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Abstract—In healthcare, effective monitoring of patients plays
a key role in detecting health deterioration early enough. Many
signs of deterioration exist as early as 24 hours prior having
a serious impact on the health of a person. As hospitalization
times have to be minimized, in-home or remote early warning
systems can fill the gap by allowing in-home care while having
the potentially problematic conditions and their signs under
surveillance and control. This work presents a remote monitoring
and diagnostic system that provides a holistic perspective of
patients and their health conditions. We discuss how the concept
of self-awareness can be used in various parts of the system such
as information collection through wearable sensors, confidence
assessment of the sensory data, the knowledge base of the patient’s
health situation, and automation of reasoning about the health
situation. Our approach to self-awareness provides (i) situation
awareness to consider the impact of variations such as sleeping,
walking, running, and resting, (ii) system personalization by
reflecting parameters such as age, body mass index, and gender,
and (iii) the attention property of self-awareness to improve the
energy efficiency and dependability of the system via adjusting the
priorities of the sensory data collection. We evaluate the proposed
method using a full system demonstration.

Keywords—Self-Awareness, Health Monitoring, Wearable Elec-
tronics, Situation-Awareness, Early Warning Score

I. INTRODUCTION
Vital signs reflect a patient’s wellbeing status as well as

the deterioration and amelioration of his or her condition. The
monitored vital signs can also be the basis for predictions of a
patient’s health status. Research on cardiac arrests shows that
certain symptoms can be observed long before the situation
turns into a case of emergency; the advance apparition of
symptoms can happen up to 24 hours before the actual health
deterioration [1]. Early Warning Score (EWS) systems is a
standard manual tool for predicting patients health deteriora-
tion which is periodically used by healthcare professionals to
monitor patients’ vital signs and interpret them to a level of
criticality [2]. However, to support the recent trends in reducing
hospitalization, there is growing demand for personalized and
automated systems to enable in-home as well as mobile patient
monitoring.

Internet of Things (IoT) and wearable technologies provide
a competent and structured approach to improve the healthcare
services in terms of social benefits and penetration as well as
cost-efficiency [3], [4]. Due its ubiquitous computing nature,
IoT-enabled wearables enable health monitoring systems such
as EWS to continuously track and predict patients health status
in an automated fashion [5], [6].

In [7], via a preliminary prototype, we presented how
Internet of Things (IoT) and wearable technologies can be

utilized to implement an automated EWS system. Our system
deploys a wireless body area network (WBAN) – using a
set of medical sensors attached to patient’s body – to record
physiological parameters and vital signs and send them to a
cloud server for further processing and storage. Even though
promising outcomes were observed, the system faced open
issues which need to be addressed before it can be deployed
in real field trials. Challenges such as situation-dependency,
accuracy, and plausibility of input data, as well as constraints
in sensor nodes call for more advanced optimization tech-
niques to enhance the dependency of such systems. Several
parameters affects the interpretation of vital signs outside the
hospital (e.g., patient’s activities, room temperature, barometric
pressure) which need to be considered to reach a more realistic
conclusion [8]. For instance, while a resting heart rate of 120
beats per minute would be an alarming sign for a patient, it can
be completely normal while s(he) is exercising. Additionally,
mobile and wearable sensors face disparate constraints such as
energy efficiency, reliability, and computational power.

We believe self-awareness principles can be leveraged to
reinforce the EWS system to tackle these open challenges.
Self-awareness is defined as the ability of a system to be
aware of its own state as well as the state of its surrounding
environment to adapt to new situations [9]. The notion of
self- and context-awareness can boost the EWS system to
implement intelligent reasoning and decision making [10]. This
can be realized by enhancing and personalizing the score cal-
culation process to consider patient state parameters, to assess
the confidence of the measured data and the corresponding
decisions, and to optimize system-level characteristics by using
the provided semantic information to adjust system knobs such
as sampling and transmission rates and type of the required
sensors in closed-loop manner.

In this paper, we propose a self-aware EWS system which
provides personalization, self-organization, and autonomy for
remote monitoring scenarios and offers intelligence in decision
making process for patients in different situations. In addition,
we leverage the properties of the self-awareness concept to
improve the energy efficiency of the system and confidence
of the calculated scores by adaptively adjusting the priorities
in sensory data collection and processing w.r.t. environment
changes and patient’s emergency state. Moreover, we provide a
proof of concept full EWS system implementation from devel-
opment of cloud services to hardware-software demonstration
of our prototype using a smart e-health gateway and a set of
wearable and environmental sensors.



