
Development and Application of Design Transformations in ForSyDe
�

Ingo Sander, Axel Jantsch, and Zhonghai Lu
Royal Institute of Technology

Stockholm, Sweden�
ingo,axel,zhonghai � @imit.kth.se

Abstract

The ForSyDe methodology has been developed for sys-
tem level design. Starting with a formal specification model,
that captures the functionality of the system at a high ab-
straction level, it provides formal design transformation
methods for a transparent refinement process of the system
model into an implementation model that is optimized for
synthesis. The main contribution of this paper is the for-
mal treatment of transformational design refinement. Using
the formal semantics of ForSyDe processes we introduce the
term characteristic function to be able to define and classify
transformations as either semantic preserving or design de-
cision. We also illustrate how we can incorporate classi-
cal synthesis techniques that have traditionally been used
with control/data-flow graphs as ForSyDe transformations.
Thus, our approach avoids discontinuities since it moves de-
sign refinement into the domain of the specification model.

1 Introduction

Keutzer et al. [5] point out, that “to be effective a design
methodology that addresses complex systems must start at
high levels of abstraction” and underline that an “essential
component of a new system design paradigm is the orthog-
onalization of concerns, i.e. the separation of various as-
pects of design to allow more effective exploration of al-
ternative solutions”. In particular, a design methodology
should separate (1) function (what the system is supposed
to do) from architecture (how it does it) and (2) communi-
cation from computation. They “promote the use of formal
models and transformations in system design so that ver-
ification and synthesis can be applied to advantage in the
design methodology” and believe that “the most important
point for functional specification is the underlying mathe-
matical model of computation”.

�
This research was supported by the Swedish Foundation for Strategic

Research within the INTELECT program.

These arguments strongly support the ForSyDe (Formal
System Design) methodology which addresses the transfor-
mational design of SoC applications. In contrast to [12],
where we have illustrated the large potential of our approach
by two powerful transformations for clock domain and com-
munication refinement, the emphasis of this paper is on the
formal treatment of design transformations in ForSyDe. We
introduce the formal basis, define a format for transforma-
tions in ForSyDe and show how the large amount of work
that exists for high-level synthesis can be used for the de-
velopment of design transformations.

2 Related Work

According to the tagged signal model developed by Lee
and Sangiovanni-Vincentelli [6] our system model can be
classified as synchronous computational model. It is based
on the synchrony hypothesis, that also forms the base for the
synchronous languages. According to Benveniste and Berry
”the synchronous approach is based on a relatively small
variety of concepts and methods based on deep, elegant,
but simple mathematical principles” [1]. The synchronous
assumption implies a total order of events and leads to a
clean separation between computation and communication
and gives a solid base for formal methods. Hsieh et al. [4]
define synchronous equivalence based on a different syn-
chronous assumption which does not assume a zero delay
for the computation phase. They focus only on verification
aspects but do not propose a design methodology.

The parallel programming community has used func-
tional languages to derive parallel programs from a func-
tional specification [14]. They use skeletons to structure
a problem. This formulation is then transformed, using
cost measures, into an efficient implementation for a cho-
sen computer architecture. Reekie [11] has used Haskell
to model digital signal processing applications. Similarly
to us, he modeled streams as infinite lists and used higher-
order functions to operate on them. Finally, semantic-
preserving methods were applied to transform a model into
a more efficient representation. Lava [2] is a hardware de-

1

scription language based on Haskell. It focuses on the struc-
tural representation of hardware and offers a variety of pow-
erful connection patterns. Lava descriptions can be trans-
lated into VHDL and there exist interfaces to formal method
tools. Hardware ML (HML) [7] is based on the func-
tional language Standard ML and mainly an improvement
of VHDL - there is a direct mapping from HML constructs
into the corresponding VHDL constructs. Mycroft and
Sharp have used the functional languages SAFL and SAFL+
mainly for hardware design but extended their approach in
[9] to hardware/software codesign. They transform SAFL
programs by means of meaning preserving transformations
and compile the resulting program in a resource-aware man-
ner, i.e. a function that is called more than once will be a
shared resource.

