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This article reviews four popular mathematical formalisms—queueing theory, network calculus, schedulabil-
ity analysis, and dataflow analysis—and how they have been applied to the analysis of on-chip communication
performance in Systems-on-Chip. The article discusses the basic concepts and results of each formalism and
provides examples of how they have been used in Networks-on-Chip (NoCs) performance analysis. Also, the
respective strengths and weaknesses of each technique and its suitability for a specific purpose are inves-
tigated. An open research issue is a unified analytical model for a comprehensive performance evaluation
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1. INTRODUCTION

It is essential to gain a solid understanding of a system’s performance in advance of
the system being implemented in detail and built. Therefore, performance models have
been deployed in system design for many decades and, more recently, have been adopted
for the study of System-on-Chip (SoC). In modern SoCs, the on-chip communication in-
frastructure or Network-on-Chip (NoC) is a dominant factor for design, validation, and
performance analysis. SoC designers are interested in performance evaluation, given
that their goal is either to provide the highest performance at a given cost or to provide a
minimum level of performance at the lowest possible cost. In both cases, a reliable mea-
sure of performance is indispensible. However, the focus in the first case is typically on
average performance, while the worst-case performance is the main metric in the latter
case. In real-time systems, such as automotive or avionic applications, the worst-case
execution time is of particular concern; it is important to know how much time might be
needed in the worst case in order to guarantee that the task will always finish its jobs
before the predetermined deadline. However, the worst-case-based design results in re-
source over-dimensioning. Therefore, average-case-based design methods are usually
used for non-time-critical applications in order to achieve a more efficient system.
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Fig. 1. Model of a queueing system.

Performance estimation tools can be classified in simulation models and mathemat-
ical models. SoC designers have explored the design space using detailed simulations
in order to tackle performance analysis. Although simulation tools are flexible and
accurate, the complexity of modern SoCs imposes a firm limit on what can reasonably
be simulated. Another disadvantage of a simulation-based design process is that the
nonlinear and nonmonotonic behavior of system performance makes it difficult to draw
conclusions from the simulation results regarding how to adapt the system hardware
or its programming. It is also difficult to determine the worst-case behavior of the SoC.
An alternative approach is to build an abstract analytical model for the architecture of
the on-chip communication. An appropriate analytical model can estimate the desired
performance metrics very early on in the design phase, in a fraction of the time that
simulation would take. Although the use of high-level models conceals a lot of complex
technological aspects, it facilitates rapid exploration of the NoC’s design space. Also,
the analytical models provide not only the timing properties of the system, but also use-
ful feedback about the system’s behavior. Consequently, such models can be invoked
in any optimization loop for NoCs in order to obtain fast and accurate performance
estimations. Therefore, analytical models have a place alongside simulation in SoC
performance analysis, and their importance is likely to grow as SoC communication
architectures become increasingly complex and irregular. Several popular analysis
methods, developed in other context years or even decades ago, have recently been
adapted to NoC analysis.

The purpose of this survey is to recapitulate the results from the mathematical
formalisms—queueing theory, network calculus, schedulability analysis, and dataflow
analysis—and their application to the analysis of NoCs. For each, we review the basic
concepts and results in Sections 2 to 5. Section 6 considers a simple application and
shows how these formalisms can be used to evaluate the performance of a system.
Section 7 presents attempts to combine these methods. Finally, their respective
strengths, weaknesses, and suitability for a specific purpose are summarized in
Section 8.

2. QUEUEING THEORY

2.1. Overview

Queueing theory is a branch of probability theory. As shown in Figure 1, in a queueing
system, a population of customers enters a service facility, at some time, which includes
one server or multiple servers, in order to obtain service. If a new customer arrives and
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Fig. 2. (a) CDF and (b) pdf of an interarrival time with exponential distribution.

all servers are busy, it enters a queue and waits until one server becomes available.
Therefore, in order to analyze such a system, we must identify the arrival process as
well as the structure and discipline of the service facility.

In queueing theory, the arrival process and service time are specified probabilisti-
cally. Generally, the arrival process is described in terms of the cumulative distribution
function (CDF) of the interarrival times of customers (i.e., the time between two suc-
cessive arrivals) and is denoted A(t), where

A(t) = P{interarrival time ≤ t}. (1)

The notation P{X} denotes the probability of the event X. A(t) is a nonnegative and
nondecreasing function of t. Also, the probability density function (pdf) of interarrival
times is

a(t) = d
dt

A(t). (2)

For instance, if the interarrival time of customers has exponential distribution with
parameter λ(λ > 0), then its CDF is given by

A(t) =
{
1 − e−λt t ≥ 0,

0 t < 0,
(3)

which is sketched in Figure 2(a). The corresponding pdf of the interarrival time is

a (t) =
{
λe−λt t ≥ 0,

0 t < 0,
(4)

which is sketched in Figure 2(b).
The assumption in queueing systems is that these interarrival times are independent

and identically distributed random variables. Similarly, service time, that is, the length
of time that a customer spends in the service center, is considered as another continous
random variable whose CDF and pdf, respectively, are

B(x) = P{service time ≤ x}, (5)

b(x) = d
dx

B(x). (6)

Regarding the structure and discipline of the service facility, a variety of additional
quantities must be specified, such as the extent of storage capacity available to hold
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waiting customers, the number of service stations available, the queueing discipline
(FCFS, LCFS, and random order of service), etc.

In addition to interarrival and service times distributions, queueing systems may
differ in the number of servers, the capacity of the queue (infinite or finite), and the
service discipline. Some common service disciplines are the following.

—FCFS (First-Come, First-Served). A customer that finds the service center busy goes
to the end of the queue.

—LCFS (Last-Come, First-Served). A customer that finds the service center busy pro-
ceeds immediately to the head of the queue. It will be served next, given that no
further customers arrive.

—RS (random service). The customers in the queue are served in random order.
—RR (round robin). Every customer gets a time slice. If its service is not completed, it

will re-enter the queue.
—PR (Priority). Every customer has a (static or dynamic) priority; the server always

selects the customers with the highest priority. This scheme can use preemption or
not.

The Kendall notation is used for a short characterization of queueing systems [Bolch
et al. 2006]. A queueing system description looks as A/B/m/K—S, where A denotes
the distribution of the customer interarrival time, B denotes the distribution of the
service time, m denotes the number of servers, K denotes the maximum capacity of
the queue in the finite case (if K = ∞, then this letter is omitted), and the optional
S denotes the service discipline used. If S is omitted, the service discipline is always
FCFS. For A, the following abbreviations are very common.

—M (Markov property). This denotes the exponential distribution with an average
arrival rate of λ customers/time unit. In other words, the number of customers follows
a Poisson distribution with the average of one customer per 1/λ time unit.

—D (Deterministic). The interarrival times are constant and have the same value.
—G (General). General distribution, not further specified. In most cases, at least the

mean and the variance are known.

Similarly, B can be specified by these notations (M, D, and G) to describe the distribution
of service time. For instance, the M/G/2/10-RS queueing system can be described as
follows.

—The customer interarrival times are exponentially distributed (with specified
average).

—The service time distribution is arbitrary (with specified average and variance).
—There are two servers in the system.
—The queue has room for at most ten customers.
—The customers in the queue are served in random order.

After specifying a queueing system, it is appropriate that we identify the measures
of performance and effectiveness that we shall obtain by analysis. Basically, we are
interested in the waiting time for a customer, the number of customers in the queue, the
length of busy and idle periods of the server (i.e., the continuous interval during which
the server is busy or idle), and the current work backlog (unfinished work) expressed
in units of time. All these quantities are random variables, and thus we seek their
complete probabilistic description, such as their pdf. However, in most applications, it
is enough to calculate the first few moments (mean, variance, etc.). Also within the
scope of queueing theory is the case where several servers are arranged in a network
and customers move through the network to visit several servers.
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Fig. 3. (a) The structure of a router in a 2D mesh network; (b) queueing model of the ejection channel.

2.2. An Example

As an example, consider a packet-switched mesh network on which packet routing is
carried out by a router at each node. Every node contains a processor and a router.
Packets are injected into the network on crossbar input port 0 (injection channel) and
leave on output port 0 (ejection channel), as shown in Figure 3(a). In the following, we
utilize queueing theory to estimate the average waiting time for accessing the ejection
channel. The following assumptions are made when developing the queueing model.

—The packet arrivals to the northern, eastern, southern, and western input channels
are independent and follow Poisson processes with mean rates of λ1 = 0.025, λ2 =
0.015, λ3 = 0.05, and λ4 = 0.01 packets/cycle, respectively.

—An infinite FIFO (first in, first out) buffer is associated only with each input channel,
for storing packets in transit.

—Messages are broken into some packets of fixed length. When a packet arrives on an
ejection channel, it is accepted by the processor in eight network cycles. Therefore,
we can model the ejection channel as a constant-rate server with service rate of
μ = 1/8 = 0.125 packets/cycle.

—We consider an ejection channel as a server in which the packets have preferential
treatment based on priorities associated with them. We assume that the priority
of a packet is an integer fixed at arrival time and that packets with priority index
1, 2, 3, and 4 come from northern, eastern, southern, and western input channels,
respectively. We say one packet has higher priority than another if it belongs to a
priority class with a lower index. For the service discipline, we assume that when-
ever a packet has traversed the ejection channel completely, the ejection channel is
assigned next to that packet at the head of the highest-priority nonempty queue.
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To calculate the average waiting time for ejection channels, we model the ejection
channel as an M/D/1 priority queue, as shown in Figure 3(b). The average waiting time
of random arrivals to the ith queue of M/D/1 system, W̄i, can be written [Bolch et al.
2006] as

W̄k =
1

2μ

∑4
i=1 ρi(

1 − ∑k−1
i=1 ρi

) (
1 − ∑k

i=1 ρi

) , (7)

where ρi = λi/μ. In this example, ρ1 = 0.2, ρ2 = 0.12, ρ3 = 0.4, and ρ4 = 0.08. Thus,
the waiting times can be computed as

W̄1 = 3.2
1 − 0.2

= 4.0 cycles;

W̄2 = 3.2
(1 − 0.2) (1 − 0.32)

= 5.9 cycles;

W̄3 = 3.2
(1 − 0.32) (1 − 0.72)

= 16.8 cycles;

W̄4 = 3.2
(1 − 0.72) (1 − 0.8)

= 57.1 cycles.

Using Little’s theorem [Kleinrock 1975], the average number of packets in each input
port can be computed as follows.

N̄1 = λ1W̄1 = 0.10 packet;
N̄2 = λ2W̄2 = 0.09 packet;
N̄3 = λ3W̄3 = 0.84 packet;
N̄4 = λ4W̄4 = 0.57 packet.

