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Abstract—We have proposed (σ, ρ)-based flow regulation to
reduce delay and backlog bounds in SoC architectures, where σ
bounds the traffic burstiness and ρ the traffic rate. The regulation
is conducted per-flow for its peak rate and traffic burstiness. In
this paper, we optimize these regulation parameters in networks
on chips where many flows may have conflicting regulation re-
quirements. We formulate an optimization problem for minimizing
total buffers under performance constraints. We solve the problem
with the interior point method. Our case study results exhibit 48%
reduction of total buffers and 16% reduction of total latency for
the proposed problem. The optimization solution has low run-time
complexity, enabling quick exploration of large design space.

I. INTRODUCTION

Integrating IPs into a SoC infrastructure presents challenges
because (1) traffic flows from IPs are diverse and typically have
stringent performance constraints; (2) the impact of interferences
among traffic flows is hard to analyze; (3) due to the cost and
power constraint, buffers in the SoC infrastructure must not
be over-dimensioned while still satisfying performance require-
ments even under worst case conditions.

The admission of traffic flows from source IPs into the SoC in-
frastructure can be controlled by a regulator rather than injecting
them as soon as possible [1]. In this way, we can control Quality-
of-Service (QoS) and achieve cost-effective communication. To
lay a solid foundation for our approach, flow regulation has been
based on network calculus [2]. By importing and extending the
analytical methods from network calculus, we can obtain worst-
case delay and backlog bounds. In [3], we implemented the
microarchitecture of the regulator and quantified its hardware
speed and cost. The aim of this paper is to optimize the regulator
parameters including peak rate and traffic burstiness of flows by
formulating an optimization problem.

Silicon area and power consumption are two critical design
challenges for NoC architectures. The network buffers take up
a significant part of the NoC area and power consumption;
consequently, the size of buffers in the system should be
minimized. On the other hand, buffers should be large enough
to obtain predictable performance. It means that, there is a
trade-off between buffer size and performance metrics. Hence,
we address an optimization problem of minimizing the total
number of buffers subject to the performance constraints of the
applications running on the SoC. Finally, we show the benefits
of the proposed method and quantify performance improvement
and buffer size reduction.

The remainder of this paper is organized as follows. Section II
gives account of related works. In Section III, we introduce
the flow regulation concept along with the basics of Network
Calculus. Section IV discusses the underlying system model.

Section V formulates the minimizing buffer optimization prob-
lem. Our simulation results are described in Section VI. Finally,
Section VII gives the conclusions.

II. RELATED WORK

NoC based SoC architectures are often designed for a specific
application or a class of applications. Thus, designers customize
it for a specific application to achieve best performance, and
cost trade-offs. The authors in [4] show the advantage of the
topological mapping of IPs on the NoC architectures. In [5], the
network topology customization and its effects on the system
are considered. In [6], the authors investigate the customized
allocation of buffer resources to different channels of routers.
Actually, these works strived to distribute a given budget of
buffering space among channels. Also, they are based on the
average-case analysis which is not appropriate for a system with
hard real-time requirements.

The presented work in this paper follows a different direction
by addressing an optimization problem to find the minimum total
buffering requirements while satisfying acceptable communica-
tion performance. Also, our method is presented based on tight
worst-case bounds derived by network calculus. Therefore, it is
suitable for real-time system designs.

III. THE CONCEPTS OF FLOW REGULATION

A. Network Calculus Basics

In network calculus [2], a flow fj(t) represents the accumu-
lated number of bits transferred in the time interval [0, t]. To
obtain the average and peak characteristics of a flow, Traffic
SPECification (TSPEC) is used. With TSPEC, fj is charac-
terized by an arrival curve αj(t) = min(Lj + pjt, σj + ρjt)
in which Lj is the maximum transfer size, pj the peak rate
(pj ≥ ρj), σj the burstiness (σj ≥ Lj), and ρj the average
(sustainable) rate that we denote it as fj ∝ (Lj , pj , σj , ρj).
The burstiness also is a important case among these parameters
because a flow with low average rate and unlimited burst size
can incur an unlimited delay on its own packets.

The abstraction of service curve is used in Network calculus
to model a network element processing traffic flows. A well-
formulated service model is the latency-rate function βR,T =
R(t− T )+, where R is the minimum service rate and T is the
maximum processing latency of the node [2]. Notation x+ = x
if x > 0;x+ = 0, otherwise.

According to [2], the maximum delay and the buffer required
for flow j are bounded by Eq. (1) and (2), respectively.

