication
between them take no time.

A system example in Fig. 3 contains six processes Pi con-
nected by eight signals si. A set of processes can be grouped
into a block of processes as a process network, and blocks
may run at a higher clock speed than the rest of the system.
The main classes of processes are as follows: combinational
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Fig. 3. System model: Blocks, processes, and signals.

processes, finite state machine processes, delay processes, and
domain interfaces to adapt clock domains.

A signal is defined as a sequence of events {e0, e1, e2,
. . . , ei, . . .}, where an event ei carries a value v and the index i
is used as a time tag. All signals share the same set of tags for
synchronization purposes. The direction of a signal is from the
source process to the destination process, and every process has
only one output signal. Since for some tags a signal may not
contain any value, there is a special absent (⊥) value. A data
type D is extended to D⊥ by adding the value ⊥ to its domain.
This allows one to model an aperiodic data rate and to keep the
total order of events.

A combinational n-input process takes arguments as a ded-
icated combinational function f and a set of input signals
s0, . . . , sn−1. For each tag i, the process consumes from the
input signals events with the tag i carrying values v0, . . . , vn−1

and appends to its output signal sn an event with the tag i and
a value vn = f(v0, . . . , vn−1). Similarly, a finite state machine
process takes arguments as state and output functions, an initial
state value, and input signals.

The starting point of the design flow is the system model
that describes the system’s functionality in the sense of ideal
functions. This model, for instance, uses unlimited memory
elements and arithmetic functions, which are free of side ef-
fects like fixed bit widths and overflow behaviors. The model
does not include any nondeterministic behavior and uses the
synchronous model of computation. This high abstraction level
makes it possible to concentrate on the system functional
behavior without considering any lower level implementation
details coming from the system structure and architecture.

In order to implement the system in hardware and software,
the further design refinement process extends the system model
with necessary lower level details concerning a certain design
platform. For instance, an implementation model contains only
finite data types, bounded memories, and arithmetic functions
with overflow behavior. In addition, an implementation model
may contain synchronous subdomains operating at different
clock frequency. The last stage of the refinement process is an
implementation model that can be mapped into soft- and hard-
ware. Hereafter, the classical register transfer level synthesis
and compile flow continues.

In order to refine the system model, the designer chooses
predefined design transformation rules from the transformation
library and applies only these rules to the model. Although the
refinement process is not automatic in the sense that the de-
signer has to manually choose transformations, the applications
of transformations, abstraction, and verification of the refined
models require only minor interaction.

Within the refinement process, it may occur that there is
a need for a specific transformation, not yet included in the
library. In this case, the transformation has to be created within
the design development process and added to the design library.
Usually, there are only slight differences between transforma-
tions, which belong to the same class, and a new transformation
can be easily created by modifying or extending an existing one.
Similarly, the same verification properties and abstraction tech-
niques can be used. Thus, the design library grows continuously
in time.

Although the design library extending increases the design
time, the impact to the development process of the further
systems is highly valuable. It is forbidden that the designer
refines the model based on the previous knowledge and ex-
pertise in an ad-hoc manner. If an ad-hoc refinement is used,
it is the designer’s responsibility to find a good method for
the verification of the refined model. The refinements and
verification strategies that the methodology provides may also
be used outside of the formal step-by-step design process.
Currently, the design library developed in the context of the
ForSyDe methodology [29] is rather small and contains only
transformations, which have been defined for the design of
small systems within academic research projects.

B. Design Transformations

All design transformation rules in the library are charac-
terized by its name, the required format and constraints to
the original process network, the format of the transformed
process network, and the impact to the design. Fig. 4 shows the
design flow starting from the development of the system model
M0 to an implementation model Mn through transformations
Ti. Given a model Mi, a process network PN in Mi, and
a transformation rule R, the transformation T (Mi, R, PN) →
Mi+1 = M [R(PN)/PN] refines the process network PN. The
result of the transformation is an intermediate system model
Mi+1 where, in contrast to the model Mi, the process network
PN is replaced with R(PN).