TABLE I. EWS TABLE EXTRACTED FROM [11], [12]

Score 3 2 1 0 1 2 3
Heart rate1 <40 40–51 51–60 60–100 100–110 110–129 >129
Systolic BP2 <70 70–81 81–101 101–149 149–169 169–179 >179
Breath rate3 <9 9–14 14–20 20–29 >29
SPO2 (%) <85 85–90 90–95 >95
Body temp.4 <28 28–32 32–35 35–38 38–39.5 >39.5

1beats per minute, 2mmHg, 3breaths per minute, 4 ◦C

II. EARLY WARNING SCORE
Several physiological signs can be used for early warning

of serious illnesses and deterioration (e.g., airway, breathing,
circulation, etc.). These signs are always recorded but they
are not constantly recognized, even though a structured record
can make them “visible”. To this end, early warning systems
are developed based on the conclusion of several studies
suggesting that there is often a delay in the response to
the deterioration of a patient’s condition [13]. However, the
actual work of closely monitoring the patient and taking the
appropriate action is dependent on the professional competence
and as such is error prone as it is mostly manually done
[14]. In addition, interpreting the individual signs into a single
comprehensive status information about the patient is a difficult
task. In the late 1990’s, Morgan et al. [2] developed a scoring
technique, Early Warning Scoring (EWS), which includes the
core physiological signs. It aggregates a weighted score of six
signs, respiratory rate, oxygen saturation, heart rate, systolic
blood pressure, body temperature and neurological status. Each
of these signs will have a value between 0 and 3 based on the
actual reading, either high or low, and different level of action
is required, including the level of expertise of the caregiver
team, for each value of the EWS. Table I shows a sample of
a simple EWS.

There have been some efforts to modify EWS systems
(i.e., MEWS [15]) and or standardize it (i.e., SEWS [16]),
in several countries such as UK , Ireland , New Zealand, and
Sweden. However, all these efforts have been conducted in a
non-automated (i.e., manual) fashion and only implemented in
clinical environments.

III. SELF-AWARENESS
Self-awareness is a concept which can provide systems

with necessary tools to obtain many dynamically changing
characteristics of interest, such as reliability, adjustability and
optimality. Many of these characteristics are of particular
interest for the estimated 26 billion devices expected to be
connected to the Internet of Things (IoT) by 20201. There-
fore, using self-awareness in various applications have been
explored, including mobile applications [17], cloud comput-
ing [18], networks [19], and health monitoring system [20].
This has motivated us to explore various benefits that can
be obtained through a self-aware design of a remote health
monitoring system which uses wearable devices.

One of the prominent architectures for self-awareness is
the Observe-Decide-Act (ODA) loop [21], [22], [23]. For
current application also an ODA loop has been selected as the
backbone of the system architecture. As shown in Figure 1,
internal and external data are first collected through the sen-
sor network and pre-processed (Observe). Next, the situation
awareness and self-awareness core further assess and process
these observations in order to choose the best configuration
for the system (Decide). This configuration can be seen as two

1www.gartner.com/newsroom/id/2636073

Fig. 1. Application of self-awareness concept to the remote health monitoring
system

separate parts; first the part that helps the system to evaluate
the health of the subject correctly, despite the potential noises
or misleading values [5], [24]. Second, the part that tries to
improve the system operations. Here, as shown in Figure 1,
the main parameter under control is the “Attention”, which is
set based on the requirements (observations and decisions) of
the self-aware units (Act). Attention, which determines various
parameters related to the activity of the sensors (e.g., sampling
rate, sleeping times, or precision), is then translated to the sen-
sor network understandable commands in the “Configuration”
unit and is passed to the sensor network.

It is important to note that a crucial part of the awareness
of the system is its model of itself (and the environment).
A designer can try to create as comprehensive a model as
possible (which comes with the disadvantages of large resource
requirement), and use complementary sensory data, neverthe-
less, it will not provide a full image until user feedback is
provided to the system. This feedback plays an important role
in improving the awareness and consequently performance of
the system. This feedback can be provided by the subject using
the remote device or the practitioner and the support system
team. Each of these completes a certain part of the image,
helping the system to create a better model of itself and its
environment.