Transformational approaches have a long history [10].
However, most of the approaches are concerned with
software programs where concepts of synchronous sub-
domains and resource sharing, as discussed in this pa-
per, have no relevance. There are also a number of other
transformational approaches targeting hardware design, e.g.
[13], but none of them explicitly develops the concept of de-
sign decisions or addresses the refinement of a synchronous
model into multiple synchronous sub-domains as we at-
tempt in this article. In particular our approach allows to
use the large amount of work that exists for high-level syn-
thesis [3] by defining design decision transformations for
refinement techniques like re-timing or resource sharing.

3 The ForSyDe Methodology

3.1 The Design Process

The ForSyDe design process starts with the development
of a formal, abstract, functional specification model that can
be executed using the functional language Haskell. This
model is then refined inside the functional domain by a step-
wise application of well defined design transformations into
an implementation model. As the implementation model is
a refined version of the specification model, the same vali-
dation and verification methods can be applied to both mod-
els. In the partitioning phase, the implementation model is
partitioned into hardware and software blocks, which are
mapped on architectural components. Only now, in the code
generation phase, we leave the functional domain and enter
the implementation domain to produce VHDL or C/C++ for
the hardware and software parts [8].

3.2 The Specification Model

The specification model is based on a synchronous com-
putational model and uses ideal data types such as real num-
bers and infinite buffers. It abstracts from implementation

details, such as low-level communication mechanisms and
enables the designer to focus on the functional behavior of
the system rather than structure and architecture. The speci-
fication model leaves a wide design space for further design
exploration and design refinement, which is supported by
our transformational refinement techniques (Section 4).

In order to formally describe our computational model,
we follow the denotational framework of Lee and
Sangiovanni-Vincentelli [6]. They define signals as a set
of events, where each event e has a tag t and a value v,
i.e. e � �

t � v ��� T � V . As our specification model is syn-
chronous, T is the set of natural numbers, and all signals
have the same set of tags. In order to model the absence of
a value at a certain tag, a data type D can be extended into a
data type D � by adding the special value � . Absent values
are used to establish a total order of events when dealing
with signals with different or aperiodic event rates.

31
5 47 6

26 	
Absent Value Value

TagEvent

32
5 47 6

37 	

Signal

Pinc

Figure 1. Modeling of Signals and Processes

Figure 1 illustrates the modeling of signals and the be-
havior of processes. During the event cycle n a process pro-
cesses the events of each signal with the tag n and outputs
the result at the same tag n. A signal s is defined as a set of
events, where each event ei has a tag i and a value ei. In case
of an indexed signal sk we denote an event as

�
ek � i where k

is the number of the signal and i is the tag of the event.

s
 � e0 � e1 ���� �
sk
 ��� ek � 0 � � ek � 1 ���� �

Parallel signals are described as a tuple of signals. A
process P maps m input signals on n output signals.

P � s1 � s2 ������ sm �
�� s �1 � s �2 ������ s �n � m � n ���
Processes are executed concurrently and communicate with
each other synchronously by means of signals. Process net-
works can be modeled as set of equations.

As we use the perfect synchrony hypothesis [1], all input
and output signals have the same set of tags. We imple-
ment the synchronous computational model with the con-
cept of process constructors. A process constructor is a
higher-order function that takes combinational functions,
i.e. functions that have no internal state, and values as input
and produces a process as output. The ForSyDe methodol-
ogy obliges the designer to use process constructors for the
modeling of processes. This leads to a well defined speci-
fication model where all processes are constructed by pro-
cess constructors. There is a clean separation between syn-
chronization (process constructors) and computation (com-
binational function). In addition each process constructor

2

has a structural hardware and software semantics which
is used to translate the implementation model into a hard-
ware/software implementation [8].