According to their characteristics, design transformations are
classified as semantic-preserving and nonsemantic-preserving
transformations. The former do not change the meaning of
the model, rather they change the structure by merging and
splitting processes. In general, they are used for optimization of
the design. Nonsemantic-preserving transformations change the
meaning of a model and introduce new behaviors. Although the
semantics of the original model is changed, the refined model
may behave the same under given assumptions. For instance, an
infinite FIFO buffer can be replaced with a realistic finite one if
the data rate on the buffer input does not exceed the limit, which
causes the buffer to overflow. Thus, if we know the expected
data rate, we can formally prove that the refined model with
changed semantics behaves identical to the original one if the
buffer size is sufficiently large.

C. Verification

The initial system model that is derived from “an English
written text” expresses the ideal functionality of the system.
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Fig. 4. Design flow.

Fig. 5. Verification flow.

Simulation-based verification at this level is much more appro-
priate than that at lower levels, since we do not need to check
for effects caused by limited resources like buffer overflows
or the out-of-range values in arithmetic functions with fixed
bit widths. Simulation can also be used for the verification of
lower level models, but formal methods have to be applied as
a complement after nonsemantic-preserving transformations if
the exhaustive simulation is possible.

The fact that the system model is refined by using the trans-
formation rules predefined in the transformation library makes
it possible to define for every transformation a verification
strategy (Fig. 5). Since we know the impact of transformations
to the model, we can target exactly the critical properties in
verification and do not consider the preserved properties at
every step.

In our approach, we define a set of verification properties to
every nonsemantic-preserving design transformation rule in the
transformation library. The properties are described as temporal
logic CTL∗ expressions. Depending on the design constraints
given of the design block under verification, the predefined
properties may be incomplete, e.g., we are not aware of the

exact bit width of the expected input words to an arithmetic
block, or the data rate of a complex asynchronous communica-
tion channel. Therefore, we provide property templates in the
property library that the designer can easily extend by filling in
the exact parameters derived from the design constraints.

Accompanied with the predefined verification properties, the
methodology provides abstraction techniques for every specific
property in the abstraction library. In fact, the right abstraction
methods are very important, since model checking suffers from
the state space explosion problem and the design block has to be
simplified as much as possible. The application of an unsuitable
abstraction may remove an erroneous behavior from the model
and render the further model checking useless.

Since we verify refined blocks by locally splitting them out
of the system, the input stimuli to these blocks are missing.
In some cases, the stimuli can be expressed in the verification
property or defined as the input data type of the abstract block.
For instance, if a small set of input values is enough to decide
over the correctness of a block, the model checker can assign
values from an abstract input domain to the block’s input in a
nondeterministic manner. In order to model periodic patterns
as input stimuli, we provide stimuli generators in the generator
library that are reconfigurable finite state machines. A designer
can parameterize them according to the design constraints, e.g.,
to generate n input tokens within every m clock cycles.

In this paper, we have used the Symbolic Model Verifier
(SMV) model checker [30]. The rules how to map a synchro-
nous model in ForSyDe language to the SMV language can be
found in [2]. The hierarchical structure of programs in both
languages is quite similar, which makes it simple to map a
model from one language to the other. The only limit comes
from the ideal data types in the ForSyDe models, which are not
supported by SMV—since its models are restricted to be finite.
Therefore, the designer has to bind the range of values for all
variables before applying model checking.

The complete verification flow is shown in Fig. 5. The
transformation rule Ri+1 refines the process network PNj of
the model Mi into Ri+1(PNj). According to the transformation
rule Ri+1, we select necessary properties, abstraction tech-
niques, and input stimuli generators for verification of the re-
fined model. We complete the properties and stimuli generators
according to the design constraints and translate the abstract
process network PNAj to the SMV language. After that, we run
the SMV model checker to verify if the given properties hold
or not.

D. Scope and Limitation

Only one design block is refined at time in our approach.
All local nonsemantic-preserving design transformations are
equipped with verification attributes, which are required to
check if the refined blocks behave correctly and satisfy the
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Fig. 6. Main blocks of a digital audio equalizer.

design constraints. Obviously, a local refinement in one domain
may cause mismatches in some other domain and lead to un-
expected system behaviors. For example, a computation refine-
ment that introduces local resource sharing causes delayed data
delivery to destination processes due the increased computation
time, which is a change in the communication domain, although
the refined block locally behaves as expected. Therefore, the
global influence of design transformations has to be studied
from the characteristic functions, which are given for each
transformation. We illustrate the global influence in the context
of a resource sharing refinement in finite-impulse response
(FIR) filters. In order to synchronize the entire system after
the local refinement, we propose a synchronization technique,
which ensures that the system after the local refinement and
global synchronization is latency equivalent to the original
model.

