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Abstract

The Colorado potato beetle (Leptinotarsa decemlineata) remains a significant threat
to potato crops worldwide, imposing substantial economic losses and challeng-
ing sustainable agricultural practices. Manual pest control methods are labor-
intensive, inefficient, and often insufficient to prevent widespread infestations. To
address this challenge, we propose automated pest detection, have developed a
labeled dataset (POBED), and studied several object detection models. Particu-
larly YOLOv6 and CO-DETR, demonstrated promising performance in identifying
Colorado potato beetle (CPB) stages, with AP IoU=.50 = 72.7% for YOLOv6
and AP IoU=.50 = 79.2% for CO-DETR. Despite challenges with background
elements and labeling inconsistencies, this research highlights the potential of
such models for generating detailed infestation maps and guiding targeted pest
control strategies. Further refinement and exploration, including integration with
autonomous removal mechanisms, offer exciting avenues for enhancing pest man-
agement efficiency and sustainability in agriculture.

1 Introduction

The CPB poses a significant threat to potato cultivation, with its infestations causing substantial
reductions in crop yield and quality Alyokhin [2009]. Conventional pest control methods, such as
pesticides and mechanical removal, are often ineffective and can have detrimental environmental
consequences Casagrande [1987], Alyokhin et al. [2022].

Traditional agricultural practices, reliant on large machinery, raise environmental concerns like soil
erosion, biodiversity loss, and energy consumption Batey [2009], Nawaz et al. [2013]. In contrast,
smart farming offers a more sustainable alternative. Combining AI and automation, lightweight
autonomous robots minimize soil disturbance, reduce pesticide use, and enhance efficiency Pearson
et al. [2022].

By integrating AI-powered autonomous robots into smart farming practices, CPB infestations can
be effectively controlled while minimizing environmental impact and enhancing agricultural sus-
tainability. This approach can potentially revolutionize pest control and pave the way for a more
environmentally friendly and productive agricultural future.

Therefore, this paper presents a CPB dataset called POtato BEetle Dataset (POBED) and employs
object detection models to address these challenges.
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Figure 1: This concise visual illustrates the three distinct stages of the Colorado potato beetle’s life
cycle: a) eggs, b) larvae, and c) adults.

Key findings:

• All models achieved moderate performance on the stricter IoU metric (AP: 36.9%-44.1%).
Using a less strict metric (AP IoU=.50), performance reached 66%-79.2%, approaching the
theoretical maximum based on the data quality of the dataset.

• YOLOv6 and Co-DETR models outperformed others, having potential for applications.
• Co-DETR has class-specific limitations in detecting larvae, possibly due to architecture.
• Small objects (first-instar larvae) pose significant challenges due to size and coloration.

Contributions:

1. POBED Dataset: We introduce POBED, a unique dataset specifically designed for training
and evaluating object detection models for CPB stage identification, published on https:
//zenodo.org/records/10599211.

2. Benchmarking Object Detection Models: We benchmark state-of-the-art object detection
methodologies, encompassing R-CNN, YOLO, and transformer architectures, on POBED.

2 Related work

2.1 Datasets

In agricultural technology, particularly in pest management, the detection of insects using advanced
techniques has been a subject of ongoing research. A key component in developing these technologies
is the availability of comprehensive and high-quality datasets. The IP102 dataset Wu et al. [2019]
contains 75000 images of 102 species of pest insects. For object detection, 19000 images were
annotated with bounding boxes. The rest are for classification only.

The dataset by Kuznetsov [2023] marks a significant advancement in pest detection within agricultural
technology, focusing specifically on the Colorado potato beetle (CPB). It features 1810 images
depicting the beetle in various stages, namely the adult and larvae stages, excluding the egg stage. An
essential aspect of this dataset is its timestamp - from 2023, it offers contemporary insights into CPB
detection.

The dataset provided by Sittinger [2023] Insect dataset for flying insects like wasps, bees, flies,
hoverflies, and even shadows of the recorded insects. Different resolutions are provided.

To the best of our knowledge, no object detection dataset of this size encapsulates the whole growth
process of potato beetles, i.e., covering the egg, larvae, and beetle stage at once. To detect all stages,
especially the egg stage, we propose the new dataset POBED.