mapSY � f �s s � zipWithSYn
s1

� f � s �
sn

mapSY � f �
 P
where P � s �
 s �

f � ei �
 e � i
zipWithSY n � f �
 P
where P � s1 � s2 ������ sn �
 s �

f ��� e1 � i � � e2 � i ������ � en � i �
 e � i
Figure 2. The Combinational Process Con-
structors mapSY and zipWithSY

The process constructor mapSY takes a combinational
function f and constructs a process with one input and out-
put signal, where f is applied on all values of the input
signal. The process constructor zipWithSYn corresponds
to mapSY, but creates processes with multiple input sig-
nals. There is the short notation � for mapSY and � n for
zipWithSYn. Both processes are illustrated in Figure 2.

The basic sequential process constructor delaySYn (short
notation � n) constructs a process that delays a signals n cy-
cles. We define scandSYn that takes a function f and a value
m0 for the initial state to construct the basic FSM process.
Using the function composition operator � , where

� f � g � � x �
 f � g � x ���
we define mooreSY to model a Moore FSM (Figure 3).

s s �� m0 �delaySYn

scandSYn � f � m0 �
� f � � m0 �delaySY1s � �zipWithSYn 	 1

s1

sn

s �

mooreSYn � f � g � m0 �
mapSY � g �s � �scandSYn� f � m0 �

sn

s1
s �

delaySY n � m0 �
 P
where P � s �
 s �

e � i

m0 i � n
ei � n i n

scandSYn � f � m0 �
 P
where P � s1 ������ sn �
 s �

s �
 � m0 � e0 � � � e1 � � ���� ��
n � 1 � s1 ������ sn � s � �
 s � �

mooreSYn � f � g � m0 �
 mapSY � g � � scandSYn � f � m0 �
Figure 3. The Sequential Process Construc-
tors delaySYn, scandSYn and mooreSYn

3.3 Implementation Model

The implementation model is the result of the refine-
ment process (Section 4). In contrast to the specification
model which is a network of concurrent synchronous pro-
cesses it may also include domain interfaces in order to
establish synchronous sub-domains which comprise a local
synchronous process network with a different signal rate as
illustrated in Figure 4.

Q2

Main

(Rate: r)

Q1

Synchronous

1 1 1

l
Main

Domain Sub-Domain
(Rate: r �) (Rate: r)

Domain

mk

1

n
Network
Process

Domain Interface

Figure 4. Synchronous Sub-Domains

In order to formally describe implementation models
with synchronous sub-domains we extend our notation of
signals by including the rate r ��� to the form sr ��
er

0 � er
1 ������� � where the tag r

i is given by position i and rate
r. A domain interface consumes m input signals with rate
r and produces n output signals with another rate r � . In the
specification model the rate of all signals is 1.

Synchronous sub-domains violate the synchronous as-
sumption since not all signals share the same set of tags.
Thus they are not allowed in the specification model, but
are introduced by well-defined transformations during the
refinement process. Inside a synchronous sub-domain the
synchronous assumption is still valid and the same for-
mal techniques can be used as for the specification model.
Due to the formal definition of domain interfaces we can
also reason about a refined model with synchronous sub-
domains as further elaborated in Section 4.

4 Refinement

S0
T1

S1 Sn
Tn

Figure 5. Transformational Refinement

One main idea of the ForSyDe methodology is to move
large parts of the synthesis, which traditionally is part of the
implementation domain, into the functional domain. This is
done in the refinement phase where the specification model
S0 is stepwise refined by well defined design transforma-
tions Ti into a final implementation model Sn (Figure 5).
Only at this late stage the implementation model is trans-
lated using the ForSyDe hardware and software semantics
into a synthesizable implementation description.

3

Definition 1 (Transformation Rule) A transformation
rule is a functional mapping of a process network PN1 onto
another process network PN2 with the same input signals
and the same number of output signals. A transformation

rule is denoted by R
�
PN1 � � PN2 or PN1

R� � PN2.