In the following section, we present the development of
verification properties and abstraction techniques in the context
of communication and computation refinements and synchro-
nization issues. Nonsemantic-preserving transformations are
explained through the refinement of a digital audio equalizer,
which is shown in Fig. 6. A communication refinement replaces
the synchronous channel between the button control and the
audio analyzer with an asynchronous channel. Computation
refinements introduce resource sharing in FIR filters of the
audio filter and in fast Fourier transform (FFT) unit of the audio
analyzer. Due to a temporal change caused by the introduction
of resource sharing in the computation blocks, a synchroniza-
tion technique renders the refined model latency equivalent to
the original model.

IV. LOCAL DESIGN TRANSFORMATIONS

A. Communication Refinements

The transformation SynchronousChannelToHandshake
shown in Fig. 7 is an example of communication refinements
that form a special class in the transformation rule library. It is
used to prepare a synchronous model for mapping to an asyn-
chronous implementation. The application of this transforma-
tion refines a synchronous channel between two computation
blocks to an asynchronous communication channel. The refined
channel implements a handshake protocol that can be used
to model a communication interface between hardware and
software domains, for example, adapting the equalizer’s button
control and distortion control blocks that are implemented in
software to the other blocks that are implemented in hardware.

In order to apply this transformation, the original synchro-
nous channel has to fulfill the precondition—the data type of the
channel is absent extended (V⊥), i.e., in addition to the values
in the domain of V , the cannel can carry absent values. The

Fig. 7. Refinement into a handshake protocol.

result of the transformation is an asynchronous channel, which
is implemented by three processes—FIFO, Send, and Receive.
When Send is idle, it tries to read data from FIFO. If the reading
was successful, then Send emits the message DataReady to
Receive, and after receiving the message Ready, it sends the
data. After the data are received, Receive sends a message Ack
to Send. If the channel is busy with the transfer of data through
the channel, the data items appearing on the channel input will
be stored in FIFO.

Obviously, the data transportation through the refined chan-
nel requires longer time than in the original channel, since the
handshake mechanism makes many steps in Send and Receive.
If we model the handshake-protocol-based channel in the syn-
chronous computational model, the data transportation delay of
the channel is several clock cycles. Thus, the temporal behavior
of the refined model is quite different from the original one. In
addition, the size of the buffer has to correspond to the traffic
load on the channel input in order to avoid data overflow in the
buffer. In order to verify that the refined channel implements the
functionality in the design specification and satisfies the given
design constraints, the rule SynchronousChannelToHandshake
points to four properties as critical issues that the designer
should check: 1) reliability; 2) latency; 3) bandwidth; and
4) preservation of data order [2].

The reliability property verifies that all the data items appear-
ing on the channel input will be transferred through the channel
without any data loss, except the loss if the FIFO buffer was full
at the data arrival.

The reliability property is formulated in CTL∗ as

SPEC AG ((input_stream.Con = Prst &

input_stream. = 0 &

fifo_size < SIZE− 1)− >

AF (output.Con = Prst

& output.Val = 0)).

The property says: “if there is at least one empty slot in the
FIFO buffer (SIZE-1) when a data item Prst 0 appears on the
channel input, then always this data item will eventually be
transferred to the channel output.” The data type of the channel
is defined as a structure, where the constructor Con separates
absent and present values and Val carries the value in present
events. Before verifying this property, we have to apply data
abstraction to reduce the size of the model. Since the channel is
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Fig. 8. Transformation: Merging of single-input combinational processes.

insensitive to the exact values in present events and the model
checker analyzes all possible system behaviors, it is enough that
the channel data type contains the absent value and only two
different present values. Prst 0 is the special value described in
the CTL property, and Prst 1 represents all the rest of values.
Due to the abstract definition of the channel input data type, the
model checker can form any sequence with these three values
and model them on the channel input.

The latency property checks if the channel can transfer a
data item through the channel within a number of clock cycles
specified by the designer. In order to find the maximum ratio
of present and absent values on the channel input, which does
not cause buffer overflow, the bandwidth property is defined.
The fourth property checks if the present values on the channel
output preserve the same order they have on the channel input.
The CTL definitions and a more detailed discussion of the
latter properties can be found in [2]. The given properties
express a set of general assumptions about correct behavior of
a communication channel. Thus, these properties can be used
to verify other communication channels that are defined by the
designer. However, the verification engineer has to approve the
given set of properties for a new channel or to add relevant
verification properties.