2.3. Applications in NoCs

Similar to other networks, traffic patterns play an important role in the performance
of NoCs; consequently, traffic models are critically needed for effectively evaluating
existing and new NoC designs. As a result, network traffic modeling is a first step to-
wards understanding the design space of NoC architectures, protocols, and implemen-
tations. Soteriou et al. [2006] proposed an on-chip traffic model for homogeneous NoCs.
The model is based on three statistical parameters: temporal burstiness, spatial hop
distribution, and spatial injection distribution. The authors showed that their model
captures the characteristics of NoC traffic accurately when compared to actual NoC ap-
plication traces gathered from full system simulations of chip platforms. Varatkar and
Marculescu [2004] found long-range dependent behavior in communications traffic be-
tween different parts of the MPEG-2 video decoding application. They presented an ap-
proach for analyzing such a traffic pattern based on self-similar processes. They showed
that characterizing the degree of self-similarity via the Hurst parameter helps in find-
ing the optimal buffer-length distribution. However, Scherrer et al. [2009] showed that
long-range dependence is not an ubiquitous property of the traffic produced by on-chip
processors running multimedia applications. Using a cycle-accurate simulator of a com-
plete SoC, they showed that long-range dependence impact on the Network-on-Chip is
highly correlated with the low-level communication protocol used.

Performance evaluation techniques for NoCs have been inherited from parallel and
distributed processing research groups. Many of the previous analytical latency models
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in off-chip networks have been formulated for a specific topology and traffic pattern
[Kim and Das 1994; Kiasari et al. 2008a]. Queueing theory has been used to estimate
average performance metrics, such as average packet latency, average throughput,
average energy and power consumption, and average resource utilization. System de-
signers utilize these metrics to make decisions for solving problems, such as module
placement [Kiasari et al. 2008d], routing decision [Kiasari et al. 2010], buffer configu-
ration [Hu et al. 2006], and link capacity [Guz et al. 2007].

Guan et al. [1993] proposed an analytical model for a general topology with an
exponential packet length distribution. Their approach has high complexity for high-
dimensional networks. Using queueing theory, Hu and Kleinrock [1997] presented a
general analytical model for wormhole routing to estimate the average packet latency
in interconnection networks. In order to provide fast performance estimates during the
design cycle, Kim et al. [2005] developed a queueing theory-based model for quanti-
fying the performance and energy behavior of on-chip networks. They assumed that
packet arrivals at all input channels have Markov property. Hu et al. [2006] consid-
ered M/M/1/K queueing models and solved a series of nonlinear equations to quickly
analyze the current buffer size configuration and detect the performance bottlenecks
in the router channels. This model was then used in buffer-sizing problems in packet-
switched NoCs. More precisely, given the traffic characteristics of the target application
and the total budget of the available buffering space, the proposed model automatically
assigns the buffer depth for each input channel, in different routers across the chip,
such that the average packet latency is minimized in the system. Based on M/M/1
queueing model, an analytical delay model for virtual channeled wormhole networks
was proposed for link capacity allocation in NoC-based systems by Guz et al. [2007].
This assignment algorithm allocates network resources efficiently so that quality of
service (QoS) and performance requirements are met.

Hur et al. [2008] presented a performance analysis of hard and soft on-chip networks
for FPGAs. They applied Jackson’s queueing model [Jackson 1957] to analyze the
performance of a multiprocessor SoC. They further used Jackson’s model to analyze
circuit-switched NoCs and showed that the hardwired networks perform significantly
better than conventional soft NoCs. A Markovian performance model for torus on-chip
networks with deterministic routing and wormhole switching was proposed by Kiasari
et al. [2008b]. The model was then used to estimate the power consumption of all
routers. This model is restricted to Poisson arrival process and uniform traffic pattern.
Kiasari et al. [2008c] modeled each channel in an NoC with a G/G/1-PR queueing model
(G/G/1 queue with priority discipline) and estimated per-flow average packet latency.
However, the modeling approach is limited to k-ary n-cube networks with single flit
buffers and a dimension-order routing algorithm. This model was used to map the
processing cores onto an SoC architecture such that the average communication delay
is minimized [Kiasari et al. 2008d]. A case study of using an analytical method based
on Markov chain stochastic processes for latency evaluation of an NoC arranged in a
2D mesh topology with a deterministic routing algorithm and uniform traffic pattern
was presented by Foroutan et al. [2009].

Foroutan et al. [2010] proposed a generic analytical model for estimating communi-
cation latencies and link-buffer utilizations for wormhole-switched NoCs with a given
application mapped on it. This work correctly models the resulting interdependencies
between the routers. An analytical performance model for wormhole-switched NoCs
has been proposed by Ogras et al. [2010]. Using an M/G/1 queueing model, the aver-
age number of packets at each buffer is computed. This model provides three perfor-
mance metrics, namely average buffer utilization, average packet latency, and network
throughput. Another analytical model for estimating the communication performance
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Fig. 4. A two-hop flow from IPS (source) to IPD (destination).

of wormhole-switched NoCs is presented by Cheng et al. [2011]. This model supports
arbitrary network topology with virtual channels. To resolve the inherent dependency
of successive links occupied by a packet, the authors use a routing path decomposition
approach to generating a series of ordered link categories. Next, they used M/M/1 and
M/M/1/K queueing models to derive the transmission latency of network components.
The analytical model proposed by Krimer et al. [2011] is inspired by industrial work-
flow modeling techniques. The authors introduced a packet-level static timing analysis
for wormhole-switched NoCs with virtual channels. It relies on a reduced Markov chain
to represent the network state, including the occupancy of all buffers. The model han-
dles any topology, link capacities, and buffer sizes and provides per-flow delay analysis.
Wang et al. [2011] proposed a performance analytical model using a semi-Markov pro-
cess for estimating the average packet latency in NoCs. More precisely, a semi-Markov
process is used to describe the behavior of each link in the network, and the header flit
delay is calculated.

Kiasari et al. [2012] extended the proposed queueing model of Kiasari et al. [2008c]
to support arbitrary topology, buffer size, and oblivious routing algorithm. This model
is developed for wormhole switching, and it supports any kind of spatial and temporal
traffic patterns. Spatial traffic pattern refers to the distribution of packet destinations,
and temporal component of traffic is determined by the distribution of interarrival
times of packets. It means that the model accepts both Poisson and non-Poisson arrival
processes. The average packet latency (L) is used as the performance metric. The
authors assume that the packet latency spans the instant when the packet is created,
to the time when the packet is delivered to the destination node. They also assume
that the packets are consumed immediately once they reach their destination nodes.
In Figure 4, consider a flow which is generated in IPS and reaches its destination (IPD)
after traversing routers RS, RM, and RD. The latency of this packet (LS→D) consists of
two parts: the latency of head flit (LS→D

h ) and the latency of body flits (Lb). LS→D
h is the

time since the packet is created in IPS until the head flit reaches the IPD, including the
transfer times of a flit across the injection and ejection channels (tinj and tej), routing
decision delay for a packet (tr), crossing time of a flit over the crossbar switch (ts),
transfer time of a flit across a wire between two adjacent routers (tw), and queueing
time spent at the source node and intermediate nodes (W N

i→ j , the mean waiting time
for a packet from input port i of node N to output port j of the same node). Having
looked at Figure 4, we can infer that the latency of a head flit of a two-hops packet
includes injection channel delay (tinj), first router delay (tr + W S

inj→East + ts), internode
wire delay (tw), second router delay (tr + W M

West→East + ts), internode wire delay (tw), third
router delay (tr + W D

West→ej + ts), and ejection channel delay (tej). Therefore, it can be
written as

LS→D
h = tinj + (

tr + W S
inj→East + ts

)
+ tw + (

tr + W M
West→East + ts

)
(8)

+ tw + (
tr + W D

West→ej + ts
) + tej .
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Once the head flit arrives at the destination, the body flits follow the header flit in a
pipelined fashion. Therefore, the only unknown parameter for computing the latency is
W N

i→ j . This value was calculated using a priority queueing model. Later, in Section 6.1,
we show how to use this analytical model to estimate the average packet latency.

Studies done by Varatkar and Marculescu [2004] have demonstrated that the traffic
of some multimedia applications exhibits a long-range dependent behavior which has
considerable impact on queueing performance. The assumption of the traditional Pois-
son arrival process is inherently unable to capture such a traffic pattern. Therefore,
it is crucial to reexamine the performance properties of interconnection networks in
the context of more realistic traffic models before practical implementations show their
potential faults. Toward this end, Min and Ould-Khaoua [2004] proposed an analytical
queueing model for wormhole-switched networks in the presence of self-similar traf-
fic. This study reveals that the network suffers considerable performance degradation
when subjected to self-similar traffic, stressing the great need for improving network
performance to ensure efficient support for this type of traffic.

In queueing theory, generally, the average quantities in an equilibrium state are con-
sidered. Characterizing the transient behavior of queueing systems is known as a very
difficult problem which has been addressed by either simplified analytical models or
simulation [Odoni and Roth 1983; van As 1986; Bertsimas and Mourtzinou 1997; Yang
and Liu 2010]. As an alternative approach, Bogdan and Marculescu [2007] proposed
a statistical physics-inspired framework to analyze the traffic dynamics in NoCs and
show how the nonstationary effects of the system workload can be effectively captured.
The temperature of a physical system is replaced by the NoC packet injection rate, and
the authors predicted that the buffer occupancy follows a power law distribution. Later,
they addressed the buffer sizing problem under non-equilibrium conditions [Bogdan
and Marculescu 2009]. The main idea in this model is that packets move from one node
to another in a manner that is similar to particles moving in a Bose gas and migrating
between various energy levels as a consequence of temperature variations. Bogdan
and Marculescu [2010, 2011] also investigated the impact of nonstationary effects (as
a function of packet injection rate) on buffer overflow probability and node-to-node
latency exceedance probability.

In order to analyze a queueing system, it is necessary to know something about
the laws governing the arrival pattern, the logic governing the behavior of the queue,
and the characteristics of the service facility. Queueing theory is concerned with the
mathematical analysis of such systems subject to demands whose occurrences and
lengths can, in general, be specified only probabilistically.

3. NETWORK CALCULUS

3.1. Overview

Network calculus is a mathematical framework for deriving the worst-case bounds on
maximum latency and backlog in a single node and a network of nodes. Therefore, it
can be seen as a theory for analyzing performance guarantees in computer networks.
Cruz [1991a, 1991b] pioneered the network calculus, and based on Cruz’s foundation,
Chang [2000] and Le Boudec and Thiran [2001] have further developed the network
calculus theory and based it on min-plus algebra. The basic elements in this algebra
are arrival curves as an abstraction of application traffic and service curves as an
abstraction of network elements. Network calculus is similar to conventional system
theory, in which a system consists of an input function, a transfer function, and an
output function. The difference to conventional system theory is that min-plus algebra
is used, where addition and multiplication are replaced by minimum and addition,
respectively. As in conventional system theory, a key operation in network calculus is
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Fig. 5. Backlog and virtual delay of a flow at time t.

the min-plus convolution. The min-plus convolution of f (t) and g (t) is defined as

( f ⊗ g) (t) = inf
0 ≤ s ≤ t { f (s) + g (t − s)}. (9)

The infimum (inf) is similar to the minimum. A minimum of a set is the smallest
element of the set, and of course, is in the set. An infimum of a set is the greatest lower
bound of the set and need not be in the set. The same applies for the maximum and
supremum (sup).