2.2 Insect detection

Recognizing and detecting pests on plants is essential in combatting the latter. In Ahmad et al. [2022],
Verma et al. [2021], Lippi et al. [2021], Dai et al. [2023], Likith et al. [2021] you only look once
(YOLO) based approaches are used to detect objects ranging from insects to bugs. The proposed
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Figure 2: Illustration of leaves with eggs in the infrared spectrum. a) in controlled conditions, b) in
direct sunlight from above, and c) in direct sunlight from below.

approaches use different advances in the YOLO detection classes. In Ahmad et al. [2022], the
YOLOv5 model achieved the best results detecting 23% of insect pests with an mAP@[0.5 : 0.95] of
79.8%. In Du et al. [2020], Choiński et al. [2023], faster region-based convolutional neural network
(R-CNN) based models are used to detect insects.

3 Dataset

3.1 Dataset design

The POBED dataset (processed) can be found at Zenodo 1 and provides a comprehensive collection
of 7192 images with 9640 labels for three classes. It features individual plants and plant sections,
encompassing various stages of the CPB. These images capture the presence of multiple CPB
instances, with most objects representing larvae, followed by beetles and a smaller number of
egg clusters. The CPB exhibits distinct behavior patterns during its various developmental stages,
necessitating a multi-pronged approach to effectively track and monitor its presence.

Detection of the different stages of the CPB

The fully grown CPB stage poses the most straightforward detection challenge due to its large size
and recognizable pattern of yellow/orange and black stripes, allowing for precise object detection
from above. These beetles typically reside on the upper surface of potato leaves, facilitating their
identification from a vantage point. An illustration of the beetle captured from above can be found in
Figure 1 c).

The larvae stage, encompassing four distinct substages, presents a more nuanced detection challenge.
The last larval stage resembles the adult beetle in size but exhibits a different color pattern, featuring
orange/yellow coloring with black dots along its sides. The second larval stage is smaller and darker,
while the first is only a few millimeters long, partially orange, and partly black. Despite their smaller
size, larvae are relatively mobile and consume a significant portion of potato plant material. While
they can primarily be detected from above, their increased movement patterns may lead them to
reside on stems or even the undersides of leaves. An illustration of larvae in two different instars can
be found in Figure 1 b).

Early detection of egg patches is crucial for effective CPB control, as the first larval stage is challeng-
ing to identify due to its minuscule size. One approach investigated was near-infrared photography,
utilizing filters attached to a smartphone camera. The higher transmission of infrared light compared
to visible light was expected to enable differentiation between egg patches and leaves when exposed to
infrared light from below. This method yielded promising results in controlled settings but proved less
effective in field conditions. The interference from sunlight completely overpowered the infrared light
source, and even with sun shading, scattered light interfered with the detection process. Consequently,
an alternative approach is required. See Figure 2

The following approach employed angled cameras mounted on a stick to capture images of the
undersides of potato leaves from below, allowing for a closer examination of the plant surface. This

1https://zenodo.org/records/10599211
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Figure 3: Wheelbarrow and telescopic arm for capturing images in the potato fields.

method produced promising results, revealing several egg patches readily identifiable by hand. An
illustration of egg patches on the underside of the leaves can be found in Figure 1 a).

3.2 Recording setup

The images were taken using multiple techniques. Four smartphones, including different resolution
settings, were used to increase the diversity in image quality and improve the generalization by
reducing the influence on one specific sensor and setting. Most images are taken over six days at
three locations in Lower Austria in 2022 and 2023. The cameras used are the primary cameras of
four different smartphones, including the Samsung Galaxy S20 Plus with a 12 MP, f/1.8, 26mm
(wide), 1/1.76", 1.8µm, Dual Pixel phase detection auto focus (PDAF), OIS Sensor, the Google
Pixel 4a 5G with a 12.2 MP, f/1.7, 27mm (wide), 1/2.55", 1.4µm, dual pixel PDAF, optical image
stabilization (OIS) Sensor, the ZTE Axon 7 with a 20 MP, f/1.8, 1/2.6", 1.1µm, PDAF, OIS Sensor
and the Fairphone 4 with a 48 MP, f/1.6, (wide), 1/2.0", 0.8µm, PDAF, OIS Sensor. Due to the
necessity of covering different camera angles to detect the majority of the beetle stages, two mounts
were constructed. A small wheelbarrow is modified to capture images while driving through the
potato fields with mountings in the front, on each side, and at variations. The constructed parts for
the top view camera holder are based on a telescopic arm mounted to the back of the wheelbarrow
protruding from the vehicle on the front. The actual mount for the camera can be rotated 360° if
needed to cover the tracks and the potato plants from the top left and right.