IV. PROPOSED SYSTEM ARCHITECTURE
In this section, we address the challenges from both the

user and system perspectives by introducing a new architecture
for local computing of out-of-hospital EWS systems. The
architecture incorporates the foregoing self-awareness concept
in an IoT-enabled health monitoring system. As illustrated in
Figure 1, the main functionalities of smart gateways [25] in the
Fog tier is divided into 5 different components, all of which are
included in a closed-loop system to intelligently correct EWS
values as well as adjust sensor network configurations regard-
ing the self-awareness. According to the EWS implementation,
these components are specified as follows.

A. Bio-signal Pre-processing
Bio-signal pre-processing unit receives raw signals from

sensor nodes (i.e., heart rate, respiration rate, oxygen satu-
ration, body temperature and blood pressure) and converts
the data to a format usable by higher level processing units.
The aforementioned preparation can be divided into two parts.
First, pre-processing methods such as signal filtering and
normalization are implemented in this component. Second, the
signals are processed in order to extract the required medical
information. For example, the heart rate data is extracted by
detecting RR peaks in ECG signals. Finally, the component



Fig. 2. Situation awareness diagram

Fig. 3. Self-awareness core diagram

transmits the filtered and extracted vital signs to the self-
awareness core for further analysis and decision making.

B. Situation Awareness
Situation awareness is the component that receives activity

and environmental data from the sensor network and provides
patient situation for the core component as well as updating
Attention in case of ambiguity in situation determination. As
demonstrated in Figure 2, it includes two main units: Analysis
and Ambiguity resolution.
Analysis unit includes activity and environment analysis units,
each of which determines patient situation using a decision tree
[26], however, several other approaches can be also utilized to
determine the status of the patient activity and the surrounding
environment [27]. In the activity analysis, patient’s movements
(i.e., acceleration in 3 dimensions) are classified in patient
postures which are sleeping, resting, walking, jogging and
running. Similarly, surrounding contexts (i.e., ambient temper-
ature, ambient humidity and ambient light) are classified into
different categories, for example as indoor/outdoor, day/night,
etc.
Ambiguity resolution unit updates system’s setup (i.e., At-
tention) w.r.t the determined situations. It requests new infor-
mation sources (e.g., sensor node and database) in case of
ambiguity in the Analysis unit results. For example, it sends
a command to turn on the light sensor if the ambient temper-
ature sensor is insufficient for determining the indoor/outdoor
situation. On the other hand, to avoid unnecessary energy
dissipation, this unit will request to remove a resource if
redundancy is detected in situation determination.

C. Self-awareness Core
Self-awareness core is the main analytical component of

the system which is in charge of tuning system configuration
(e.g., energy and bandwidth) as well as refining abstracted
patient data for the back-end users. This component receives
vital signs and situation values and provides an enhanced

context-aware and personalized score which we call it Self-
aware EWS. It also provides confidence assessment of the
input data as well as correction methods to eliminate data
inconsistencies. As illustrated in Figure 3, this component
includes two main units: Analysis and Self-aware EWS.
Analysis unit consists of a semantic interpretation and mod-
els of activity and environment. The interpretation includes
Abstraction and Disambiguation to provide meaningful infor-
mation for the models and the back-end users. The Abstraction
maps the medical data and the patient state to an interpretation.
For instance, “low” is extracted as the emergency level for
the patient with a heart rate of 140 per second while s(he) is
running outdoor. Additionally, Disambiguation removes uncer-
tainty in the abstracted values when the Abstraction encounters
at least two conflicting values for the same condition.

The two data models are generated from pre-defined meta-
data using rule-based and decision tree classifiers. The first
model, “Personalized model”, is defined according to the
constant patient parameters such as age, body mass index
(BMI), and gender. This model is updated during the patient
monitoring process with user feedback, i.e., patients and health
professionals. The second model is the “Confidence model”
which is defined to indicate how confident the system is. The
model considers three different aspects of medical parameters
to calculate the confidence value: natural ranges of param-
eters (e.g., a heart rate beyond 220 heartbeats per minute
is not acceptable), variation ranges (e.g., body temperature
increases/decreases gradually), and dependency among events
(e.g., high body temperature is relative to high heart rate) [24].
Self-aware EWS is in charge of adjusting the traditional
EWS value for mitigating the susceptibility of the score to
the patient and environmental conditions. Using the Analysis
unit’s results and the determined situation and a pre-defined
rule-based algorithm, the Self-aware EWS unit calculates a
new method by adjusting the boundary values shown in Table
I [28].