In network calculus theory, cumulative functions R(t) and R
∗
(t) describe the input

function and output function, respectively. They represent the number of bits (words or
packets) seen on the input and output dataflow in time interval [0, t]. It is obvious that
functions R and R

∗
are always monotonically increasing functions. System S receives

input data and delivers the output data after a variable delay. System S might be, for
example, a single buffer served at a constant rate, a complex communication node, or
even a complete network.

The backlog is the number of bits that are held inside the system; if the system is a
single buffer, it determines the queue length. In contrast, if the system is more complex,
then the backlog is the number of bits in transit, assuming that we can observe input
and output simultaneously. Therefore, for a lossless system, the backlog at time t is

b(t) = R(t) − R∗(t). (10)

The virtual delay at time t is the delay that would be experienced by a bit arriving
at time t if all bits received before it are served before it. Hence, the virtual delay at
time t is

d(t) = inf τ≥0{R(t) ≤ R∗(t + τ )}. (11)

In other words, d(t) is the smallest value satisfying R
∗
(t + d(t)) = R(t). As shown

in Figure 5, the backlog and virtual delay are shown as the vertical and horizontal
deviation between input and output functions, respectively. In network calculus theory,
the input and transfer functions are referred to as arrival curve and service curve,
respectively.
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Fig. 6. (a) Input function R(t) is constrained by an arrival curve α(t); (b) leaky bucket (affine) arrival curve.

3.1.1. Traffic Model. Assume that we want to provide guarantees to traffic flows. This
requires some specific support in the network to limit the traffic sent by sources. This
is done by using the concept of arrival curve, illustrated in Figure 6(a). Given an
increasing function α(t) defined for t ≥ 0, we say that an input flow R(t) is constrained
by α(t) if and only if for all s ≤ t

R(t) − R(s) ≤ a(t − s). (12)

The min-plus representation of this equation is

R ≤ R ⊗ a. (13)

We say that R has α as an arrival curve, or also that R is α-smooth.
A common arrival curve is a leaky bucket arrival curve (or affine arrival curve)

defined by

α (t) = γρ,σ = ρt + σ, t ≥ 0, (14)

where ρ is the rate of the flow (in units of data per time unit) and σ limits the
burstiness of the flow (in units of data). Having such an arrival curve allows a source
to send σ bits at once, but not more than ρ bits/second over the long run. The (σ , ρ)
traffic characterization was initially proposed by Cruz [1991a], and the corresponding
arrival curve is shown in Figure 6(b).

3.1.2. Network Elements Model. Service curve describes minimal service levels of net-
work elements (router, channel, etc). It often abstracts a scheduling policy. Consider a
system S and a flow through S with input and output functions R and R∗. We say that
S offers to the flow a service curve β if and only if

—β is an increasing function.

—β(0) = 0. (15)
—R∗ ≥ R ⊗ β.

In other words, for all t, there exists some s ≤ t such that

R∗(t) ≥ R(s) + β(t − s). (16)

Figure 7(a) shows a graphical representation of this condition. A well-defined service
curve is latency-rate function βR,T .

βR,T (t) = R (t − T )+ =
{

R (t − T ) , t > T ,

0, otherwise.
(17)
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Fig. 7. (a) Definition of service curve; (b) a latency-rate service curve.

where R is the service rate and T the maximum response delay of the node [Stiliadis
and Varma 1998]. Figure 7(b) shows such a service curve which is widely used to model
the routers in a network.

3.1.3. Basic Bounds. Assume a flow, constrained by an arrival curve α, traverses a
system that offers a service curve β.

—The backlog for all t satisfies

b (t) = R (t) − R∗(t) ≤ sup
s ≥ 0

{α (s) − β (s)}. (18)

—The virtual delay for all t satisfies

d (t) ≤ sup
s ≥ 0

{
inf
τ ≥ 0

{α (s) ≤ β (s + τ )}
}
. (19)

—The output flow is computed by the min-plus deconvolution operator (�) and con-
strained by the curve

α∗ = α � β = sup
u ≥ 0

{α (t + u) − β (u)}. (20)

For instance, in a system with a leaky bucket arrival curve and latency-rate service
curve (shown in Figure 8), the maximum backlog, maximum delay, and output traffic
characterization [Le Boudec and Thiran 2001] are

bmax = σ + ρT , (21)

dmax = T + σ/R, (22)

α∗ (t) = γρ,σ+ρT = ρt + σ + ρT . (23)

Using superposition theorem, concatenation theorem, and leftover service theorem
[Jiang and Liu 2008], network calculus can be applied to a network of nodes.

Superposition. Consider the superposition of n flows Ri, i = 1, . . . , n. If each flow Ri
has an arrival curve αi,the aggregate flow R has an arrival curve α = ∑n

i=1 αi.
The superposition property implies that the aggregate of individual flows can be

represented by a single aggregate flow. For instance, the aggregate flow of two flows
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Fig. 8. Maximum backlog and delay in a system with a leaky bucket arrival curve and latency-rate service
curve.
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Fig. 9. (a) Server offers a service curve β to the aggregate of two flows; (b) the second flow receives leftover
service curve β2 = β

R−ρ1,T + ρ1T +σ1
R−ρ1

.

constrained by α1 = γρ1,σ1 and α2 = γρ2,σ2 is constrained by γρ1+ρ2,σ1+σ2 , because.

α = α1 + α2 = γρ1,σ1 + γρ2,σ2 = (ρ1t + σ1) + (ρ2t + σ2) = γρ1+ρ2,σ1+σ2 .

Concatenation. Similar to traditional system theory, the concatenation of a series
of servers in tandem with service curves βi (i = 1, . . . , n) offers a service curve of
β = ⊗n

i=1βi = β1 ⊗ β2 ⊗ . . . ⊗ βn. As an example, consider two nodes each offering a
latency-rate service curve βR1,T1 and βR2,T2 . A simple computation gives β = βR1,T1 ⊗
βR2,T2 = βmin(R1,R2),T1+T2 .

Leftover Service. Consider a system offering a service curve β to the aggregate of
flows R1 and R2. If R1 has an arrival curve α1, then (β − α1)+ can be a service curve for
flow R2. For instance, assume a latency-rate server serves an aggregate of two flows
as shown in Figure 9(a). If flow 1 is (σ1, ρ1) regulated flow, then the offered service to
flow 2 is.

β2 = (β − α1)+ = (
R (t − T )+ − (ρ1t + σ1)

)+ = (R − ρ1)
(

t −
(

T + ρ1T + σ1

R − ρ1

))+

= βR−ρ1,T + ρ1T +σ1
R−ρ1

.

It means that the second flow is guaranteed a latency-rate service curve with param-
eters R2 = R − ρ1, and T2 = T + ρ1T +σ1

R−ρ1
, as shown in Figure 9(b).

Network calculus has been extremely successful when applied to ATM and IP net-
works with both differentiated and integrated services to achieve predictable perfor-
mance [Le Boudec and Thiran 2001]. Recently, it has also been applied to wireless LAN
[Kim and Hou 2009], sensor networks [Schmitt and Roedig 2005; She et al. 2009], and
on-chip networks [Jafari et al. 2010]. Network calculus has been extended to a few
directions. In the following, we briefly describe the real-time calculus and stochastic
network calculus.
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3.1.4. Real-Time Calculus. Chakraborty et al. [2003] proposed real-time calculus for
modeling and analyzing heterogeneous systems in a compositional manner. It is a
framework based on network calculus and relies on the modeling of timing properties
of event streams and available resources with curves called arrival curves and ser-
vice curves. In real-time calculus, an arrival curve is a function of relative time that
constrains the number of events that can occur in an interval of time. For any sliding
window of time of length 	, the pair of arrival curves (αl, αu) gives the lower bound
αl(	) and upper bound αu(	) on the number of events. Similarly, the processing capac-
ity of a component is specified by a service curve (βl, βu). The number of events that
may be processed in any time interval of size 	 is at least βl(	) and at most βu(	). In
other words, arrival curve α = (αl, αu) and service curve β = (βl, βu) are expressed in
terms of numbers of events per time interval. As an alternative representation, Altisen
et al. [2010] expressed arrival and service curves in terms of length of time interval. In
this case, an arrival curve is represented by a pair of curves ξ = (ξ l, ξu). ξ l(k) and ξu(k)
respectively provide the lower and upper bounds on the length of the time interval
during which any k consecutive events could arrive. Let ti denote the arrival time of
the ith event; we have ξ l(k) ≤ ti+k − ti ≤ ξu(k) for all i ≥ 0 and k ≥ 0. Also, the processing
capacity of a component is specified by a service curve ψ = (ψ l, ψu). The length of time
to process any k consecutive events for any potential stream is at least ψ l(k) and at
most ψu(k). Actually, ξ is a pseudoinverse of α, satisfying ξu(k) = min	≥0{	|αl(	) ≥ k}
and ξ l(k) = max	≥0{	|αu(	) ≤ k} (same for β and ψ). Also, the length of time to process
any k consecutive events for any potential stream is at least ψ l(k) and at most ψu(k).

Based on the results from network calculus, the maximum delay experienced by an
event and the maximum number of backlogged events from the stream that are waiting
to be processed can be given by the following inequalities.

delay ≤ sup
t ≥ 0

{
inf
τ ≥ 0

{
αu(t) ≤ βl(t + τ )

}}
; (24)

backlog ≤ sup
t ≥ 0 {αu(t) − βl(t)}. (25)

Furthermore, real-time calculus gives exact bounds on the output stream of a compo-
nent as a function of its input stream. This result can then be used as input for the
next component. An event stream entering a processing or communication resource
gets processed or transmitted, thereby generating an outgoing event stream which
might enter another resource. As a result, the processing capability (such as the pro-
cessor or bus bandwidth) of the resource, as specified by its upper and lower service
curves, gets modified.

Given an event stream which is specified by its arrival curves α = (αl, αu) and a
resource which processes this event stream and its processing capability being specified
by its service curves β = (βl, βu), let α′ = (αl′ , αu′

) denote the outgoing arrival curve
of the (processed) event stream and β ′ = (βl′ , βu′

) denote the remaining service curves
of the resource. By generalizing ideas from network calculus, these curves can be
calculated as follows [Chakraborty et al. 2003].