B. Computation Refinements

We have developed several design transformations that
change the model by relocating functionalities from one com-
binational process to another to balance the computation load
or to find an optimal structure. The simplest kinds of trans-
formations are the splitting and merging of combinational
processes. For example, a design transformation that merges
two combinational processes with one input and one output
is shown in Fig. 8. The transformed process that applies the
sequential composition (g ◦ f) of combinational functions f
and g to input values is semantically equivalent to the compo-
sition of processes that apply the same functions sequentially.
Verification in the transformed process is not essential, since
the applied design transformation is semantic preserving.

A final implementation model cannot be derived from the
ideal system model without applying nonsemantic-preserving
transformations, and therefore, the refined models have to be
verified formally. It is not always straightforward to simplify the
model for formal verification by using the existing abstraction
techniques, and new techniques have to be developed. In the
following, we take up the verification of arithmetic computation

Fig. 9. System structure.

Fig. 10. Sequential model of FIR filter.

blocks, where transformations introduce resource sharing for
component reuse.

In the system model, most of the arithmetic functions are
described as combinational computation blocks using ideal data
types, which keeps the model simpler. To implement larger
arithmetic circuits as combinational functions is impractical
and often restricted by the limited chip area in hardware.
Instead, a polynomial specification can be split into smaller op-
erations and implemented on a data path [31]. The transforma-
tion CombinationalToResourceSharing refines a combinational
arithmetic block to a sequential circuit (Fig. 9) and, in such a
way, introduces component reuse. The refined block includes a
controller to execute operation on a data path, which contains
registers to store intermediate computation results.

Let us consider the refinement of an n-stage FIR filter
from the equalizer’s audio filter block, which has the func-
tional specification written as the polynomial FFIR(c1, . . . ,
cn, d1, . . . , dn) = Σn

i=1ci ∗ di that can be modeled as a com-
binational computation block. The variables ci and di are the
ith coefficient of the filter and the i − 1 clock cycles delayed
input value, respectively. A possible sequential implementation
of FFIR as a controller and a data path is given in Fig. 10.

The additional signals, start and ready, are used to execute
computation and to announce the available result. The con-
troller finite-state machine (FSM) is configured so that the data
path calculates a term ci ∗ di at every clock cycle and sums
the terms in the internal register reg. The initial value of reg
is the constant zero. Due to the additional signals, start and
ready, and the increase in the latency compared to the original
combinational process, the refined block is not semantically
equivalent to the original block.

In order to simplify the verification in sequential computation
blocks with ideal data types at a high abstraction level, we
have proposed the polynomial abstraction technique [3]. The
abstraction technique relies on two theorems: 1) The fundamen-
tal theorem of algebra allows one to verify two polynomials by
a small number of input assignments and 2) the application of
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the Chinese remainder theorem makes it possible to split the
verification task into even smaller parts.

Based on the fundamental theorem of algebra [32], we have
proven that two multivariable polynomials S(x) and I(x), with
the degree of xi equal to ki, are equivalent if they evaluate
pairwise to the same result for any combination of input
assignments where every xi gets ki + 1 different values [3].
Thus, if we have a sequential design implementation I(x)
with a polynomial specification S(x), we need to find the
maximum degree of every variable in these polynomials, and
according to the degree, assign a fixed number of different
values for the equivalence check. For the degree calculation,
we have used a method that is similar to symbolic execution.
We analyze the computation on the data path based on the
controller behavior starting from the moment when the signal
start goes high and finishing when the computation result is
ready on the data path output. The degree calculation is based
on the mathematical rules which state the following: 1) In
multiplication, the degrees of operand polynomials are added
and 2) in addition and subtraction, the maximum of operands’
degrees of respective terms determine the degrees of the result
polynomial. The given theoretical background allows one to
reduce the infinite domains of real number input signals to the
finite integer ones. Thus, we can use a model checker in order to
verify the control structure of the model based on the circuit’s
input/output functionality.