Finally, the abstracted data (i.e., adjusted EWS and the
patient’s condition) along with confidence values and appro-
priate commands regarding the obtained results are transmitted
to back-end system and the Attention component, respectively.

It is important to note that sending confidence value along
with the score and other data, can lead to a significant
enhancement of the system and patient’s health assessment.
For example, for the patient’s health assessment, that is, if for
any reason (such as missing or unreliable data), the system
is not confident about its assessment, respective users are
informed about this factor. For example, if the health of the
user is assessed to be normal, however, the confidence level
is low, the physician may choose to perform certain follow
ups, e.g., calling the patient to ask some extra questions.
Similarly, if the score is high but the confidence of assessment
is low, it may be advisable to contact the patient for follow
up controls rather than dispatching immediately the emergency
team (which could be the case if both score and its confidence
are high). Therefore, this parameter can be significantly helpful
in avoiding misinterpretations.

D. Attention
Attention is the planning component which adaptively tunes

monitoring knobs to enhance system characteristics as well
as the confidence and quality of the sensory data. It receives



Fig. 4. Attention and Reconfiguration diagrams

information and hints regarding the state of the patient and
environment from the Self-awareness core and the Situation
awareness components and chooses an optimal setting for
meeting the requirements while offering efficiency and reli-
ability to the system. It then transmits proper commands to
the Configuration component in order to update (i.e., actuate)
the properties of the sensor network. Figure 4 illustrates
Attention unit which includes two main parts; First is the
attention configuration which determines which parameters
(i.e., sensors) should be monitored and how often. The second
part is the priority list which is used to keep track of priorities
and used for conflict resolution once the attention requirements
cannot be met using the available resources at the moment. In
such a case, the priority list determines which requirements
are of more importance and need to be honored first and
foremost, and which ones can or may be omitted in the case
of insufficient available resources.

In our EWS system, we prioritise the attention based on the
patient emergency level, patient activity, and the environmental
situation, respectively. In other words, when a patient’ health
state is at higher emergency levels, the Attention unit allocates
more resources for monitoring the patient, and conversely
when the patient is in non-emergency situation, the module
considers other parameters to opportunistically enhance system
characteristics such as energy-efficiency. A sample prioriti-
zation method that we used in our experiments is shown
in Figure 5. We define four levels of the emergency, five
states for the activity, and four situations for the environments.
In this method. we define a priority score between 0 to
100 for each combination of emergency level, situation, and
activity. As shown in the figure, emergency level has highest
and environment has lowest effect on priority score. These
priorities then are mapped to the number of actuation states
available in the reconfiguration component.

E. Reconfiguration
The Reconfiguration component receives the priority values

from the Attention unit and maps them to the corresponding
state of the sensor network. As demonstrated in Figure 4, each
state in the sensor network is determined by the communica-
tion rate, sensor configuration setup (e.g., sampling frequency),
and sensor selection (e.g., activation or switching to sleep
mode). This component sends the selected state as sensor-
network-understandable commands to update the configuration
knobs.

Fig. 5. Priority score chart

V. DEMONSTRATION AND EVALUATION
In this section, we describe the implementation of our self-

aware solution for the remote patient monitoring system. We
first present, how our system assesses the data confidence
level, then show how we reconfigure and calibrate a generic
EWS system in a real-time fashion by taking the patient’s
context into consideration, and finally demonstrate the energy
efficiency gain offered by our self-aware closed loop edge
controller for the body area sensor network. The system
collects medical and activity data from the body area sensor
network and environmental properties from another set of
wireless sensors. The plausible range of data together with the
rate of changes and the relation to the other parameters help
enhancing the reliability of collected data. Patient activities and
environmental data give an overview of the situation and help
redefining the early warning score limits. The modified score
reconfigures the system state to reduce energy consumption in
the body area sensor network.