D̄j =
Lj + θj(pj −R)+

R
+ T (1)



B̄j = σj + ρjT + (θj − T )+[(pj −R)+ − pj + ρj ] (2)

where θj = (σj−Lj)/(pj−ρj). The output flow f∗j is bounded
by another affine arrival curve α∗j (t) = (σj+ρjT )+ρjt, θj ≤ T ;
α∗j (t) = min((T + t)(min(pj , R)) + Lj + θj(pj −R)+, (σj +
ρjT ) + ρjt), θj > T .
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TR,β
** : jjf α

jjf α:

a) Flow served without regulation

TR,β
** :

jj RRf α
jjf α:

R̂
jj RRf α:jregB

b) Flow served after regulation

Regulator

),(:ˆ
jj RRj pR σ

),,,( jjjjj pLf ρσ∝ ),,,( jRRjR jjj
pLf ρσ∝

regulated flow),( ρδ

token queue

token rate  ρ

unregulated flow

stall/ready
1 flit/token server

δ

Fig. 1. Flow regulation

TSPEC can also be used to define a traffic regulator. Fig. 1
shows that an input flow fj reshaped by a regulation component
R̂j(pRj

, σRj
) results in an output flow fRj

. We assume the
regulator has the same input and output data unit, flit, and the
same input and output capacity C flits/cycle. We also assume
that fj’s average bandwidth requirement must be preserved.
The output flow fRj is characterized by the four parameters
(Lj , pRj , σRj , ρj), where pRj ∈ [ρj , pj ], σRj ∈ [Lj , σj ]. fj
can be losslessly reshaped by the regulator, meaning that fRj

has the same L and average rate ρ as fj . The two intervals
pRj

∈ [ρj , pj ] and σRj
∈ [Lj , σj ] are called the regulation

spectrum, where the former is for the regulation of peak rate and
the latter for the regulation of traffic burstiness. We implemented
microarchitecture of the regulator and quantified its hardware
speed and cost in [3]. Selecting appropriate pRj

and σRj
is very

effective in performance and cost of communications.

IV. SYSTEM MODEL

A. Assumptions and Notations

We consider an NoC architecture which can have different
topologies. Every node contains an IP core and a router with
p+ 1 input channels and q+ 1 output channels. NIs provide an
interface between IPs and the network. Note that the presence
of NIs is the consequence of using a network not regulators.
Regulators are inserted between the source IP and NI and their
number is the same as the number of flows originating from
that node. We presume the number of Virtual Channels (VCs)
for each Physical Channel (PC) is the same as the number
of flows passing through that channel. Fig. 2 shows required
buffers of flows f1 and f2 from different sources to the same
destination. The following analysis on buffer requirements of
flows is illustrated by this figure. Although in this paper we
have focused on the output buffers of switches, our method can
be easily adapted to input buffers, too. We also assume that the
NoC architecture is lossless, and packets traverse the network
in a best-effort fashion using a deterministic routing.

We consider NoC as a network with a set of bidirectional
channels L, a set of sources S and a set of flows F . Each
physical channel i ∈ L has a fixed capacity of cli flits/cycle.
We denote the set of flows that share channel i by Fli and their
number is denominated as nli . Similarly, the set of channels
that flow j passes through, is denoted by Lfj

and their number
is denominated as nfj

. By definition, j ∈ Fli if and only if
i ∈ Lfj

.
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Fig. 2. An example of required buffers for two flows
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Fig. 3 depicts a channel li allocated to nli flows. Since
the arbitration policy determines how much the flows influence
each other, it has to be known. We assume that the channel
access is arbitrated with a round robin policy. Assuming a fixed
word length of Lw in all of flows, round robin arbitration
means that each flow gets at least a cli/nli of the channel
bandwidth. A flow may get more if the other flow uses less,
but we now know a worst-case lower bound on the bandwidth.
Round robin arbitration has good isolation properties because
the minimum bandwidth for each flow does not depend on
properties of the other flow. We can model a round robin arbiter
of channel li as a latency-rate server [7] that its function is as
βRli

,Tli
= Rli(t− Tli)+. Rli and Tli are defined as following:

Rli =
cli
nli

(3)

Tli =
(nli − 1)Lw

cli
(4)

Fig. 4 shows a traffic flow fj after regulation which is called
fRj

and is passing through adjacent channels. Every channel
li ∈ Lfj can be modeled as a latency-rate server with service
curve βRli

,Tli
.