Although the ranges of input values are reduced and finite,
some values in the data path may still grow quite large. For
instance, the degree of x in P (x) = x10 is 10 that allows one to
apply 11 different input values (0, 1, . . . , 10) for verification.
As the binary presentation of the greatest value, P (10) =
1010 ≈ 233, requires 33 bits, we need additional state space
reduction. Therefore, we apply the Chinese remainder theorem
to the first abstract model.

According to the theorem, two functions f(x) and g(x)
calculate the same result in the region 0 ≤ (f(v), g(v)) <
(m0m1, . . . ,mn) if, for every relative prime number mi ∈
m0,m1, . . . ,mn and every input assignment (v), (f(v) mod
mi) = (g(v) mod mi).

By using this knowledge, we can replace the system ver-
ification for the domain {0, . . . ,

∏n
i=1 mi} to n verifications

with mi + 1 element input domains {0, . . . , mi}. In order to
perform the series of verifications, we have to change the as-
signment statements reg_value := input_value to reg_value :=
(input_value mod mi). Instead of verifying directly the
function P (x) = x10, we verify 11 significantly smaller mod-
els P (x) = (x10) mod mi, mi ∈ {2, 3, 5, . . . , 31}, since∏11

i=1 mi ≈ 237 ≤ 233. To present the largest value 31 = 25

appearing in these models requires only 5 bits compared to the
original 33 bits.

C. Synchronization Demanding Refinements

Our design library provides several transformations, which
relocate delay elements to balance the delays in computa-
tion blocks. A transformation, which moves a delay from the
output to the inputs of a combinational process, is shown in
Fig. 11. Depending on the initial values of the delay processes

Fig. 11. Transformation: Move delay to input (a) original model and
(b) refined model.

Fig. 12. Resource sharing leads to several clock domains and introduces an
extra delay.

in the refined model, the transformation can be classified as
nonsemantic preserving or semantic preserving. If the same
initial values are used in the original and in the refined models
(v0 = v′

0 = · · · = v′′
0), then the transformation is nonsemantic

preserving since the first output events of these two models as
the reactions to the same input signals are potentially differ-
ent. However, the recalculation of the initial values, such that
f(v′

0, . . . , v
′′
0) = v0, by using retiming techniques renders the

transformation semantic preserving.
Although retiming techniques can restore the system be-

havior after relocating already existing delay elements, the
introduction of new delay elements, like in pipelining and
resource sharing refinements, requires other approaches for
data synchronization. We classify transformations, which add
a delay to a computation block as temporal refinements.

Let us take up the refinement of a combinational function to a
sequential implementation that was considered in the previous
section. One possibility is to model the sequential circuit in a
clock domain with a higher clock rate, as shown in Fig. 12.
According to the synchronous hypothesis, the computation in
processes takes no time, and the values on a process output
appear at the same moment when the input values arrive.
Although the block B′ operates m times faster, there is still
a noticeable delay caused by the feedback loop, and according
to the synchronous hypothesis, the blocks B and B′ cannot be
identical. If we consider that the delay in the refined model
is one clock cycle, the block B′ corresponds to B′′ instead of
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B. Thus, the refinement changes the temporal properties of the
original block.

Temporal refinements add delay elements, and their initial
values change the behavior of the model. Due to the additional
values, multi-input processes, which have one input connected
to a refined combinational process, receive a different set of
values in the first clock cycle than in the original model. One
way to solve this kind of synchronization problem is to use the
LID or similar methods. Since these methods add handshake-
protocol-based communication channels or use schedulers,
making the further system refinement and verification more
complex, we have proposed an alternative synchronization
technique [4]. In the following, we explain our approach, which
uses only simple delay elements (synchronization delays) and
keeps the model latency equivalent to the original model after
temporal refinements.

The main aim of our approach is to initialize the temporal
refinement added delays and synchronization delays with syn-
chronization values (⊥), which are distinct from the actual data
values (	) processed by the initial system model. Let ∆(⊥) be
a delay process whose initial value is ⊥. We extend all combina-
tional and FSM processes Pj so that their reaction to ⊥ values
is a ⊥ value in the same clock cycle, i.e., Pj(e1, . . . , en) =⊥,
if ∀i(1 ≤ i ≤ n), ei =⊥. In addition, FSM processes do not
update their states if ⊥ values are on their inputs. Due to this
extension, ⊥ values are reproduced in loop-back structures. We
say that a system is ⊥ consistent if each process at every time
instant receives only values of the same type (	 or ⊥). Our
algorithm initializes the refinement produced delay processes
with ⊥ values and extends the system with ⊥-delay processes
so that the system stays ⊥ consistent.