The body area sensor network consists of five sensors:
1) A SPO2 finger grip sensor which provides the value of
blood oxygen saturation and heart rate every second, 2) an
airflow sensor to record respiration rate (we record its analog
output with 100 samples per second), 3) a blood pressure
sensor with arm cuff; for each measurement we continuously
record the analog pressure signal for two minutes with 100
samples per second to calculate the systolic and diastolic blood
pressure using the oscillometric method, 4) a 3D-accelerometer
sensor to record patent’s activity with 100 samples per second
sampling rate, and 5) a temperature sensor to record body
temperature with the same sampling rate as the heart rate and
SPO2 sensors.

The environmental sensors measure temperature and light,
collecting samples once every minute. There is a micro-
controller unit (MCU) in each set of sensors to collect and
convert signals, send data to the RF module, and switch
between states.
Adjusting EWS based on data reliability (confidence): The
communication to a sensor can be faulty, or the sensor itself
can be broken or detached from the patient. Therefore, in the
self-aware core, we check the reliability of data and assign a
degree of confidence by which the data and consequently the
score assessments can be relied upon.

The algorithm consists of three different modules: checking
the measured value to ensure (i) it is in a plausible range, (ii)
it has plausible rates of change, and (iii) it corresponds with
other vital signals (i.e., cross validity). Figure 6 shows the
results of the three experiments, respectively for modules (i)
to (iii). In the first experiment, a body temperature’s value of
100◦C was injected as a faulty value. Therefore, it gets tagged



as unconfident and abstains from the self-aware EWS (SA-
EWS) calculation. While the SA-EWS correct shows the score
0, the conventional EWS equals 3 at the beginning due to the
faulty input and the absence of a validation system. Experiment
2 deals with the consistency of the input signals. The body
temperature is initialized with a value of 36◦C and then, after
a short period of time, drops with a rate of change beyond the
acceptable range. While the conventional EWS changes from 0
to 2, the system identifies the body temperature as unconfident
and revises the SA-EWS score to 0. Finally, Experiment 3
shows the third module which works with abstracted data. The
body temperature was set to a value which is equivalent to
score 1 and all the other inputs where - time displaced - set to
score 1. After a while, when more than 50% of these signals
have a non-zero status, the temperature is tagged as confident,
and the SA-EWS becomes equal to the EWS. The details of
the confidence evaluation method can be found in our previous
work presented in [24].

Adjusting EWS based on the situation: In Situation Aware-
ness module, we use the collected data from activity and
environment sensors to find the situation of the patient. We
define the environment as day/night and indoor/outdoor using
temperature and light sensors and the system clock. We use the
Geo-location service of the gateway smartphone together with
the normal room temperature (18◦C to 24◦C) to indicate the
indoor situation. We determine the day vs. night by comparing
the time with approximate sunrise and sunset time in the local
timezone. The intensity of light helps in determining is the
patient indoor or outdoor. Furthermore, light intensity can be
used to increase confidence level of determining sleeping of
the potient. Finally, we utilize direction and amplitude changes
in patient’s body acceleration using a 3D-accelerometer sensor
to determine the activity.

Then goal of the proposed self-aware health monitoring
system is to improve the standard early warning score method
by considering the fact that the patient is not in a standard
clinical environment all the time. This module performs two
main tasks: adjusting the scores’ ranges in the EWS table based
on the patient’s activity and adapting the EWS calculation
in the case of incorrect readings. The first task starts by
calculating the normal early warning score and emergency
level. Once an increase in heart rate, respiration rate, blood
pressure or body temperature is observed, the system cross
checks with the activity state. If this change is due to walking,
jogging or running, we adjust the early warning score to avoid
false alarms. The details of the self-aware modification of early
warning score method can be found in our previous work
discussed in [28]. Once a reliable score is obtained, we classify
the score according to emergency levels. In this classification,
a score 0 means a normal level, scores 1-3 indicate a low
emergency level, scores 4-6 show a medium emergency level,
and higher scores (> 6) represent a high emergency level.

As a case study, we use 8 hours of recorded data from
a 35 years old healthy male subject whose state in practice
should be detected as Normal. The first chart, from the top,
in Fig. 8 shows the calculated scores using the original EWS
table which issues several false alarms while the subject is
running and jogging. The second chart in this figure shows the
calibrated scores using self-aware EWS at runtime considering
the state of the activity and environment which can be seen
from the third and fourth charts. The results show that self-
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Fig. 6. Enhancing the EWS using confidence. Adjusted EWS after reliability
validation of the input data, avoids elevating EWS due to faulty data.