Definition 2 (Transformation) A transformation
T
�
S1 � PN1 � R � is a functional mapping of a system

model S1 onto another system model S2 with the same input
signals and the same number of output signals. Using the
transformation rule R the internal process network PN1

in S1 is replaced by R
�
PN1 � to yield S2. A transformation

is denoted by T
�
S1 � PN1 � R ��� S2 � S1

�
R
�
PN1 ��� PN1 � or

S1
T � PN1 �� � S2 � S1

�
R
�
PN1 ��� PN1 � , where

�
x � y � reads as y is

replaced by x.

In order to classify transformations and to compare pro-
cess networks we introduce the term characteristic func-
tion which characterizes the functional behavior of a pro-
cess network.

Definition 3 (Characteristic Function) The characteristic
function � PN

� �
s1 � r ������� � � sm � r � i � of a process network PN

with the input signals
�
s1 � r ������� � � sm � r and the output sig-

nals
�
s �1 � u ������� � � s �n � u expresses the dependence of the output

events at tag u
i on the input signals.	

PN � sr
1 ������ sr

m � i �
���� e �1 � ui ������ � e �n � ui �
The characteristic function can be derived for any pro-

cess network including domain interfaces. Processes based
only on combinatorial process constructors have a charac-
teristic function that only depends on current input events.
Here we give the characteristic function for the basic com-
binatorial processes mapSY and zipWithSYn.

� e � � ui
 	�
�
f � � sr � i �
 � f � ei ��� ri

� e � � ui
 	��
n

�
f � ��� s1 � r ������ � sn � r � i �
 � f � e1 � i ������ � en � i � ri

Sequential processes have a characteristic function that
depends also on past input values. A process constructed
with delaySYn has the following characteristic function.

� e � � ui
 	��
n

�
m0 � � sr � i �

 � m0 � ri i � n
er

i � n i n

The characteristic functions for FSM processes like
mooreSYn are more complex since they depend on past val-
ues and include an internal feedback loop.

� e � � ri
 	
mooreSYn

�
f � g �m0 � ��� s0 � r ������ � sn � r � i �

��� �� � g � m0 ��� ri i
 0
� g � f ��� e1 � 0 ������ � en � 0 � m0 ����� ri i
 1
...

...

We can classify transformations as semantic preserving
or design decision according to the following definitions.

Definition 4 (Semantic Preserving Transformation)

A transformation S1
T � PN1 �� � S2 is semantic preserving, if� S1

�
s1 ������� � sm � i � ��� S2

�
s1 ������� � sm � i � .

Definition 5 (Design Decision) A transformation

S1
T � PN1 �� � S2 is a design decision, if � S1

�
s1 ������� � sm � i ����� S2

�
s1 ������� � sm � i � .

Semantic preserving transformations do not change the
meaning of the model and are mainly used to optimize the
model for synthesis. In contrast, design decisions change
the meaning of a model. A typical design decision is the
refinement of an infinite buffer into a fixed-size buffer with
n elements. While such a design decision clearly modifies
the semantics, the transformed model may still behave in
the same way as the original model. For instance, if it is
possible to prove, that a certain buffer will never contain
more than n elements, the ideal buffer can be replaced by a
finite one of size n.

The designer applies transformations to a system model
by choosing transformation rules from the transformation
library. The transformation rules are characterized by a
name, the required format and constraints of the original
process network, the format of the transformed process net-
work and the implication for the design, i.e. the relation be-
tween original and transformed process network expressed
by the characteristic function.