αl′(	) = min
{
βl(	), inf0≤μ≤	

{
supλ≥0

{
αl(μ + λ) − βu(λ)

} + βl(	 − μ)
}}

; (26)

αu′
(	) = min

{
βu(	), supλ≥0

{
inf0≤μ≤λ+	

{
αu(μ) + βu(λ + 	 − μ)

} − βl(λ)
}}

; (27)

βl′ (	) = sup0≤λ≤	

{
βl(λ) − αu(λ)

}
; (28)

βu′
(	) = max

{
0, infλ≥	

{
βu(λ) − αl(λ)

}}
. (29)
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3.1.5. Stochastic Network Calculus. Stochastic network calculus [Jiang and Liu 2008] is
the probabilistic version (deterministic) network calculus. Providing deterministic ser-
vice often guarantees results in low resource utilization in the network. However, in
some applications, such as multimedia applications, excess delay and loss of a small
amount of data can be tolerated. For such applications, providing stochastic service
guarantees can give better utilization of resources in the network without jeopardizing
performance. Furthermore, in some networks, such as wireless networks, the service
offered by a communication channel may vary randomly over time due to channel
contention and impairment. Such networks can only provide stochastic services and
guarantees [Jiang and Liu 2008]. Also, several stochastic versions of arrival curves
have been proposed by extending the concept of arrival curve to the stochastic case
based on the traffic amount property or virtual backlog property. In contrast to de-
terministic arrival curves, stochastic arrival curves envelop traffic tighter, but have
higher implementation complexity. An arrival process R is said to be constrained by a
stochastic arrival curve a(t) with bounding function f (x), if for all 0 ≤ s ≤ t and x ≥ 0
there holds

P
{
sup0≤s≤t

{
R(t) − R(s) − a(t − s)

}
> x

} ≤ f (x), (30)

where notation P{Z} means the occurrence probability of event Z [Jiang and Liu 2008].
Also, a system S is said to provide a stochastic service curve β with bounding function
g(x), if for all t ≥ 0 and x ≥ 0 there holds [Jiang and Liu 2008]

P
{
sup0≤s≤t

{
R ⊗ β(s) − R∗(s)

}
> x

} ≤ g(x) (31)

Similar to network calculus, the probabilistic versions of backlog and delay bounds are
computed based on stochastic arrival and service curves.

3.2. Applications in NoCs

Zhang [1995] surveyed several service disciplines proposed in the literature to provide
per-connection end-to-end performance guarantees in packet-switching networks. Var-
ious issues and trade-offs in designing service disciplines for guaranteed performance
service are discussed, and a general framework for studying and comparing these dis-
ciplines are presented. This work gives an excellent overview of guaranteed service in
networks that can be applicable to NoCs.

Network calculus can be used to estimate the worst-case flow delays and backlogs in
a given system. Qian et al. [2009c] investigated per-flow flit and packet worst-case delay
bounds in on-chip wormhole networks. The authors first proposed analysis models for
flow control, link, and buffer sharing, and then based on these analysis models, they ob-
tained an open-ended service analysis model capturing the combined effect of flow con-
trol, link, and buffer sharing. With the service analysis model, they computed leftover
service curves for individual flows and then derived their flit and packet delay bounds.

Lu et al. [2009] defined a regulation spectrum for lossless flow regulation and used
it to reduce delay and backlog bounds in SoC architectures. Based on the regulation
spectrum, Jafari et al. [2010] then formulated optimization problems for minimizing
total buffers and buffer variations under QoS constraints. The regulation analysis was
performed for best-effort networks. Bakhouya et al. [2011] presented a methodology to
analyze and evaluate on-chip interconnects in terms of performance and cost metrics,
such as latency, energy consumption, and area requirements. The 2D mesh, spidergon,
and WK-recursive topologies were compared using a given traffic pattern. The authors
showed that WK-recursive outperforms mesh and spidergon in all considered metrics.
Lu [2011] used network calculus to analyze and determine the delay and buffer bounds
for TDM virtual circuits crossing synchronous clock domains.
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Fig. 10. Three basic contention patterns for a tagged flow [Qian et al. 2010a] c© IEEE 2010.

Qian et al. [2009a] applied network calculus to NoCs in order to analyze delay and
backlog bounds for self-similar traffic. The authors first showed that self-similar traf-
fic cannot be constrained by any deterministic arrival curve. Then they proved that
self-similar traffic can be constrained by leaky bucket arrival curves if an additional
parameter, excess probability, is used to capture its burstiness exceeding the arrival
envelope. Qian et al. [2010a] derived the worst-case delay bound for an individual flow
on packet-switched best-effort NoCs. To derive the leftover service curve for the flows,
the authors first constructed a contention tree [Lu et al. 2005] for each flow, which
captures its contention with other interfering flows along its routing path, and then
scanned the tree. A tagged flow directly contends with interfering flows. Also, interfer-
ing flows may contend with each other and then contend with the tagged flow again.
This indirect contention may, in turn, influence the performance of the tagged flow. To
decompose a complex contention scenario, they identified three primitive contention
patterns. Figure 10 shows a tagged flow, f(1,N), traverses a tandem of N routers from
source to destination, and is multiplexed with contention flows. The contention sce-
narios the tagged flow may experience can be classified into three patterns: nested,
parallel, and crossed. The authors analyzed the three scenarios and derived their basic
analytical models with focus on the derivation of the service curve the tandem provides.

For nested, parallel, and crossed contention flows, the service curves of tandem (1,N)
for f(1,N) are calculated as in Eqs. (32), (33), and (34), respectively. Interested readers
can find more details in Qian et al. [2010a].

β(1,N) = (⊗g−1
i=1 βi

) ⊗ β
{g→k},eq
(1,N) ⊗ (⊗N

i=k+1βi
)
; (32)

β(1,N) = (⊗g−1
i=1 βi

) ⊗ β
{g→h},eq
(1,N) ⊗ (⊗ j−1

i=h+1βi
) ⊗ β

{ j→k},eq
(1,N) ⊗ (⊗N

i=k+1βi
)
; (33)

β(1,N) = (⊗g−1
i=1 βi

) ⊗ β
{g→h−1},eq
(1,N) ⊗ β

{h→k},eq
(1,N) ⊗ (⊗N

i=k+1βi
)
. (34)

After obtaining the tandem service curve, the authors derived closed-form formulas
to calculate the delay bound and output arrival curve based on Eqs. (19) and (20),
respectively. The authors showed that the simulated delays are totally constrained by
the calculated delay bounds and that the bounds are all tight. In this work, the authors
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have assumed big enough buffers in routers. Bounded buffers and virtual channels
were considered in Qian et al. [2009b] and Qian et al. [2010b], respectively.

Based on real-time calculus, Hamann et al. [2004] presented a framework for design
space exploration and system optimization for heterogeneous SoCs and distributed
systems using SymTA/S, a software tool for formal performance analysis. SymTA/S
takes the hierarchical structure of the design space of heterogeneous SoCs and dis-
tributed systems into account, allowing the designer to control the exploration process.
The authors showed that optimization potential through traffic shaping in complex
SoCs and distributed systems is very high. Therefore, the central aspect in their pro-
posed framework is traffic shaping. Although traffic shaping is a promising approach
for implementing real time systems, it is not suitable for non-real-time and best-effort
systems, since it makes the system non-work-conserving. SymTA/S allows designers to
control the exploration process and provides them with insights on system-level per-
formance dependencies. Based on this knowledge, designers can identify interesting
design subspaces, worthy of being searched in-depth or even completely.

Soft real-time applications, such as a video decoder, may miss some deadlines with-
out much of a detriment to their perceived performance. In these instances, Nelson
et al. [2010] proposed a conservative simulation approach as an alternative to formal
modeling for soft real-time applications. The authors introduced a hybrid simulation
method which enables performance guarantees on a per-trace basis without any mod-
eling effort. Furthermore, they evaluate an implementation of the described technique
and compare it with an actual MPSoC instance implemented on an FPGA.

Network calculus emerged as a new theory for the analysis of performance bounds
in network-based systems. In contrast to queueing theory, network calculus deals with
worst-case analysis instead of average-case analysis. Hence, it has been a promising
formalism for quality of service analysis. With network calculus, we are able to derive
the worst-case bounds on maximum latency, backlog, and minimum throughput.

4. SCHEDULABILITY ANALYSIS

4.1. Overview

Schedulability analysis is a mathematical formalism for investigating the timing prop-
erties in real-time systems. It was originally proposed for analyzing the computation
systems [Liu and Layland 1973; Leung and Whitehead 1982; Lehoczky et al. 1989] and
then applied to communication platforms, such as multicomputers [Li and Mutka 1994]
and NoCs [Shi and Burns 2008]. Usually in schedulability analysis, tasks are modeled
with periodic and sporadic models. Periodic and sporadic tasks are released repeatedly.
A periodic task is released at regular intervals, and a sporadic task is released at ar-
bitrary times, but with a specified minimum time interval between releases. Given a
set of periodic and sporadic tasks, their worst-case execution time, and a scheduling
policy, schedulability analysis determines whether it is possible to schedule these tasks
such that deadline misses never occur. The earliest results in real-time scheduling and
schedulability analysis have been obtained under restrictive assumptions about the
task set and the underlying architecture: the task set is composed of a fixed number of
independent tasks mapped on a single processor—the tasks are periodically released,
each with a fixed period, the deadlines equal the periods, and the task execution times
are fixed. Later works were done under more relaxed assumptions, such as multipro-
cessor systems, data dependency relationships among the tasks, deadlines less than or
equal to the periods, and sporadic tasks.

Usually real-time systems are equipped with a schedulability test [Wu et al. 2010],
which determines whether each of the admitted tasks can meet its deadline. A new
task will not be admitted unless it passes the schedulability test. The schedulability
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test can be either direct or indirect. In a direct schedulability test, the worst-case re-
sponse time of the tasks is calculated, and a task set is schedulable if and only if the
worst-case response time of each task is less than or equal to its deadline. This type of
test is accurate, but the computing cost in calculating the response times is very high.
Audsley et al. [1993] proposed an iterative formula to compute the worst-case response
time of a periodic task set. The complexity of this test is pseudo-polynomial, thus it
may be unsuited for online admission control, especially in those real-time applications
consisting of large task sets. Sjodin and Hansson [1998] proposed a few methods for
reducing the number of iterations in computing task response times. However, the
worst-case complexity of their test is still pseudo-polynomial. Indirect schedulability
tests do not compute the delays, but test another performance factor of the system in
order to determine the task schedulability. The utilization-based test is the most com-
mon indirect schedulability test which tests system resource utilization to determine
the task schedulability. A new task can be admitted only if the utilization is lower than
a pre-derived bound. For utilization-based schedulability test, a task set is schedulable
when the utilization of the task set is lower than a pre-derived bound.

In the seminal work of Liu and Layland [1973], the problem of multiprogram schedul-
ing on a single processor is studied. They derived a utilization bound for rate monotonic
(RM) scheduling policy in which a task with a shorter period is given a higher priority
than a task with a longer period. They considered sets of periodic tasks on a unipro-
cessor system under the assumptions that all tasks start simultaneously at time t = 0,
deadlines are equal to periods, and tasks are independent. Under such assumptions, a
set of n periodic tasks is schedulable by an RM algorithm if

n∑
i=1

Ci

Ti
≤ n(2

1/n − 1), (35)

where Ci is the worst-case execution time (WCET) of task i, Ti is the period of task
i, and n is the number of tasks. The left-hand side of the inequality represents the
maximum utilization of the system, and the right-hand side represents the utilization
bound, a quantity which decreases monotonically from 0.83 when n = 2 to ln 2 ≈ 0.69
as n → +∞.

In the same paper, they analyzed the set of tasks in the case that are dynamically
scheduled by a runtime scheduler according to a dynamic assignment of priorities to
tasks. The assignment is made according to the earlier deadline first (EDF) algorithm
(i.e., the closer the task deadline, the higher the task priority). Task preemption is
allowed. Under these assumptions, they proved that a task set is schedulable if and
only if

n∑
i=1

Ci

Ti
≤ 1. (36)

Consequently, it can meet all the deadlines of all periodic tasks up to full processor
utilization. They also proved that in a uniprocessor system, RM and EDF are the
optimal static and dynamic priority assignment algorithms, respectively. In other word,
if a task set is not schedulable by RM (EDF), then it cannot be scheduled by any other
static (dynamic) priority assignment. As an example, consider a processor with three
tasks: their WCETs and periods are shown in Table I.