Let us consider the following terms for further discussion.

1) A path is a sequence of processes connected by signals
that have the same direction from one end to the other.

2) A loop is a cyclic path including no process twice.
3) A common source is a process, whose output signal is

connected to inputs of more than one process.
4) A common destination is a multi-input process.
5) A pair of paths contains two paths having one common

source and one common destination, and no other process
belongs to both of the paths.

In order to preserve the latency equivalence of synchronous
models, the delay of the paths that feed a common destination
process [process P4 in Fig. 13(a)] may only be increased
equally. If a refinement adds a ⊥-delay process to one path (P5

in path1), the rest of the paths have to be extended with ⊥ delays
as well (P6 in path2). The synchronization procedure gets much
more complex if the system contains multiple feedback loops.
If we insert a ⊥-delay process [process P10 in Fig. 13(b)] to a
path (path3) that feeds a loop (loop1), it is necessary to add a
⊥-delay process (process P11) to the loop as well. Otherwise,
the common destination process of the path and the loop
receives in some clock cycles different types of events that
make the system ⊥ inconsistent. Since the ⊥ values will be
reproduced in the loop, the feeder system part has to deliver
regularly ⊥ values to the loop. The regularity is denoted as a
pattern.

Fig. 13. Synchronization of (a) paths and (b) loops.

Pattern: A pattern is defined as a minimal sequence V =
{v0, . . . , vi, . . . , vn−1} of values 	 and ⊥, which cannot be
constructed by a single repetitive subpart {v0, . . . , vi}.

For a process, the pattern shows in which order ⊥ and 	
values arrive.
Pattern Equivalence: Two patterns V a and V b are equiva-

lent if they have the same length n, and there exists an integer
constant k such that for all i ∈ {0, . . . , n − 1}, va

i = vb
j , where

j = ((i + k) mod n).
The pattern V1 = {	,	,⊥,⊥} is equivalent to V2 = {	,⊥,

⊥,	} and not to the pattern V3 = {	,⊥,	,⊥}. Elements in
equivalent patterns can be rotated but not shuffled.

We assume that the system is connected, and because of
that, all processes have to operate with equivalent patterns. The
pattern length is determined by the delays of all loops and
the delay differences in all pairs of paths. According to the
algorithm in [4], the pattern length N is the greatest common
integer divisor of the mentioned delays. The algorithm creates
an ordered N -element set of labels and gives a label Li to
all delay processes in the original model according to the
following rule. The labeling starts from an arbitrarily chosen
delay process. If a delay process ∆i(	) has a label Lk and there
is a path from ∆i(	) to ∆j(	) without including any other
delay process, then ∆j(	) gets label L((k+1) mod N). Let the
capital letters A, B, and C be used to label delay processes in
the original model. If after labeling a temporal refinement adds
a delay process ∆i(⊥) with a new label D to the model, so
that the closest delays to ∆i(⊥) have labels B and C, then the
synchronization algorithm adds a synchronization delay to all
paths between delay processes with labels B and C.

The labeling is illustrated on the system shown in Fig. 14(a)
that contains eight combinational processes and four 	-delay
processes. The system contains two feedback loops, loop1 =
{p1, p2, . . . , p11} and loop2 = {p4, p5, . . . , p9}, having delays
Dloop

1 = 4 and Dloop
2 = 2. There are two pairs of paths:

from P0 to P6 and from P9 to P4. The path1 runs through
P1, P2, . . . , P5, and path2 is the direct connection between P0

and P6. The delay difference of them is Dpath
1,2 = 2. The delay

difference of path3, (P10, P11, P1, P2, P3), and path4, the direct
connection from P9 to P4, is Dpath

3,4 = 2. The greatest common
integer divisor for the found values is N = 2. L0 = A and
L1 = B are the ordered set of labels. P3 and P8 get the label
L0 = A, and P5 and P11 get L1 = B. Since the system input
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Fig. 14. Synchronization example: (a) initial model after labeling and (b) refined model.

Fig. 15. Digital audio equalizer.

can be considered as a shift register, which emits one value at
every clock cycle, the input events are labeled similarly to the
delay process.