Fig. 7. States look-up table derived from attention score

aware EWS correctly reports the normal and low emergency
levels in 99% of the monitoring samples.

In addition to provide healthcare professionals with these
values, the state of the patient is used by the Attention module
to fine-tune the sensor network parameters to a more efficient
state.

Optimizing energy efficiency using Attention: We use HM-
11 Bluetooth low energy module to transmit the signals to
an Android phone acting as the gateway. We measure the
power consumption of the transmission process using a power
monitor device. The results show that the power consumption
of this module, when operating at 3.3V is in general at one of
the following levels depending on the operation mode: 1) in
standby mode, when the module is on but not sending data,
the Bluetooth module consumes 26.2 mW, 2) in transmission
mode, when the module sends data continuously with 115200
bit/second baud rate, it consumes 29 mW, and 3) in sleep mode
the module uses 1.52 mW. Considering the power consumption
of Bluetooth module, we define 5 different states (A to E) for
the data transmission. As the volume and resolution of the
required data changes with the situation of the subject, the
sampling rate of the medical and activity sensors is divided
into these five states in a way that the required data is
provided while maximum number of standby/sleep modes is
utilized. Considering five states of transmission with different
bandwidth and energy consumption requirements, we map the
output of the priority list shown in Figure 5 to a slot in one
of the four lookup tables shown in Figure 7. After looking up
a proper state, a new configuration state is sent back to the
MCUs in the sensor network to update the transmission rate
and activity mode of the transmission module. Table II shows
the details of the data collection orders and power consumption
of the each state. As the Bluetooth low energy module takes
1235 ms to wake up from the sleep mode, we use the standby
mode for states A and B, and to get the benefits of the ultra low
power sleep mode, we set non-continuous parameters sampling
rate to be recorded every minute in other states.



TABLE II. DESCRIPTION OF DEFINED STATES

State Respiration Rate
Activity

Blood
Pressure

Heart Rate,
SpO2, and

Body Temp.

Transmission
Power

Consumption

A Continuous Every hour in day
Disabled in night Every sec. 29 mW

B 2 min continuous
8 min OFF

Every hour in day
Disabled in night Every sec. 26.8 mW

C 2 min continuous
3 min OFF

Every 3 hours in day
Disabled in night Every min. 12.5 mW

D 2 min continuous
8 min OFF

Every 3 hours in day
Disabled in night Every min. 7 mW

E 2 min continuous
18 min OFF Disabled Every min. 4.3 mW

Fig. 8. Self-aware EWS system vs. conventional EWS system

The bottom chart in Figure 8 shows the achieved power
saving due to closed-loop control of transmission states per-
formed by the Attention unit for the same set of recorded data.
We look up the results of self-aware EWS calculation, activity,
and environmental situation using the mapped lookup tables
shown in Fig.7 to adaptively adjust the transmission mode of
the RF module of the sensor node. The chart shows that overall
power consumption of the transmission is reduced by 50% to
14.5mW compared to a baseline non self-aware system which
consumes 29mW.

VI. CONCLUSIONS
Early Warning Score (EWS) is a method to predict sudden

health deterioration of patients suffering from life-threatening
diseases to subsequently provide early diagnosis and treat-
ments. Integration of health monitoring with ubiquitous IoT-
based systems could enable patients to be monitored continu-
ously not only in hospitals but also at home and at work. The
traditional EWS method, however, is inappropriate for out-of-
hospital patient monitoring due to challenging issues from both
the user and system perspectives. In this paper, we introduced
an IoT-based EWS system using the concept of self-awareness
to target both perspectives. On one hand, our system offered
a personalized and self-organized decision making for patients
engaged in various activities in different environments. On
the other hand, in this system, we proposed a self-awareness-
enabled method to improve the system’s energy efficiency and
its confidence in its computed results, i.e. the EWS values. We
demonstrated the benefits of our solution in a proof of concept
full system implementation which reveals an improved level
of data dependability and system energy efficiency compared
to conventional open-loop systems.
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