We exemplify transformation rules by a combinato-
rial process with n inputs. If the process has a regular
structure such as an N-input adder or multiplier, where
N=4,8,16,. . . the process can be transformed into a balanced
network of N � 1 2-input processes. This transformation
BalancedTree

�
PN1 � is defined in the transformation library

as����� �"!$#&%'�)(*�,+.- %/�10�2'3 4
: BalancedTree � PN1 �5 �6- 78�9�'3;:<�=% >?4@!A!CBD4@+FEG%'�FH

:
PN1 � s1 ������ sN �
 �

N � f � � s1 ������ sN �
N
 2k;k ���JI 1
f � x1 ������ xN �
 x1 K �� K xN ; K is associative

����� �"!$#&%'�)(*4?LM:N��% >�4�!A!OBD4@+FEG%'�FH
:

PN2 � s1 ������ sN �
 �
2 � g � � �� � � 2 � g � � s1 � s2 � � � 2 � g � � s3 � s4 ��� �

�� � � 2 � g � � sN � 3 � sN � 2 � � � 2 � g � � sN � 1 � sN �����
g � x � y �
 x K yP (RQ'3 - >?�,+.- %/�

:	
PN1 � s1 ������ sN � i �
 	

PN2 � s1 ������ sN � i � ; S i � � 0

This transformation can be used for all processes that
comply to the format and constraints given in Original Pro-
cess Network, here multiple 2k-input processes, where the
operator T is associative. From the Implication we can see
that BalancedTree

�
PN1 � is semantic preserving since the

characteristic function of the original and transformed pro-
cess network is identical.

4

There is another transformation PipelinedTree that
pipelines a balanced tree structure of possibly different 2-
input processes into a pipelined tree structure.����� �"! # %'�F(�,+.- %8� 0�2'3 4

:PipelinedTree � PN1 �5 � - 7 - �9�'3 :<�=% >?4@!A!?BD4@+FEG%'�FH
:

PN1 � s1 ������ sN �
 �
2 � gN � 1 � � �� � � 2 � g1 � � s1 � s2 � ���� � �

�� � � 2 � ���� � 2 � gN
�
2 � � sN � 1 � sN �����

N
 2k;k ��� I 1
����� �"! # %'�F(4�L :<�=% >?4�!A!?B�4@+FEG% �FH

:
PN2 � s1 ������ sN �
 � 1 � m0 � � � 2 � gN � 1 �

� �� ��� 1 � m0 � � � 2 � g1 � � s1 � s2 � ���� � �
�� � ���� � 1 � m0 � � � 2 � gN

�
2 � � sN � 1 � sN �����P (RQ'3 - >?�,+.- %8�

:	��
k

�
m0 ��� PN1

� s1 ������ sN � i �
 	
PN2 � s1 ������ sN � i � ; S i k

As expressed in the Implication, PipelinedTree is a design
decision since it introduces a delay of k cycles. Since such
implications are part of the transformation rule the designer
is always aware of the consequences of a transformation.
During the refinement process he chooses transformations
from the library and applies them successively as visualized
in Figure 6, where a 4-input addition process is transformed
into a pipelined structure.

A direct translation of a computation intensive algorithm
such as an n-th-order FIR filter results in an implementa-
tion with a large amount of multipliers and adders. Using
the concept of synchronous sub-domains we have devel-
oped a transformation SerialClockDomain that transforms
a combinatorial processes of a regular structure into a struc-
ture with two clock domains that uses an FSM process
to schedule the operations into several clock cycles. This
transformation which is illustrated in Figure 7 and formally
given below is very efficient, if there are identical operations
which can be shared.����� �"! # %'�F(�,+.- %8� 0�2'3 4

:SerialClockDomain � PN1 �5 � - 7 - �9�'3 :<�=% >?4@!A!?BD4@+FEG%'�FH
:

PN1 � s1 ������ sn �
 �
n � f � � s1 ������ sn �

f � x1 ������ xn �
 gn � 1 � hn � xn � � � ���� � g1 � h2 � x2 � � h1 � x1 ����� �� ���
����� �"! # %'�F(4�L :<�=% >?4�!A!?B�4@+FEG% �FH