The maximum utilization of the processor is 1/5 + 3/9 + 2/10 = 0.73, and the utiliza-
tion bound for the three tasks is U = 3(21/3 − 1) = 0.78, Since 0.73 < 0.78, the system
is surely schedulable by the RM algorithm.

In spite of the dominance of the EDF over the RM, the RM algorithm is more common
in practical real-time systems, because it is easier to implement [Sha et al. 1986]. The
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Table I. Time Properties of Tasks in a Real-Time
System

task WCET (Ci) period (Ti)
task 1 1 5
task 2 3 9
task 3 2 10

typical motivations that are usually given in favor of RM state that RM introduces less
runtime overhead, is easier to analyze, is more predictable in overload conditions, and
causes less jitter in task execution. However, Buttazzo [2005] compared RM against
EDF under several aspects, using theoretical results and simulation experiments to
show that many common beliefs are either false or only restricted to specific situations.

Based on Liu and Layland’s result, any periodic task set of any size will be able
to meet all deadlines all of the time if the rate monotonic algorithm is used and the
total utilization is not greater than 69%. It is worth mentioning that this condition is
sufficient and not necessary. In practical systems, the RM algorithm can often success-
fully schedule task sets having total utilization higher than 69%. Based on stochastic
analysis, Lehoczky et al. [1989] performed an average-case study and showed that for
randomly generated task sets consisting of a large number of tasks whose periods are
drawn from a uniform distribution, 88% is a good approximation to the threshold of
schedulability for the RM algorithm. This implies that due to better resource utiliza-
tion, the average case is substantially better than the worst case. Exact schedulability
tests for RM yielding to necessary and sufficient conditions have been independently
derived by Joseph and Pandya [1986], Lehoczky et al. [1989], Audsley et al. [1993], and
Manabe and Aoyagi [1995].

Leung and Whitehead [1982] considered the case of deadlines smaller than periods
and proved that the deadline monotonic priority assignment is optimal. Also, arbitrary
deadline assignment schemes have been studied [Lehoczky et al. 1989; Lehoczky 1990;
Peng and Shin 1993]. Xuan et al. [2000] and Abdelzaher et al. [2004] derived some
utilization bounds for nonperiodic systems. Pop et al. [2000] proposed solutions to the
schedulability analysis of hard real-time systems with control and data dependencies.

Oh and Bakker [1998], Liu [2000], and Bini et al. [2003] proposed approaches for de-
riving polynomial time tests with better acceptance ratios. For instance, the hyperbolic
bound proposed in Bini et al. [2003] improves the acceptance ratio by a factor of

√
2 for

large n, compared with the Liu and Layland test. According to the hyperbolic bound
method, a set of periodic tasks is schedulable by RM if

n∏
i=1

(
Ci

Ti
+ 1) ≤ 2. (37)

The authors also extended this test in the case of resource constraints and aperiodic
servers. Bini and Buttazzo [2004] derived a schedulability test for periodic task sets
under an arbitrary fixed priority assignment which can be tuned through a parameter
to balance complexity versus acceptance ratios, so that it can be used online to better
exploit the processor based on the available computational power.

Oh and Son [1995] studied the problem of allocating a set of periodic tasks on a mul-
tiprocessor system such that tasks are scheduled to meet their deadlines on individual
processors by the RM scheduling algorithm. Utilization bounds of RM in multipro-
cessor systems are also derived [Oh and Bakker 1998; Andersson and Jonsson 2000;
Andersson et al. 2001; Funk et al. 2001; Baker 2003]. Davis and Burns [2011] surveyed
hard real-time scheduling algorithms and schedulability analysis techniques for ho-
mogeneous multiprocessor systems. The survey provides a taxonomy of the different
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scheduling methods and considers the various performance metrics that can be used
for comparison purposes.

4.2. Application in NoCs

The SoC communication platform needs to provide different levels of service for vari-
ous application components on the same network. Real-time communication has very
stringent requirements—the correctness relies not only on the communication result
but also the completion time bound. A data packet received by a destination too late
could be useless. The worst-case acceptable time metric is defined to be the deadline of
the packet. A set of real-time traffic flows over the network are termed schedulable if all
the packets belonging to these traffic flows meet their deadlines under any arrival order
of the packet set. In such a system, schedulability analysis deals with investigation of
the schedulability of flows in the network. This formalism uses an iterative approach
to estimate the maximum end-to-end latency of flows in a network-based system.

To support real-time communication in interconnection networks, several flow con-
trol mechanisms have been proposed to explore the priority-based packet scheduling
mechanism in the literature [Li and Mutka 1994; Song et al. 1997; Balakrishnan and
Ozguner 1998]. Li and Mutka [1994] proposed a flow control mechanism in which
there is the same number of virtual channels as the number of priority levels, and a
packet can request only a virtual channel which is numbered lower than or equal to
its priority. Song et al. [1997] proposed throttle and preempt flow control to avoid the
priority inversion problem of traditional blocking flow control in wormhole routers.
Priority inversion is referred to as a situation where a higher-priority packet must wait
for the transferring of a lower-priority packet. Throttle and preempt flow control pro-
hibits low priority packets from using input buffers beyond their allowed limit, so that
high-priority packets can always preempt the low-priority packets to use the channels,
if necessary. Hence, this flow control does not cause priority inversion. However, the
upper bound of network latency for each packet in the network is not delivered by this
method.

A few works address the packet delivery guarantee problem in communication
platforms and propose schedulability analysis methods to solve it. Since a link in the
network is shared among several flows, it is too complex to use the utilization-based
tests for determining the packet schedulability. Hence, researchers had to use direct
schedulability tests and proposed a few methods for calculating the worst-case delay
of packets. Kandlur et al. [1994], Sathaye and Strosnider [1994], and Li and Mutka
[1996] addressed scheduling of real-time communication on direct networks. Kandlur
et al. [1994] analyzed interprocessor communication for real-time systems with a
direct network using store-and-forward switching. They presented a method for guar-
anteeing the maximum end-to-end delivery time for packets, and a schedulability test
to ensure that real-time packets meet their deadlines. Several flow control methods
for real-time wormhole-routed networks were proposed by Li and Mutka [1996].
These methods increase the likelihood of real-time packets meeting their deadlines,
but have no guarantees on the feasibility of packets. For this reason, they are more
suited to soft-deadline systems than hard-deadline systems. Hary and Ozguner [1997]
presented FT1, an offline feasibility test for real-time wormhole-routed packets. This
test works for any static priority assignment method. Passing FT1 is a sufficient but
not a necessary condition for feasibility. All the links used to form a route for a flow
are lumped as one shared resource (like a bus structure). Since they just considered
the direct competitions and ignored indirect competition, their result was optimistic.
Balakrishnan and Ozguner [1998] utilized the same model proposed by Hary and
Ozguner [1997] and considered the indirect competitions. However, since direct and
indirect contentions are considered the same, their result is pessimistic. They showed
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that the computation complexity of the proposed schedulability analysis algorithm is
O(n2), where n is the number of flows in the system. Kim et al. [1998] used a blocking
dependency graph to express the contentions a flow may meet and derived the packet
delivery upper bound. Lu et al. [2005] formulated a contention tree to take into account
the direct and indirect contentions and captures concurrent use of links.

Shi and Burns [2008] proposed an offline schedulability analysis approach to dis-
cuss a real-time on-chip communication with wormhole switching and fixed priority
scheduling. The authors proved that the general problem of determining the exact
schedulability of real-time traffic flows over the on-chip network is NP-hard. How-
ever, they gave a determinant upper bound on the schedulability of real-time traffic
flows by evaluating diverse inter-relationships among the traffic flows. They proposed
a method to predict the packet network latency based on direct and indirect contention
from higher priority traffic flows. Although wormhole switching with fixed priority
preemption is a possible solution for real-time on-chip communication, the hardware
implementation cost is expensive. Shi and Burns [2009] proposed a solution by utiliz-
ing a priority share policy to reduce the resource overhead while still achieving the
hard real-time service guarantees. However, the blocking introduced by priority share
policy complicates the analysis process. To address this problem, Shi and Burns [2010]
proposed a per-priority basis analysis scheme which computes the total time window
at each priority level instead of at each traffic flow. By checking the release instance
of each flow at the corresponding priority window, they determined schedulability effi-
ciently. Building on this static analysis, for a given set of tasks and network topology,
the authors further proposed a task mapping and priority assignment algorithm in
such a way that the hard time bounds are met with reduced hardware overhead.

The focus of schedulability analysis is on real-time systems, and it determines if a
real-time system can meet its deadline or not. Furthermore, schedulability analysis
tries to assign priority to tasks so that each task meets its deadline.

5. DATAFLOW ANALYSIS

5.1. Overview

A dataflow graph is a model-of-computation (MoC), where a number of concurrent pro-
cesses communicate with each other via unbounded FIFO channels [Lee and Parks
1995]. Writing to these channels is nonblocking, while reading from these channels is
blocking [Jantsch and Sander 2005]. A dataflow program is a directed graph consist-
ing of nodes (actors) that represent communication and arcs that represent ordered
sequences (streams) of data units (tokens), as illustrated in Figure 11(a). Circles repre-
sent nodes, arrows represent streams, and the dot represents a token. Dataflow graphs
can be hierarchical since a node can represent a dataflow graph. The execution of a
dataflow graph is a sequence of firings. During each firing, an actor consumes input
tokens and produces output tokens. The number of tokens consumed and produced may
vary for each firing and is defined in the firing rules of a dataflow actor. An important
property of dataflow graphs is that an actor firing only depends on the availability of
data. This implies that dataflow graphs are untimed, meaning that nothing is specified
about points in time at which firings occur. Dataflow graphs have been shown to be
very valuable in digital signal processing applications (e.g., audio and video applica-
tions) for concurrent implementation on parallel hardware. When running multiple
actors on a single resource, a sequence of firings, also called a schedule, is required. For
general dataflow models, it cannot be decided whether such a schedule exists because
it depends on the input data.

Depending on how the consumption, production, and firing rules are specified, there
exists a variety of different dataflow MoCs. They differ in their expressiveness and suc-
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Fig. 11. (a) Dataflow network; (b) a synchronous dataflow (SDF) network.

cinctness, analyzability, and implementation efficiency [Stuijk et al. 2011]. The expres-
siveness and succinctness of an MoC indicates how well it can explain characteristics of
the system and how compact it is. The analyzability is determined by the availability of
analysis and synthesis algorithms and the runtime needed for an algorithm on a graph
with a given number of nodes. The implementation efficiency of an MoC is influenced
by the complexity of the runtime scheduling problem. We shall now briefly describe the
most important dataflow types and then compare them with regard to expressiveness,
analyzability, and implementation efficiency.