Let a temporal refinement in P1 add a delay ∆(⊥) at the
output of P1. The new delay gets label C, which obtains the
position L2 since the new delay is on the path from P11 labeled
with B to P3 labeled with A. All processes have to operate with
patterns equivalent to {	,	,⊥}, and therefore, the algorithm
inserts a synchronization delay process on every path after B
delays and before A delays. Thus, the synchronization process
P12 can locate anywhere between P5 and P8. The input signal
is extended according to the labels as well. The refined and
synchronized model is latency equivalent to the original one,
i.e., these two models produce the actual data values in the same
order on the same input signal.

V. REFINEMENT AND VERIFICATION OF A

DIGITAL AUDIO EQUALIZER

We illustrate the application of the described verification
and synchronization algorithms within the design process of
a digital audio equalizer (Fig. 15). The equalizer operates in
the following manner. It divides the audio input signal into
three frequency bands and amplifies the lower and higher bands
according to the button settings in the button control block. The

TABLE I
VERIFICATION TIME AND THE NUMBER OF BDD NODES FOR CHECKING

COMPUTATION REFINEMENTS IN THE FIR-FILTER AND FFT BLOCKS

sum of the amplified signals gives the equalizer output. The
audio analyzer observes the bass level in the output signal. If
the basses are too strong, the distortion control block adjusts
the bass amplification level to protect the speakers.

A. Refinement of FIR-Filters and FFT Blocks

In the initial specification model, all signal processing blocks
are described as combinational processes, which use ideal
data types and arithmetic functions. Instead of implementing
the FFT and FIR-filter blocks as large combinational circuits,
we introduce resource sharing in these blocks similar to the
approach in Section IV-B. All these blocks will be implemented
as sequential circuits, containing a controller that executes basic
arithmetic operations in a data path and stores intermediate
computation results in a register file (Fig. 12). The sequential
blocks are separated by clock domain interfaces from the rest
of the design and run at higher clock rates than the rest of the
system, such that they have one clock cycle delay compared
to the original combinational blocks. In order to verify the
correctness of the sequential blocks, we applied the polynomial
abstraction technique that reduces the input signals of the FIR
filters and FFT to one bit variables. The SMV model checker
spent all together only 1.5 min and created less than 1.5 million
BDD nodes for verification, as shown in Table I.

B. Synchronization

After introducing resource sharing in the FIR-filter blocks,
the latency of these blocks is larger than that in the original
model. In order to keep the refined model latency equivalent
to the original one, we apply the synchronization algorithm
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Fig. 16. Audio equalizer: (a) initial model (b) after the clock domain refinement of the process FIRlow.

Fig. 17. Implementation of the audio equalizer as LID model.

described in Section IV-C. In the following, we explain
the algorithm steps after the first refinement that is applied
to FIRlow.

The refined model contains two loops (loop1 and loop2 in
Fig. 16) with one delay process in each. The delay difference
of common source/destination paths between respective fork
and join points is in all cases equal to zero. Since the greatest
common divisor of the found values is one (N = 1), the delay
processes P0 and P1 and input events are labeled with the same
label A.

The ⊥ delay added to the process FIRlow by the refinement
gets a new label B. According to the synchronization algorithm,
the new content of set of labels is {L0 = B,L1 = A}, N = 2,
and processes operate with patterns equivalent to {	,⊥}. In
order to synchronize the system, we have to insert ⊥-delay
processes with label B between A delays and between all input
events. FIRmid and FIRhigh are refined in a similar way, and the
existing ⊥-delay processes P2 and P3 are encapsulated in the
refined blocks. A prototype tool implemented in the ForSyDe

modeling environment required less than 0.5 s to find a proper
location of synchronization delay processes and the extension
to the input signals.

In order to compare our synchronization technique with LID
or GALS approaches, a general structure of an LID- or GALS-
model-based solution is shown in Fig. 17. The model is divided
into the following: 1) three asynchronously communicating
synchronous islands or 2) three synchronous blocks of LID,
communicating via handshake channels.