Table 1: Summary of the POBED Dataset

Category Information Additional

Images 7192
Classes 3 CPB stages
Class 1 CPB Beetle 723 objects
Class 2 CPB Larvae 8730 objects
Class 3 CPB Eggs 187 objects
Number of labels 9,640
Resolution processed 640x540 7192 Images
Resolutions raw 1080p, 2268p, 3024p, 3348p, 3000p, 2156p 3564 images
Capturing devices smartphones 4 different sensors
Time 2022 and 2023 spring/summer
Data source 3 potato fields
Field locations Lower Austria Wald-&Weinviertel

3.3 Ground truth generation

The open-source software CVAT CVAT.ai Corporation [2023] manages the labeling process. The
captured images are split into tasks depending on the capturing device and the time of taking the
picture. Jobs comprised of 20 to 30 images are distributed to ten annotators labeling the images.
Each annotator was introduced to the task and was supervised by a CPB specialist during the first job.
After the jobs are fulfilled, they are reviewed on a test basis. In addition to the review process, ground
truth was generated by labeling 10% of the data a second time. A semi-automatic labeling setup was
created to employ the trained detection models in the future. For the annotation of the dataset, three
classes were defined to differentiate between the different stages of the CPB depicted in 1 showing
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ann egg patch, larvae instars, and the adult beetle. The instars are not differentiated due to the high
resolution needed for differentiation.

3.4 Data quality

The integrated quality assessment of CVAT is used to assess the quality of the labeled data. This
uses the ground truth labeled data and compares them with the labeled data from the jobs in each
task. This produces different metrics that show the quality of the data. The primary metric is the
mean annotation quality (MAQ). It consists of correct annotations, task annotations, Ground Truth
annotations, accuracy, precision, and recall. The average of the MAQ of all the labeling tasks is
around 80%. Most issues are due to low overlap, determined by the bounding box having less than
80% intersection over union (IoU). The other problems arise from additional or missing labels. In
images with tiny objects, the chance is high that some objects are missed, whereas others not labeled
in the task are found. Additionally, it is hard to determine whether the object should be labeled in
some images due to low resolution and blur.

Table 2: Labeling quality analysis data

Subset MAQ Correct Ann. Task Ann. GT Ann. Accuracy Precision Recall

Subset 1 78.4% 403 447 470 78.4% 85.7% 90.2%
Subset 2 89.5% 111 114 121 89.5% 91.7% 97.4%
Subset 3 72.2% 368 443 435 72.2% 84.6% 83.1%

4 Evaluation & results

For Comparison, three object detection approaches are used. A YOLO-based network approach uses
a YOLOv6 Li et al. [2022] and a YOLOv7 Wang et al. [2022] model. The second type is an R-CNN
based network, the Sparse-RCNN Sun [2024]. We use a transformer-based network called CO-DETR
X-Lab [2024] for the last type.

For the training of the models, the dataset was split into training, validation, and test sets in the ratio
of 7:2:1. The split was not taken at random to prevent images with similar backgrounds and objects
from being placed in the same set. Furthermore, the difference in training and testing images is even
higher as the days and conditions differ. The dataset is used in two ways for efficient use and training.
The images were used with the recorded resolution for the first training batch. The models were
trained with 640px train and test resolution and afterward with 1280px resolution as a comparison.
For the final training data used in this paper, the images were converted to the same resolution by
cropping 640x540px images out of the higher resolution images and discarding all the images with no
objects. Discarding the empty images is necessary as the model training couldn’t work with the large
number of empty images, and the training time increased 10-fold. After preprocessing the images to
the desired resolution and discarding the empty images the second training batch evaluates all the
mentioned images on the processed dataset. The ratio of images changes as the objects in the images
are not equally distributed over the raw images. For Comparison, the ratio stayed untouched.

4.1 Metrics used

The COCO evaluation metrics are employed to assess the performance of object detection models
using the datasets mentioned. These metrics provide a robust framework for evaluating various
aspects of model quality in object detection tasks. The most important metric is average precision
(AP) defined in the coco metric. AP is averaged over ten different IoU values starting from 0.5 and
going up to 0.95. The standard AP is also in the metric defined as AP IoU=0.5. The second important
metric is the average recall (AR). Both the AP and the AR are calculated for different object sizes,
and AR is also given for other numbers of objects per image. Table 3 shows the performance of the
models on the COCO evaluation tasks.