Synchronous dataflow (SDF) model is currently the most popular and widely stud-
ied dataflow model for streaming applications [Bekooij et al. 2005]. As shown in
Figure 11(b), SDF puts further restrictions on the general dataflow model, since a
process consumes and produces a fixed number of tokens for each firing [Lee and
Messerschmitt 1987a]. With this restriction, it can be tested efficiently if a finite static
schedule exists. If one exists, it can be effectively computed. The numbers on the arcs
show how many tokens are produced and consumed during each firing. There exists
an algorithm to construct a static periodic schedule for SDF models [Lee and Messer-
schmitt 1987b]. A possible schedule for the given SDF network is {A, A, C, C, B, D}.
This allows for determining a static firing sequence which returns the SDF graph into
its initial state. Such a firing sequence can be repeated in a loop to statically sched-
ule an SDF graph operating on a stream of data. Much of the existing work on SDF
scheduling focuses on optimizing static and dynamic schedules for parallel execution,
required sizes of buffers, and end-to-end throughput. There exist many analysis algo-
rithms for SDFs which have polynomial complexity [Stuijk et al. 2011]. Hence, it is
possible to derive efficient implementations based on SDF.

Since in SDF, the data rates over different channels are not the same, it is also called
a multirate dataflow model [Horstmannshoff et al. 1997]. A single-rate or homogeneous
SDF (HSDF) graph is a restricted form of SDF model in which the consumption and
production on each edge is a single token [Rumbaugh 1977; Dennis 1980; Lee and
Messerschmitt 1987a]. A token is fireable if there is at least one token on all its
incoming edges. For any HSDF, a static schedule can be easily constructed by compile-
time scheduling tools. Parhi [1989] described an algorithm that transforms any SDF
graph into an HSDF graph.

One problem with the SDF model is that for algorithms with variation of the data
rate, the model uses more memory than the application actually needs. For example,
consider the graph in Figure 12. Here, implementing the up-sample actor as an SDF
actor requires a large memory to hold all of the output tokens from a single firing.
This problem has been addressed by extending the SDF model to support cyclo-static
actors, in which rate conversion actors are implemented more efficiently to execute in
multiple phases [Lauwereins et al. 1994].

In the cyclo-static dataflow (CSDF) model [Lauwereins et al. 1994; Bilsen et al. 1996]
the number of consumed and produced tokens by an actor varies cyclically. There are
fixed numbers of phases in a cycle, and each actor produces or consumes a fixed number
of tokens in each phase, but different phases may have different behavior. As shown in
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Fig. 12. An SDF graph with a large sample rate change. C’s input requires excessive memory [BUCK 1994]
c© IEEE 1994.

x(1), ..., x(pi) y (1), ..., y(pj)

vi vje

Fig. 13. Cyclo-static dataflow (adapted from [Bilsen et al. 1996] c© IEEE 1996).

Figure 13, the production of actor vi on edge e is represented as a sequence of constant
integers [xi(1), xi(2), . . . , xi(pi)]. The nth time that actor vi is executed, it produces x(1+
(n-1) mod pi) tokens on edge e. The consumption of vertex v j is analogous. The firing
rule of a cyclo-static actor v j is evaluated as “true” for its nth firing if and only if
all input FIFOs contain at least yi(1+ (n-1) mod pj) tokens. Lauwereins et al. [1994]
showed that although the CSDF is more compact than the HSDF, it is as expressive
as HSDF. Since the data rate of each channel is not fixed, analysis and scheduling of
CSDF are more complex compared to SDF.

Due to some nonsynchronous and data-dependent behavior, some streaming appli-
cations cannot be expressed by SDF and CSDF [Buck 1994]. This problem can be
addressed by extending the SDF model to permit some actors with data-dependent
behavior. A further generalization of the SDF model is Boolean dataflow (BDF) [Buck
1993], where the numbers of consumed and produced tokens depends on the value
of a token read from a dedicated control input. Since the token productions and con-
sumptions depend on data values during runtime, a BDF network is not completely
statically schedulable. However, extending the SDF model to support some dynamic
actors (SWITCH and SELECT actors) while preserving static scheduling as much as
possible has been studied [Lee 1991; Buck and Lee 1993]. By using SWITCH and SE-
LECT actors, we can build conditional constructs like if-then-else and do-while loops.
As shown in Figures 14(a) and 14(b), the SWITCH actor gets a control token and then
copies a token from the input to the appropriate output, determined by the Boolean
value of the control token. Figures 14(c) and 14(d) show that the SELECT actor gets a
control token and then copies a token from the appropriate input, determined by the
Boolean value of the control token, to the output. These actors are not SDF compliant,
because the number of produced/consumed tokens is not fixed and depends on an input
Boolean control.

The dynamic dataflow (DDF) model [Lee and Parks 1995] is a Boolean dataflow model
with one additional variation: the control actors mentioned in the BDF model are able
to read multiple token value, and the data actors can be fired conditionally based on
the control actor read. Because of the incomplete knowledge at compile time, BDF
and DDF MoCs need a runtime scheduling mechanism to determine when an actor
becomes executable. Moreover, it is not always possible to predict whether a sched-
ule with bounded buffer lengths can be constructed. Consequently, runtime schedul-
ing and deadlock detection mechanisms are required to implement these MoCs. This
makes their implementation less efficient compared to SDF and CSDF. To overcome
this problem, several dataflow MoCs have been proposed in related literatures, such
as Parameterized Synchronous Dataflow (PSDF) [Bhattacharya and Bhattacharyya
2001], Scenario-Aware Dataflow (SADF) [Theelen et al. 2006], Variable Rate Dataflow
(VRDF) [Wiggers et al. 2008], and Variable Phased Dataflow (VPDF) [Wiggers et al.
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Fig. 14. The behavior of SWITCH and SELECT actors for different inputs (derived from [Buck 1994] c©
IEEE 1994).

2011]. These MoCs provide a trade-off between analyzability and implementation ef-
ficiency. Consequently, they can express some dynamism while allowing design-time
analysis and low overhead implementation.

Bhattacharya and Bhattacharyya [2001] proposed a parameterized dataflow frame-
work to improve the expressive power of dataflow MoCs. The parameterized dataflow
framework is compatible with many of the existing data flow models, including SDF
and CSDF. As an application of the parameterized modeling framework, formal se-
mantics for parameterized SDF (PSDF) is developed in the same paper. In the PSDF
MoC, channel rates are allowed to be parameterized rather than constant. Therefore,
parameterized schedules and buffer sizes can be computed. Although PSDF can model
data-dependent and dynamic DSP systems, options to express dynamism are limited.
Variable Rate Dataflow (VRDF) is proposed to model the data-dependent communica-
tion behavior. In VRDF, data rates on channels can vary arbitrarily within a specified
range. Variable Phased Dataflow (VPDF) is a generalization of both VRDF and of CSDF
MoCs, where the number of repetitions of CSDF phases can vary in some finite inter-
val. Also, the presented algorithm for computing buffer capacities under throughput
constraint is a generalization of the algorithms presented Wiggers et al. [2007b, 2008]
for CSDF and VRDF, respectively. Existing analyses of VRDF and VPDF are limited
to computing buffer capacities that satisfy a throughput constraint. In the Scenario-
Aware Dataflow (SADF) MoC, the dynamic behavior of an application is viewed as a
collection of different scenarios (behaviors) [Theelen et al. 2006; Stuijk et al. 2011].
Each scenario is static and predictable in performance and resource usage. An SDF
MoC models the behavior of each scenario. Since the SDF model of different scenarios
may differ in all aspects, it is possible to exploit the dynamic behavior of applications
to derive an implementation with limited runtime overhead.

As shown in Figure 15, Stuijk et al. [2011] compared dataflow MoCs based on the
previously mentioned aspects of expressiveness and succinctness, analyzability, and
implementation efficiency. Dataflow models are ordered in terms of their ability to cap-
ture dynamic behavior in a compact way in the expressiveness and succinctness axis.
An overall conclusion is that expressiveness is typically traded off against analyzability
and implementation efficiency.
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Fig. 15. Comparison of dataflow MoCs (adapted from [Stuijk et al. 2011] c© IEEE 2011).
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Fig. 16. An SDF graph with execution time [Kumar et al. 2008].

5.2. Applications in NoCs

The classical dataflow models are untimed. To address the timing properties of a
system, a worst-case execution time can be associated with each actor [Sriram and
Bhattacharyya 2009]. This extension allows us to assess the timing behavior of the
NoC-based system, such as throughput and latency. A worst-case execution time is
added to each actor, as shown in Figure 16. The specified number of tokens is con-
sumed and produced within the execution time of the actor. A self-edge of an actor is
used to model that the previous execution must be finished before the next execution
can start. Scheduling policies can be modeled indirectly by transforming the worst-case
execution time to the worst-case response time [Bekooij et al. 2005].

Throughput is an important performance indicator in streaming applications. It has
been well studied in the literature on dataflow models [Dasdan and Gupta 1998; Dasdan
2004; Ghamarian et al. 2006]. All these studies focused on analysis of HSDFs and are
applicable to SDFs only through a conversion to HSDF [Lee and Messerschmitt 1987a;
Sriram and Bhattacharyya 2009]. Maximum cycle mean (MCM) analysis is then used
to determine throughput. To determine the MCM, the maximum of the cycle means
of all simple cycles in the HSDF graph needs to be determined, where the cycle mean
(CM) of a cycle c is the sum of the response times of the actors on c divided by the
number of initial tokens on the cycle c. The maximal attainable throughput of the
graph relates to 1/MCM. Latency is another prominent performance metric. However,
a little research has been done on latency. Sriram and Bhattacharyya [2009] studied
the latency of HSDFs. Although it is possible to compute the latency for an SDF
through conversion to an HSDF, the conversion may lead to an exponential increase in
the number of nodes in the graph which makes it prohibitively expensive in predicting
performance metrics [Stuijk et al. 2006]. Moreira and Bekooij [2007] presented a closed-
form expression for the latency of HSDF graphs. The authors provide useful bounds
on maximum latency for jobs with periodic, sporadic, and bursty sources, as well as a
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Fig. 17. A task model with [Wiggers et al. 2007a].

technique to check latency requirements. Ghamarian et al. [2007] proposed a latency
minimization technique that works directly on SDFs. This technique computes the
minimal achievable latency for an SDF and provides an execution scheme that gives
the minimal latency.

Bekooij et al. [2004] proposed an NoC-based multiprocessor architecture and an
HSDF model of the jobs which enables reasoning about the timing behavior of the sys-
tem. The NoC provides virtual point-to-point connections with a guaranteed through-
put and maximal latency. The authors modeled every task by one actor with a self
edge, as depicted in Figure 17(a). Wiggers et al. [2007a] have shown that latency-rate
servers [Stiliadis and Varma 1998] can be included in a dataflow model by two actors,
as shown in Figure 17(b). One actor models the rate, and the other models the latency.

Bekooij et al. [2005] used SDF models to derive the end-to-end temporal behavior of
jobs in a real-time embedded multiprocessor system. Hansson et al. [2009] and Hansson
and Goossens [2010] showed how to construct a CSDF model that conservatively mod-
els an NoC connection. Then they used the proposed dataflow model for dimensioning
the buffer size in network interfaces to guarantee the system performance and showed
that buffer sizes are determined with a runtime comparable to analytical methods and
results comparable to exhaustive simulation. Wiggers et al. [2007b] proposed an algo-
rithm that determines close-to-minimal buffer capacities for CSDF graphs such that
the throughput requirement and constraints on maximum buffer capacities are satis-
fied. Also, they showed that a CSDF model can lead to reduced resource requirements
compared to an SDF model.