Although the LID method does not add any explicit delay
process for synchronization, there are buffers in every channel
and wrapper, which increase the circuit area. In order to im-
plement the absent extension at RT level, we needed only one
bit signal to inform processes about the current data type of an
input value (⊥ or 	). This is equivalent to the one bit signal in
LID that is used to distribute stalling events between compu-
tation blocks. The input/output latency of LID and our model
were the same, and both models had to work with two times
more values than the original model. The LID relay stations
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TABLE II
VERIFICATION TIME AND THE NUMBER OF BDD NODES

FOR CHECKING Channel1 AND Channel2

in the channels are initialized with stalling values. Since the
system contains feedback loops, these values are reproduced
[33]. Due to the feedback loops, the synchronization values are
reproduced in our model as well.

The LID and GALS approaches are common in IP-block-
based design, although they may not be the best candidates
for refinements in small synchronous blocks, since very small
and disproportionate islands are created, like I1 and I3. Due to
the complex communication mechanism between synchronous
islands, formal verification and formal refinements in this kind
of models are considerably more complex. In addition, our
model is more expressive, since the impact of refinements is
explicit. The labels indicate relations between refined computa-
tion blocks and paths with increased delays. The explicit syn-
chronization delay processes can be shifted to proper positions
and reused for further refinements. The synchronization delay
processes can be mapped onto latches in the hardware model.

C. Refinement of Communication Channels

The initial system model in our design methodology is
described by means of synchronous design blocks that com-
municate via synchronous signals. In order to develop an im-
plementation, which contains parts in software and hardware
domains, the synchronous communication channels Channel1,
Channel2, and Channel3 between these two domains have to
be replaced with asynchronous ones. According to the com-
putation load in the equalizer blocks, we implement the audio
filter and audio analyzer blocks in hardware and the rest of the
design in software [34]. Let us consider the channel refinement
between button control and audio filter in the following. Under
assumptions that 1) processes P0 and P1 store the amplification
levels until an update comes from the button control, 2) the but-
ton settings are changed rarely, and 3) also the distortion control
interaction to the amplification process occurs seldom, we can
apply the transformation SynchronousChannelToHandshake
(Section IV-A) to the synchronous Channel1 and Channel2.
After the design decision about the number of slots in the finite
FIFO buffer (eight slots) of the refined channel and the expected
data rate (maximum four messages within 36 clock cycles),
we verified the given properties. The verification time and the
number of created BDD nodes are shown in Table II.1

The third channel Channel3 between software and hardware
domains was refined in a similar way. The only difference
between this channel and the rest is that Channel3 can transfer

1Due to the improved input stimuli generators in our verification library, the
resource demands are different from the experiments in [2], although the quality
of the verification is the same.

TABLE III
VERIFICATION TIME AND THE NUMBER OF BDD

NODES FOR CHECKING Channel3

several values in parallel as a packet instead of a single value as
C Channel1, Channel2. The verification time and the number of
BDD nodes required to check the same properties for Channel3
are given in Table III.

VI. CONCLUSION

In this paper, we present a general verification concept in
transformational system design methodologies, which we have
integrated into ForSyDe. The idea of predefined verification
properties and abstraction techniques makes the use of formal
verification in the system design more efficient and tractable
to designers. We avoid the verification of a very detailed
implementation model against the ideal specification. Instead,
the verification is done in a systematic way—after applying
nonsemantic-preserving design transformations, we check the
correctness of the predefined properties in refined models.
Caused by the state space limits of formal verification tools and
the huge size of today’s systems, we verify formally only the
local properties of a refined block and leave the global influence
to static analysis techniques. For refinements in arithmetic com-
putation blocks, we have developed the polynomial abstraction
technique, and in order to compensate for the influence of local
refinements to the entire system, we have proposed a novel
synchronization algorithm.

Although the development of the design and verification
methodology is a time-consuming process, including the devel-
opment of design transformations, verification properties, and
abstraction techniques, the use of this methodology will in most
cases significantly decrease the entire design time. In particular,
verification time, which takes a considerably large amount of
the design time, will shorten compared to the application of
formal verification in an ad hoc style.

The future work in the ForSyDe framework is to extend
the transformation rule library in sight of some target design
platform. This includes the development of verification prop-
erties and selection of good abstraction techniques for these
rules. One of the future plans is to turn the attention to other
design issues than only the system’s functional and temporal
correctness. For example, the application of power consump-
tion analysis in the system refinement phase can help us to
choose between alternative design transformations and, in such
a way, to develop a more efficient final implementation.
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