In addition to the coco metric, a confusion matrix is used to show the performance of the models in
every predetermined class. It shows the percentage of a class detected as the actual or other classes,
including the background. The default confusion matrix determines whether a positive detection of a
model is a true or false detection and vice versa Narkhede [2021].
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Table 3: COCO metrics coco [2024]

average precision (AP):

AP AP at IoU=.50:.05:.95 (primary challenge metric)
AP IoU=.50 AP at IoU=.50 (PASCAL VOC metric)
AP IoU=.75 AP at IoU=.75 (strict metric)

AP Across Scales
AP small AP for small objects: area < 322

APmedium AP for medium objects: 322 < area < 962

AP large AP for large objects: area > 962

average recall (AR)
ARmax=1 AR given 1 detection per image
ARmax=10 AR given 10 detection per image
ARmax=100 AR given 100 detection per image

AR across scales:
AP small AR for small objects: area < 322

APmedium AP for medium objects: 322 < area < 962

AP large AP for large objects: area > 962

4.2 Model performance

The model performance is evaluated for implementations of R-CNN, YOLO, and Detection Trans-
former (DETR). For the training of the models, the MMDETECTION MMDetection Contributors
[2018] framework is used for all the models. For the YOLO models, MMYOLO, a specialized branch
of the MMDETECTION framework is used. Different model variants exist concerning size and
computational effort, so the following list gives the details of the models.

Table 4: Models used with configured options

Model Type Scale Epochs Adaptations

Yolov6 yolov6_t_syncbn_fast 640 300 -
Yolov7 yolov7_tiny_syncbn_fast 640 300 -
Sparse-RCNN sparse-rcnn_r50_fpn_ms-480-800 multiscale 36 -
Co-DETR co_dino_5scale_swin_l multiscale 36 lr = 2e-5

The detection results in Table 5 show detection of the objects in 66% to 79.2% of the cases with an
IoU of 50%. When the stricter metric AP that uses ten different IoU values is used, the performance
is reduced to the range of 36.9% up to 44.1%. This induces the general detection of the classes with
unprecise bounding boxes. This could be due to mismatches in labeling and issues with identifying
parts of the object, like legs and antennae, due to low resolution and matching background. According
to the quality of the labeled data, there are issues with the intersection of the bounding boxes when
labeled twice. Therefore, it reduces the AP. When high IoU is of no concern, the AP at an IoU of
50% almost reaches the precision of the labeled data. The models with the best performance are the
YOLOv6 and the CO-DETR model. The chosen YOLOv7 model has the least parameters and seems
to lack to achieve better results due to that which corresponds with the COCO detection quality in the
COCO pre-trained models from MMDETECTION. The observation regarding the performance of
the CO-DETR model, as evaluated through the confusion matrix, highlights a specific aspect of its
effectiveness on a class-by-class basis. While the model demonstrates overall strong performance, this
effectiveness is notably diminished when detecting the larvae class of pests. Since the other models do
not demonstrate such differentiation in performance across different classes, the discrepancy observed
in the CO-DETR model’s handling of the larvae class is unlikely to originate from poor-quality
training data. This indicates that the cause might be inherent to the specific architecture or processing
techniques of the CO-DETR model itself. All the models show a high relative percentage of false
positives for larvae. They are the smallest, especially in the first instars, hard to differentiate from the
background, and the most overlooked while labeling.

6



Table 5: COCO metrics for POBED processed test set on all trained models

average precision (AP): Yolov6 Yolov7 Sparse-RCNN Co-DETR

AP 0.406 0.369 0.386 0.441
AP IoU=.50 0.727 0.660 0.694 0.792
AP IoU=.75 0.420 0.345 0.383 0.438

AP Across Scales
AP small 0.231 0.161 0.191 0.242
APmedium 0.531 0.484 0.514 0.561
AP large 0.570 0.429 0.529 0.615

average recall (AR)
ARmax=1 0.401 0.370 0.412 0.436
ARmax=10 0.528 0.509 0.525 0.567
ARmax=100 0.549 0.520 0.558 0.613

AR Across Scales:
ARsmall 0.387 0.324 0.377 0.410
ARmedium 0.644 0.632 0.665 0.725
ARlarge 0.637 0.645 0.544 0.713

Figure 4: Confusion matrices for the trained models.

4.3 Qualitative evaluation/salience map ablation study

Figure 5 shows four different images with the corresponding gradcam visualization of the object
detection of the YOLOv7 model. In image a), two objects are detected: a beetle and a larva. The
beetle is detected by its stripes and correctly identified, whereas a consumed stem is wrongly identified
as a larva. This could be due to the stem’s coloring and the fact that larvae are typically found in that
location. In the second image, b) both objects are detected, but the beetle is detected as a larva as
the model looks at the front of the beetle, not at the stripes. The front of the beetle has patterns and
colors similar to the larva and can, therefore, be misinterpreted. In the third image, c) both larvas are
correctly identified by the orange and black variation at the head of the larva. In the last image, d) the
egg patch is correctly identified, mainly looking at the center of the patch.