:
PN2 � s1 ������ sn �
 � DH � n � � PFSM � P � Sn � � s1 ������ sn �
PFSM
 mooreSY � f � � g � � m0 �
f � � x � � i � m ���

�� � � 1 � hi � x ��� i
 0
� i � 1 � gi � hi � x � � m ��� 0 � i � n � 1
� 0 � gi � hi � x � � m ��� i
 n � 1

g � � i � m �

m i
 0	
0 � i � nP (RQ'3 - >?�,+.- %8�

:	 �
1

�
m0 ��� PN1

� s1 ������ sn � i �
 	
PN2 � s1 ������ sn � i �

The transformed process network works as follows. Dur-
ing an input event cycle the domain interface Pn � S (Parallel
to Serial) reads all input values at rate r and outputs them at
rate nr one by one in the corresponding n output cycles. The
process PFSM is based on mooreSY and executes the com-
binational function f of the original process in n cycles. In

4(+)

s1

s4
s3 s�s2

s1
s2

2(+)s3
s4

2(+)

2(+) s �

2(+)

2(+)s3

s4

s1
s2 �

1 m0 �
�

1 m0 �
�

1 m0 �

2(+) s �

BalancedTree

PipelinedTree

Figure 6. Transformation into Balanced
Pipelined Structure

SerialClockDomain

�
s1 � r�
sn � r �

s � � r

n(f)

Synchronous
Sub-Domain

Main Domain Main Domain

Rate:rRate: nrRate:r

PFSM

�
s1 � r�
sn � r �

s � � rPn � S DH � n �

Figure 7. Transformation into FSM using two
Clock Domains

state 0 the first input value (operand x1) is stored as inter-
mediate value m. In the n � 1 following states a function
gi is applied to the new input value (xi) and the intermedi-
ate value. At tag 0,n,2n,. . . the process produces the output
value, otherwise the output has the value � . The domain
interface DH

�
n � down-samples the input signal to rate r and

outputs only each n-th input value starting with tag 0, thus
suppressing the absent values from the output of PFSM .

As domain interfaces can be characterized by a char-
acteristic function, it means that, though not shown
here, the characteristic function for the whole trans-
formed process network can be developed. It follows that
SerialClockDomain delays the output of the transformed
process network one event cycle compared to the original
process network, which is given as Implication.

This transformation can e.g. be applied to the 4-input
adder of Figure 6, where hi

�
x � is the identity function and

gi
�
x � y � is an add operation, resulting in a circuit with two

clock domains using a single adder.

5 Refinement of a FIR-filter

We will now use the developed transformation
SerialClockDomain for the refinement of a FIR-filter
which is part of the specification model of a digital
equalizer [12]. A FIR-Filter is described by the following
equation:

yn

k

∑
m � 0

xn � mhm

5

We have modeled the FIR-filter as shown in Figure

Synchronous Sub-Domain

sipoSYk

k � 1 � ipV � h � �

PFSM DH � n �sipoSYk
Main Domain

Rate:r Rate: nr
Main Domain

Rate:r

S1

S2

T S1 ��� k � 1 ipV h � � � SerialClockDomain �
Pn � S

Figure 8. Transformation of a FIR-Filter

8. The process sipoSYk models a serial-in-parallel-out
shift register with k

�
1 output signals. The process

zipWithSYk � 1
�
ipV

�
h � � computes the inner product of the

coefficient vector, h0 ������� � hk, and the outputs of the process
sipoSYk, xn ������� � xn � k. Since the process ipV

�
h � is defined

as
� ipV � h ��� � x0 ������ xn �
 h0x0 � �� � hnxn

it complies to the Input Process Network format of the
transformation rule SerialClockDomain, where

gi � x � y �
 x � y
hi � x �
 hix

We can use this rule to apply the transformation
T
�
S1 � zipWithSYk � 1

�
ipV

�
h � � � SerialClockDomain � on the

FIR-filter model S1 in order to receive a model S2, where
sipoSYk remains unchanged and the FIR-filter is realized
with two clock domains and only one multiplier and one
adder (Figure 8).