Assuming node k is destination of flow j, the ejection channel
multiplexer of this node also can be modeled as a latency-rate
server βRmk

,Tmk
. If processing capacity of the multiplexer is

considered as cmk
flits/cycle, it offers minimum service rate Rmk

flits/cycle and the maximum delay Tmk
cycles for each flow as

following:

Modeling of Network

ρσ∝
),,,( jRRjR pLf ρσ′′∝′ ),,,( pLf ρσ

(((
∝

),,,( jjjjj pLf ρρρρσσσσ∝∝∝∝

Regulator

),,,( jRRjR jjj
pLf ρσ∝

Network
),,,( ***

jRRjR jjj
pLf ρσ∝

),(:ˆ
jj RRj pR σ

),,,( jRRjR jjj
pLf ρσ∝

11
, ll TRβ

jfnl
jfnl

TR ,β
kmkm TR ,β

),,,( jRRjR jjj
pLf ρσ′′∝′ ),,,( jRRjR jjj

pLf ρσ∝
),,,( ***

jRRjR jjj
pLf ρσ∝

jeje TRβ
),,,( jRRjR jjj

pLf ρσ∝ ),,,( ***

jRRjR jjj
pLf ρσ∝

Fig. 4. Modeling each network element as a latency-rate server



Rmk
=
cmk

ndk

(5)

Tmk
=

(ndk
− 1)Lw
cmk

(6)

where ndk
is the number of flows with destination node k.

V. BUFFER SIZE OPTIMIZATION PROBLEM

A. Tight Worst-Case Bounds for Each Flow
Let us assume that flow j passes through the regulator and sev-

eral network elements offering each a latency-rate service curve.
For determining the delay and backlog due to the regulation, the
impact of it on the behavior of IPs should be considered. One
is that IPs are stalled and therefore, there is no queuing buffer
at the regulator. In the other case which is considered in this
work, IPs are not stalled and the regulators use buffers to store
transactions. This can reduce back-pressure at the expense of
buffering cost. Let Dregj and Bregj be the delay and backlog
for flow j, respectively. We have Bregj = ∆σj = σj − σRj ,
which is the difference between the input and output burstiness
of the regulator, and Dregj

= ∆σj/ρj [1].
For calculating tight worst-case bound on backlog along the

network, the sum of the individual bounds on every element
is computed. Thus, required buffer in network for flow j is
bounded as following:

B̄j =
∑
i∈Lfj

B̄ji + B̄mj (7)

where B̄ji is upper bound on the buffer of flow j for each
i ∈ Lfj

and B̄mj
is maximum required buffer for the multiplexer

of the destination node of flow j. B̄ji and B̄mj
can easily be

obtained by Eq. (2). Finally, the buffer requirements for the flow
j is bounded by Bregj + B̄j .

For obtaining tight worst-case delay bound along the network,
we use the theorem of Concatenation of network elements [2].
Given are two nodes sequentially connected and each is offering
a latency-rate service curve βRi,Ti , i = 1 and 2, can be
represented as a single latency-rate server as follows:

βR1,T1 ⊗ βR2,T2 = βmin(R1,R2),T1+T2 (8)

We can model all network elements on a given flow as a single
latency-rate server βRej

,Tej
with following charactericts:

Rej
= min(minli∈Lfj

(
cli
nli

),
cmk

ndk

) (9)

Tej
=

∑
li∈Lfj

(
(nli − 1)Lw

cli
) +

(ndk
− 1)Lw
cmk

(10)

Based on a corollary of this theorem which is known as Pay
Bursts Only Once [2], the equivalent latency-rate server is used
for obtaining worst-case delay bound. Therefore, according to
(1), (9) and (10), the maximum delay for the flow j in network
is bounded by Eq. (11).

D̄j =
Lj + θRj

(pRj
−Rej

)+

Rej

+ Tej + nfjdp (11)

where dp is delay for propagation in a channel which is assumed
identical for all channels. Therefore, nfj

dp is propagation delay
in whole network for flow j and θRj

=
σRj
−Lj

pRj
−ρj

. Hence, the

maximum delay for the flow j is bounded as: Dregj
+ D̄j .

B. Problem Definition

As stated before, our objective is to choose output peak
rate and traffic burstiness of regulators for each flow so as to
minimize the buffer requirements while satisfying acceptable
performance in the network. Thus, the minimization problem
can be formulated as:

min
pRj

,σRj

∑
∀fj∈F

Bregj
+ B̄j (12)

subject to:

Dregj
+ D̄j ≤ dj ; ∀fj ∈ F (13)

ρj ≤ pRj
≤ pj ; ∀fj ∈ F (14)

Lj ≤ σRj
≤ σj ; ∀fj ∈ F (15)

B̄j > 0; ∀fj ∈ F (16)

pRj
and σRj

are optimization variables and dj is the maximum
delay that flow j can suffer in the network. Since we measured
the flow performance in terms of its latency, we can consider
dj as a criterion of minimum guaranteed performance for flow
j. It is clear that by following the above mentioned equations,
we can understand the effect of optimization variables on the
objective function and all constrains of the defined problem.