4.4 Size ablation study

The trained models perform differently concerning the size of the object. In the first approach to
detecting the object, the raw dataset was used with a resolution of 640px. This rendered rather
unsatisfying results as many objects were too small to be represented. The same model was fed
with 1280px input resolution in the next step. This increased the results to an acceptable level, but
the resources needed for training and interference are significantly higher. Therefore, the processed
images with a resolution of 640px are used for the final models. When looking at the metrics of
the models in Table 5, the data shows bad performance at small scales. This can be explained by
the small area and pixels representing the object and the less colorful pattern the objects of this size
exhibit. Objects of this size are mainly larvae of the first instars that are a few millimeters in size.
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Figure 5: Comparison of original images with a gradcam visualization of the YOLOv7 model.

This is another indicator that the detection of the egg patches should be the primary goal to keep the
infestation low.

5 Conclusion

This study presents a novel approach for detecting various CPB stages in potato fields, contributing
significantly to precision agriculture and integrated pest management (IPM). The foundation of
this research lies in creating the POBED dataset, meticulously designed to facilitate CPB stage
identification using object detection models. This dataset is a valuable resource for advancing pest
detection technologies.

We evaluated the suitability of various object detection models for CPB stage identification within
the labeled POBED dataset. The analysis considered the dataset’s labeling quality, particularly the
observed 80% mean annotation quality and prevalent issues like bounding box misalignment and
label inconsistencies.

The results suggest that YOLOv6 and CO-DETR models achieved performance levels nearing
theoretical limits based on the dataset quality. Real-world field applications involve continuous
imaging, capturing objects at varying scales, and potentially enhancing detection probabilities. This
redundancy may compensate for individual model missed detections. However, challenges persist in
distinguishing objects from background elements. Missed annotations during labeling, as evident
from the data analysis, likely contribute to this issue. Discolored vegetation from diseased plants and
soil hues can also confuse the algorithms. While plant discoloration might be significant only later in
the growing season, soil interference can be addressed by adjusting camera angles or pre-processing
images for soil removal before object detection.

This study explored diverse detection strategies, including multi-angle and near-infrared (NIR)
approaches. While NIR detection showed potential, it did not produce the anticipated results,
highlighting the complexities and challenges in developing effective pest detection systems for
agricultural settings.

Looking ahead, the application of object detection models holds immense promise for generating
detailed infestation maps of fields. Such maps could empower farmers with data-driven insights to
make informed decisions regarding targeted pest control strategies tailored to the specific infestation
level and nature. Furthermore, integrating these detection models with autonomous frameworks could
revolutionize pest management, enabling the detection and autonomous removal of beetles. The
potential synergy between autonomous detection and physical removal mechanisms opens exciting
avenues for future research and development. This integrated approach could significantly enhance the
efficiency and efficacy of pest control methods, reducing labor costs and minimizing environmental
impact. Future work in this area will focus on refining these technologies, enhancing their accuracy
and reliability, and exploring their potential to transform agricultural practices by providing more
sustainable and effective solutions for pest management.

8



Acknowledgments and Disclosure of Funding

We would like to thank all the people helping to make this work possible, especially those collaborat-
ing in creating, labeling, and supervising the dataset.

References
Iftikhar Ahmad, Yayun Yang, Yi Yue, Chen Ye, Muhammad Hassan, Xi Cheng, Yunzhi Wu, and

Youhua Zhang. Deep Learning Based Detector YOLOv5 for Identifying Insect Pests. Applied
Sciences, 12(19):10167, January 2022. Number: 19 Publisher: Multidisciplinary Digital Publishing
Institute.

Andrei Alyokhin. Colorado Potato Beetle Management on Potatoes: Current Challenges and Future
Prospects. (1), 2009.

Andrei Alyokhin, Galina Benkovskaya, and Maxim Udalov. Chapter 4 - Colorado potato beetle. In
Andrei Alyokhin, Silvia I. Rondon, and Yulin Gao, editors, Insect Pests of Potato (Second Edition),
pages 29–43. Academic Press, January 2022.

T. Batey. Soil compaction and soil management – a review. Soil Use and Management, 25(4):335–345,
2009. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1475-2743.2009.00236.x.

R. A. Casagrande. The Colorado Potato Beetle: 125 Years of Mismanagement. Bulletin of the
Entomological Society of America, 33(3):142–150, September 1987.
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