We have used the ForSyDe hardware semantics to trans-
late both the original model and the transformed model for
an 8-th order FIR-filter with sample and coefficient size of
10-bit into VHDL and synthesized it for the CLA90K li-
brary. The results (for f � 8MHz) show that the area for
the transformed model (4030 gates) is as expected clearly
less than for the original model (10482 gates).

6 Conclusion

The contribution of this paper is the formal basis of
transformational refinement in the functional domain in
ForSyDe. Using the formal definition of process construc-
tors and domain interfaces we can develop characteristic
functions for process networks in order to define transfor-
mations that can be classified as either semantic preserv-
ing or as design decisions. Each transformation rule is well
defined by format and constraints on the original process
network and the resulting transformed process. In addition
each rule also shows the consequences for the design by an
implication part, expressed with the characteristic function.

As illustrated in the paper, traditional and powerful syn-
thesis techniques can now be formulated as transformation
rules and be applied inside the functional domain. This is

in contrast to traditional methods, where the initial model
is first translated into a control/data-flow graph before it
is transformed, which leads to discontinuities in the design
process. By selecting transformation rules from the trans-
formation library, the designer is now able to perform a
transparent and documented refinement process inside the
functional domain.

References

[1] A. Benveniste and G. Berry. The synchronous approach to
reactive and real-time systems. Proceedings of the IEEE,
79(9):1270–1282, September 1991.

[2] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava:
Hardware design in Haskell. In International Conference on
Functional Programming, 1998.

[3] D. D. Gajski, N. D. Dutt, A. C.-H. Wu, and S. Y.-L. Lin.
High-Level Synthesis. Kluwer Academic Publishers, 1992.

[4] H. Hsieh, F. Balarin, L. Lavagno, and A. Sangiovanni-
Vincentelli. Synchronous approach to functional equiva-
lence of embedded system implementations. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits,
20(8):1016–1033, August 2001.

[5] K. Keutzer, S. Malik, A. R. Newton, J. M. Rabaey, and
A. Sangiovanni-Vincentelli. System-level design: Or-
thogonolization of concerns and platform-based design.
IEEE Transaction on Computer-Aided Design of Integrated
Circuits and Systems, 19(12):1523–1543, December 2000.

[6] E. A. Lee and A. Sangiovanni-Vincentelli. A framework for
comparing models of computation. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
17(12):1217–1229, December 1998.

[7] Y. Li and M. Leeser. HML, a novel hardware description
language and its translation to VHDL. IEEE Transactions
on VLSI, 8(1):1–8, February 2000.

[8] Z. Lu, I. Sander, and A. Jantsch. A case study of hardware
and software synthesis in ForSyDe. In Proceedings of the
15th International Symposium on System Synthesis, Kyoto,
Japan, October 2002.

[9] A. Mycroft and R. Sharp. Hardware/software co-design
using functional languages. In Proceedings of Tools and
Algorithms for the Construction and Analysis of Systems
(TACAS), volume 2031 of LNCS. Springer-Verlag, 2000.

[10] A. Pettorossi and M. Proietti. Rules and strategies for trans-
forming functional and logic programs. ACM Computing
Surveys, 28(2):361–414, June 1996.

[11] H. J. Reekie. Realtime Signal Processing. PhD thesis, Uni-
versity of Technology at Sydney, Australia, 1995.

[12] I. Sander and A. Jantsch. Transformation based communica-
tion and clock domain refinement for system design. In 39th
Design Automation Conference (DAC 2002), New Orleans,
USA, June 2002.

[13] T. Seceleanu. Systematic Design of Synchronous Digital Cir-
cuits. PhD thesis, University of Turku, Finland, 2001.

[14] D. Skillicorn. Foundations of Parallel Programming. Cam-
bridge University Press, 1994.

6