6. NUMERICAL EXAMPLES

In this section, we consider a simple application mapped on an NoC and show how to es-
timate the performance metrics by using surveyed mathematical formalisms. Through-
out these analyses, we assume the same topology and routing but a different flow control
mechanism, since applications of formalisms differ starkly in purpose. As an example,
schedulability analysis is usually used to determine the worst-case delay bound in
systems with hard real-time constraints, so we assume the preemptive flow control.
On the other hand, network calculus studies more general systems, so we assume the
nonpreemptive flow control. Figure 18 shows the task graph and also communication
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Fig. 18. (a) Task graph of an application mapped on an (b) NoC platform.

Table II. Description of Traffic Flows

flow priority source destination packet length (mi) packet generation rate (λi) route
f1 high 1 6 8 0.02 Inj1, L1, L4, L5, Ej6
f2 low 5 6 16 0.01 Inj5, L3, L4, L5, Ej6
f3 medium 3 8 12 0.02 Inj3, L2, L4, L7, Ej8
f4 low 6 8 8 0.03 Inj6, L6, L7, Ej8

infrastructure for the on-chip network. Links and routers are organized in a 3 × 3
mesh structure, as shown in Figure 18(b). The delay of links and routers are assumed
one cycle and two cycles, respectively. Tasks, executing on different intellectual property
(IP) modules communicate with each other by transmitting packets through the NoC.

Table II shows attributes of the traffic flows, including flow priority, source and
destination of the flow, packet length in flits, and average packet generation rate in
packet/cycle/IP, as well as route of the flow in the network. For instance, f1 has the
highest priority in the system and starts in IPA, passing through injection channel
1, links 1, 4, 5, and ejection channel 6 before terminating in IPD. All packets of this
flow have the same length as the eight flits, and the average packet generation rate is
0.02 packet/cycle. In other words, on average, every 50 cycles, a packet is generated in
IPA.

6.1. Queueing Theory

In this section, the queueing theory-based analytical model proposed by Kiasari et al.
[2012] is used to estimate the average latency of flows in Figure 18(b). We described this
model briefly in Section 2.3. We assume that the flow control mechanism is wormhole
switching and that there is one flit buffer per input channel. Channels are allocated
per packet. It means that the channel is released when the whole packet has passed
through the channel. Also, we assume that nodes generate packets independently of
each other following a Poisson process.

The basic packet latency, di, happens when there is no traffic contention. It consists
of two parts: the latency of head flit and the latency of body flits. Latency of head flit is
determined by routing distance and router and wire delay. Once the head flit arrives
at the destination, the body flits follow the header flit in a pipelined fashion. Hence,
the body flit latency is a function of packet size and wire delay. For instance, according
to Figure 18(b), head flit of f1 passes through four routers and five links. Therefore,
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the head flit latency is 4trouter + 5twire = 13 cycles, and the body flit latency equals
(m1 − 1)twire = 7. As a result, the basic packet latency of f1 is

d1 = 4trouter + 5twire + (m1 − 1)twire = 8 + 5 + 7 = 20 cycles.

The average packet latency of f1, D1, is the time since the packet is created in IPA
until the last flit reaches the IPD, including the queueing time spent at the source node
(W̄Inj1→L1 ) and intermediate nodes (W̄L1→L4 ). In Figure 18(b), D1 can be computed as

D̄1 = d1 + W̄Inj1→L1 + W̄L1→L4 + W̄L4→L5 + W̄L5→Ej6 .

Note that W̄L4→L5 and W̄L5→Ej6 are equal to zero. The input buffer of L4 and L5 only
have space for one head flit. Hence, if the head flit holds the input buffer of L4, it can
access channel L5 without any waiting time. Therefore,

D̄1 = d1 + W̄Inj1→L1 + W̄L1→L4 .

To estimate the W̄i→ j , the first moment (average) and second moment of channels
service time should be computed. The second moment of a random variable X is defined
as the average of X2(X2 = ∑k

i=1(Xi)2/k). Determination of the channel service time
moments starts at the ejection channels and works in the reverse order of routing
towards to the source of the packet. It means that to compute D̄1, we should compute
the service time of Ej6, L5, L4, and L1 (s̄Ej6 , s̄L5 , s̄L4 , s̄L1 , respectively). Since the delay
of all channels is considered one cycle, an ejection channel offers a service time of mi
cycles to a packet of length mi flits. According to Figure 18(b) and Table II, Ej6 serves
flows 1 and 2 with lengths of 8 and 16 flits and rates of 0.02 and 0.01 packet/cycle,
respectively. Therefore, the average service time of ejection channel 6 is

s̄Ej6 = 0.02
0.03

× 8 + 0.01
0.03

× 16 = 10.67.

The waiting time for a channel closer to the destination (ejection channel) can be
thought of as adding to the service time of channels farther from the destination. In
other words,

s̄L5 = s̄Ej6 + W̄L5→Ej6 ;

s̄L4 = 3
5

(s̄L5 + W̄L4→L5 ) + 2
5

(s̄L7 + W̄L4→L7 );

s̄L1 = s̄L4 + W̄L1→L4 .

As stated before, W̄L5→Ej6 = 0. Hence, s̄L5 = s̄Ej6 = 10.67. To compute the s̄L4 , we have
to compute W̄L4→L7 in advance. The first and second moments of service time of L7 can
be given by

s̄L7 = s̄Ej8 = 2
5

m3 + 3
5

m4 = 9.6;

s2
L7

= 2
5

(m3)2 + 3
5

(m4)2 = 96.

After computing the moments of service time, the service rate and squared coefficient
of variation (SCV) of the service time of L7 are computed.

μL7 = 1/s̄L7 = 0.1042;

C2
sL7

= s2
L7

/(s̄L7 )
2 − 1. = 0.0417.
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Fig. 19. Network calculus model of the system in Figure 18(b).

Now we are able to compute the waiting time for channel L7. Flows f3 and f4 compete
to access L7, while f3 has higher priority than f4.

W̄L4→L7 = 1
2

(
C2

A + C2
sL7

) λL7

μ2
L7

= 2.4.

C2
A is the SCV of the arrival process, and for the Poisson process, it equals 1. Similarly,

for L4, we can write the following.

s̄L4 = 3
5

(s̄L5 + W̄L4→L5 ) + 2
5

(s̄L7 + W̄L4→L7 ) = 11.2;

s2
L4

= 6
8

(s̄L5 + W̄L4→L5 )
2 + 2

8
(s̄L7 + W̄L4→L7 )

2 = 125.9;

μL4 = 1/s̄L4 = 0.0893;

C2
sL4

= s2
L4

/(s̄L4 )
2 − 1 = 0.0037.

Waiting time for L4 is given by

W̄L1→L4 = 1
2

(
C2

A + C2
sL4

) λL4

μ2
L4

= 3.1.

If we repeat the computation for L1, W̄Inj1→L1 can be computed as

W̄Inj1→L1 = 1
2

(
C2

A + C2
sL1

) λL1

μL1 (μL1 − λ1)
= 2.9.

Finally, we can write

D̄1 = d1 + W̄Inj1→L1 + W̄L1→L4 = 26 cycles.

Following the same approach, the average packet latency for other flows can be
computed.

6.2. Network Calculus

In this section, we show how to apply the network calculus formalism for estimating
the worst-case latency in the NoC described in Figure 18 and Table II. Figure 19 shows
the system model in network calculus.

We consider the virtual cut-through switching with a nonpreemptive priority
scheduling policy. It is also assumed that four leaky bucket controllers constrain the
packet injection process in the system. In other words, fi is a (σi, ρi) regulated flow
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Fig. 20. System model based on the leaky bucket arrival curves and latency-rate servers.
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Fig. 21. Simplified system model.

which is constrained by arrival curve γρi ,σi = ρit + σi. According to Table II, average flit
injection rates are calculated as follows.

ρ1 = 0.02 × 8 = 0.16 flit/cycle;
ρ2 = 0.01 × 16 = 0.16 flit/cycle;
ρ3 = 0.02 × 12 = 0.24 flit/cycle;
ρ4 = 0.03 × 8 = 0.24 flit/cycle.

Let us further assume that the burstiness values are as follows.

σ1 = 5 packets = 40 flits;
σ2 = 3 packets = 48 flits;
σ3 = 4 packets = 48 flits;
σ4 = 5 packets = 40 flits.

Channels and routers are modeled with latency-rate servers, βR,T (t) = R(t − T )+.
Average service rates are considered one flit/cycle, and wire and router delay are sup-
posed to be one cycle and two cycles, respectively. Therefore, we can model the system,
as shown in Figure 20.

Applying the concatenation theory, the model shown in Figure 20 can be simplified
to Figure 21. As we mentioned in Section 3.1.3, the concatenation of two latency-rate
servers results in a new latency-rate server.

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2 .

Figure 22 shows how to compute the leftover service curve for f1 step by step. The node
in the center of Figure 22(a) guarantees the service curve β1,3 = t − 3 to the aggregate
of the three flows, where f1 has the highest priority. Then f1 is guaranteed a service
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Fig. 22. Leftover service curve for flow f1.

curve β1,3 = (t − 3) − 16, because the maximum packet size for the lower-priority flows
is 16 [Le Boudec and Thiran 2001]. Applying the concatenation theory on Figure 22(b)
results in Figure 22(c).

By using the delay bound formula of Eq. (22), we can write

D1 ≤ T + σ1/R = 29 + 40/1 = 69 cycles.

The worst-case delay of other flows can be computed by the same approach.

6.3. Schedulability Analysis

In Section 4.2, we reviewed FT1 proposed by Hary and Ozguner [1997], a feasibility
test for real-time wormhole-routed systems. In this section, we describe it in more
detail as a sample of a schedulability analysis approach. Consider again the system
described in Figure 18 and Table II. We assume that packets are injected periodically
in the network. The length of time between releases of successive packets of fi is a
constant, which is called the period Ti for this flow. Using the packet generation rates
in Table II, the period of each flow can be easily computed.

T1 = 1/0.02 = 50 cycles;
T2 = 1/0.01 = 100 cycles;
T3 = 1/0.02 = 50 cycles;
T4 = 1/0.03 = 33 cycles.

It is also assumed that a router’s architecture supports preemptive priority schedul-
ing and that there are as many virtual channels per link as flows per link. Therefore, a
packet cannot be blocked due to its inability to access a virtual channel. Let Si be the
set of higher-priority flows that share at least one link with fi.