In the literature, problem (12) is called a nonconvex Non-
Linear Programming (NLP) problem [8]. There are different
methods for solving this kind of optimization problems. In
particular, we will use the Interior Point method [8] [9] to solve
it.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup

To evaluate the capability of our method, we applied it to a
real application provided by Ericsson Radio Systems which are
mapped to a 4× 4 2D mesh network. Although the experiments
are performed on a mesh, our method is topology independent.
In this work, the proposed analytical model is implemented
in MATLAB and throughout the experiments, we consider an
SoC with 500 MHZ frequency, 32 flits packets and 32 bits
flits. We also assume that packets traverse the network on a
shortest path using a deadlock free XY routing. As mapped
onto a 4 × 4 mesh in Fig. 5, this application consists of 16
IPs. Specifically, n2, n3, n6, n9, n10, and n11 are ASICs;
n1, n7, n12, n13, n14, and n15 are DSPs; n5, n8, and n16

are FPGAs; n1 is a device processor which loads all nodes
with program and parameters at startup, sets up, and controls
resources in normal operation. Traffic to/from n1 is for system
initial configuration and no longer used afterward. There are 26
node-to-node traffic flows that are categorized into nine types of
traffic flows {a, b, c, d, e, f, g, h, i}, as marked in the figure. The
traffic flows are associated with a bandwidth requirement.

TABLE I
COMPARISON OF THE REQUIRED BUFFER BETWEEN DIFFERENT SCHEMES

Network Buffer Regulator Buffer Total Buffer
Without Reg. 421 0 421

Unoptimized Reg. 400 46 446
Optimized Reg. 196 21 217
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B. Buffer Size Optimization

Tables I and II, respectively, depict the maximum buffer
requirements and delay for three schemes: In without regu-
lation, there is no regulator; in unoptimized regulation, there
is a regulator but it works on the worst-case with respect to
buffer requirements; optimized regulation works based on the
proposed minimizing buffer problem (12). From these tables,
we can see that the optimized regulation scheme leads to a
48% reduction in total maximum required buffer and 16% in
total maximum delay when compared with the without regu-
lation scheme. Furthermore, these tables show that generally
the regulator decreases the maximum buffer and delay in the
network because of reducing the contention for shared resources.
However, the unoptimized regulation scheme does not arrange
these parameters appropriately; consequently, buffer area and
packet latency in the regulator are increased to the extent that
total buffer requirements and delay in this scheme become more
than the without regulation scheme.

To go into more detail, we depict maximum required buffer
and delay of each flow for these schemes in Fig. 6 and 7,
respectively. Regarding Fig. 6, it is apparent that in the network
with the proposed regulator, most flows require less buffer and
also, as mentioned in Table I, total required buffer in this scheme
is just a little more than half of it in the network wihout regulator.
Also, Fig. 7 shows that regulated flows can experience longer
or shorter delays than other schemes which depends on their
requested QoS and also the buffer distribution in the whole
network. However, due to Table II, total and network delay are
decreased in the optimized regulation scheme because of buffer-
aware allocation in the network and contention reduction for
shared resources.

The run-time of the proposed method in MATLAB is typically
in the order of a few seconds. It is about 0.22 sec for the
proposed problem of this application. Another interesting point
is that the proposed regulator have no negative effect on the
network throughput and it is the same in with and without

TABLE II
COMPARISON OF THE MAXIMUM DELAY BETWEEN DIFFERENT SCHEMES

Network Delay Regulator Delay Total Delay
Without Reg. 1302.9 0 1302.9

Unoptimized Reg. 1219.3 677.6323 1897
Optimized Reg. 907.6691 183.8812 1091.6
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regulation schemes.

VII. CONCLUSION

In this paper, based on the concepts of regulation spectrum,
we have presented an optimization problem for minimizing
total buffers under QoS requirements. The regulation analysis is
performed for best-effort packet switching networks. We have
also demonstrated that the proposed model exerts significant
impact on communication performance and buffer requirements.
Since reusing similar or identical switches facilitates the design
process of NoC-based systems, as future work we intend to
model both objectives as a multi-objective problem.
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