S1 = ∅;
S2 = { f1, f3};
S3 = { f1};
S4 = { f3};

A packet from fi can only be blocked from accessing a link by higher-priority packets
that share a link with fi (i.e., any packets from f j ∈ Si). fi may be blocked by more
than one instance of each f j ∈ Si, since flows are periodic. The maximum end-to-end
latency of fi is the sum of the blocking time and di. di is the basic packet latency, we
showed how to calculate it in Section 6.1.

d1 = 4trouter + 5twire + (m1 − 1)twire = 8 + 5 + 7 = 20 cycles;
d2 = 4trouter + 5twire + (m2 − 1)twire = 8 + 5 + 15 = 28 cycles;
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Fig. 23. (a) Latency-rate model and (b) dataflow model of the network for flow f1.

d3 = 4trouter + 5twire + (m3 − 1)twire = 8 + 5 + 11 = 24 cycles;
d4 = 3trouter + 4twire + (m4 − 1)twire = 6 + 4 + 7 = 17 cycles.

f1 does not suffer any contention and receives the worst-case network latency equal to
its basic latency. Therefore, the worst-case delay of a packet from f1 is 20 cycles.

The worst-case response time of other flows, fi, at time t, Ri(t), is given as

Ri(t) = di +
∑

j

dj�t/Tj�, f j ∈ Si, (38)

where �t/Tj� is the maximum number of instances of higher-priority packets f j that
can occur up to time t. An iterative approach is used to solve Eq. (38), and the first
iteration begins at t = 0. The value of t used for each iteration is the latency of the
previous iteration. Eq. (38) converges when the latency of the current iteration is equal
to the latency of the previous iteration. For instance, consider flow f3, which shares at
least one link with higher-priority flow f1. The worst-case latency for flow f3 is given by

R3(t) = d3 + d1�t/T1� = 24 + 20�t/50�.
t = 0: R3(t) = 24;
t = 24: R3(t) = 24 + 20�20/50� = 44;
t = 44: R3(t) = 24 + 20�44/50� = 44.

The worst-case latency of f3 converges at t = 44 cycles. Therefore, based on the FT1
test, if the deadline of f3 is greater than 44, f3 is schedulable, otherwise not.

6.4. Dataflow Analysis

We consider again the application and architecture in Figure 18. In this section, we
assume that all packets are single-flit and that they arrive strictly periodically. We
use the proposed approach by Wiggers et al. [2007a] to find the minimum required
buffer for f1, if IPA injects a packet to the network every two cycles (throughput(f1) =
0.5). Similar to the network model in Section 6.2, we can use the latency-rate servers
to model the network elements which serve f1. The result is shown in Figure 23(a).
Figure 23(b) shows the HSDF model of the network for f1.

In the dataflow model shown in Figure 23(b), we need to guarantee that the through-
put of the graph equals the throughput of flow f1. Since throughput(f1) = 0.5, it is
required that the MCM of the graph to be maximally 2, as we described in Section 5.2.
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In other words,

MCM = max
{

1
1

,
1 + 1 + 1 + 3

b1
,

1 + 3 + 1 + 4
b2

,
1 + 4 + 1 + 3

b3
,

1 + 3 + 1 + 3
b4

}
≤ 2,

which results in

1 + 1 + 1 + 3
b1

≤ 2;

1 + 3 + 1 + 4
b2

≤ 2;

1 + 4 + 1 + 3
b3

≤ 2;

1 + 3 + 1 + 3
b4

≤ 2.

Therefore, b1 = 3 packets, b2 = 5 packets, b3 = 5 packets, and b4 = 4 packets are the
minimum number of buffers to guarantee throughput(f1) = 0.5.

7. BRIDGING DIFFERENT FORMALISMS

With the advances of technology, SoCs’ characteristics and requirements are changing.
Therefore, there has been a demand for theories dealing with heterogeneous archi-
tectures and applications encountered in such systems. The two front-runner models
for performance analysis and performance guarantees of SoCs are average-case and
worst-case analytical models. An open research issue is a unified analytical model for
performance. To overcome the weaknesses of individual formalisms, research should
try to combine the components of these formalisms. A few attempts have been made to
link these formalisms together.

Based on network calculus, Schmitt [2003] derived bounds on delay and backlog
per traffic class in nonpreemptive priority queueing systems. There are known results
for the average behavior of such a queueing system from queueing theory. By use
of numerical investigations, worst-case bounds are compared to those average-case
analysis results in order to give a feel as to how conservative the worst-case bounds are.
Pandit et al. [2004] analyzed the impact of network calculus bounds on queueing theory
results. More precisely, they studied the impact of traffic shaping and service curve
enforcement on a single M/M/1 queue. They did not analyze the system analytically,
and the study was performed through simulation. The queue length distribution was
compared with the original M/M/1 case, and the authors showed how the probability
mass of the higher buffer states (longer queues) of the M/M/1 queue distributes over
the lower buffer states (shorter queues).

Another attempt to link queueing theory and network calculus was presented by
Jiang [2009]. Based on the two network calculus principles and the min-plus and
the max-plus convolutions, the author derived delay bounds for the single node case
and showed that they are consistent with similar bounds derived based on Lindley’s
equation [Lindley 1952] for G/G/1 queues. Besides attempts to link network calculus
and queueing theory, there is an effort to bridge a gap between network calculus
and dataflow analysis formalisms. A relationship between concepts from the network
calculus and dataflow domains was described by Wiggers et al. [2007a], where it is
shown that a latency-rate server, which is a concept from network calculus, can be
included in the HSDF model. Figure 24 models a task ux with one input FIFO and
one output FIFO that executes on a latency-rate server with latency Tx and allocated
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Fig. 24. A dataflow component that models a latency-rate server (derived from [Wiggers et al. 2007a]).

rate Rx. ry and rz are the response time of actors y and z, respectively. The resulting
dataflow model provides guarantees on the temporal behavior of the implementation.

8. CONCLUSION

To summarize the discussion, we compare the presented formalisms based on the event
model, node mode, and analysis output of the formalisms.

8.1. Event Model

The event model refers to the data packet representation. In queueing theory, the event
model is the probability distribution of the interarrival time of packets. The interarrival
times of different flows are independent and identically distributed random variables.
In network calculus, an upper bound for the number of packets, called the arrival
curve, models the events. An arrival curve is associated to each flow, and they are
assumed to be independent. In schedulability analysis, the events are modeled with
periodic and sporadic models in which a flow is represented by its minimum interarrival
times. Like in queueing theory and network calculus, there is no dependency between
events. Dataflow analysis models events with tokens which are produced and consumed
by nodes. The production of new tokens (events) in the output ports depends on the
availability of tokens in the input ports. Hence, dataflow analysis is the only formalism
that captures the dependency between the events.

8.2. Node Model

Nodes are modeled based on their service time. In queueing theory, service time is
specified probabilistically. The node model is the probability distribution of the router
service time. In network calculus, nodes are modeled using the notion of a service curve,
which is a function characterizing the minimum number of bits a node must transmit
in any given time interval. In scheduling analysis, a node is modeled based on its
worst-case delay and the scheduling policy. The worst-case node delay and scheduling
policy represent a node in dataflow analysis. Note that scheduling policy is modeled
explicitly in scheduling theory and data flow models, but implicitly in network calculus
and queueing theory as more abstract node models.

Transformation of one node model to another is not always possible without loss of
information or accuracy. Since queueing theory deals with average-case analysis and
the three other formalisms deal with worst-case analysis, transformations between
them results in information loss. Many common distributions in queueing theory (e.g.,
exponential distribution) assign a nonzero probability to any positive number, even
regions far from the mean value. Therefore, usually it is not possible to find a worst-
case bound for the service time of a node in queueing theory. Also, it is not possible to
estimate the shape of the service time distribution from the worst-case service time.
Node models in the other formalisms (network calculus, schedulability analysis, and
dataflow analysis) can be transformed to each other without information loss. For
instance, it is easy to find the worst-case node delay in dataflow analysis from a service
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Table III. Input Model, Node Model, and Output of the Mathematical Formalisms

Formalism Event model Node model Analysis Result
Queueing Theory The probability

distribution of the
interarrival time of
packets

Probability distribution
of the node service time

Average packet latency,
average throughput,
average energy and
power consumption, and
average resource
utilization

Network Calculus An upper bound for the
number of packet
(arrival curve)

A representation of
worst-case service time
of the node (service
curve)

Worst-case latency and
backlog

Schedulability
Analysis

Minimum interarrival
times of periodic or
sporadic packets

Worst-case node delay
and scheduling policy

Worst-case latency

Dataflow Analysis Tokens which are
produced and consumed
by nodes

Worst-case node delay
and scheduling policy

Throughput, buffer
sizing, worst-case
latency

Table IV. Advantages and Disadvantages of the Formalisms

Formalism Feature Weakness
Queueing Theory • Abstract model

• Average-case analysis
• Hard to derive accurate models
• Cannot represent flow dependencies

Network Calculus • Abstract model
• Worst-case analysis

• Hard to derive accurate models
• Cannot represent flow dependencies

Schedulability Analysis • Easy to set up event and node
models

• Cannot represent flow dependencies
• Limited accuracy

Dataflow Analysis • Can express flow dependencies
and flow control

• Must be used with restricted models
such as SDF and CSDF

curve in network calculus, or designers can estimate the shape of the service curve
from the worst-case node delay.

8.3. Analysis Results

The four considered formalisms lead to different kinds of analysis results. Since queue-
ing theory deals with probability models, it can compute average-case performance
metrics, such as average packet latency, average throughput, average energy and power
consumption [Kim et al. 2005; Kiasari et al. 2008b], and average resource utilization.
Network calculus computes the worst-case packet latency and maximum backlog in
the system, and schedulability analysis estimates the worst-case latency of a flow to
determine if it is schedulable or not. Finally, dataflow analysis determines the worst-
case latency and throughput of a given system. Table III summarizes the input model,
node model, and output of the studied formalisms.

8.4. Summary

Finally, we list the features and weaknesses of each formalism, which are summarized
in Table IV.

All formalisms can find a closed-form relationship between system parameters and
system performance metrics. However, in the case of queueing theory and network cal-
culus, it is difficult to derive mathematical models of a given network, because they use
complicated event models and node models. On the other hand, since schedulability
analysis uses simpler event models, the performance model is easily extracted with
less accuracy. A common problem of all models except dataflow is that they cannot
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capture well dependencies between data flows. The dataflow model is the only formal-
ism that can model the dependent flows in a system accurately. The general trade-off
between abstraction and accuracy can also be observed in the comparison between
these four formalisms. Queueing theory, network calculus, and schedulability analysis
can be considered more abstract than dataflow. As a consequence, details such as flow
control, back-pressure, and data dependencies are more difficult to capture in a natural
way. Dataflow can easily model these details, but for an efficient and precise analysis,
restricted models such as SDF and CSDF have to be used.

8.5. Outlook

Since each of the reviewed formalisms has different advantages and difficulties, and
since they also partially differ in purpose, none of them can easily replace all others.
There are definitely point problems for each formalism that are worthy further studies,
but research on integrated approaches to the problems of system performance analysis
is most urgent. Although each formalism can be extended in various directions, these
extensions typically run into problems of complex mathematics, or they are perceived
to be unnatural and cumbersome. Therefore, we believe that comprehensive frame-
works that combine two or more formalisms would be most desirable. For instance,
queueing theory and network calculus could be combined to offer both worst-case and
average-case analysis. The result could be combined with dataflow analysis to natu-
rally model event dependencies and lead a bridge to simulation. However, significant
work exploring and understanding the relations between these models and the possible
and useful transformations between them is required.
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