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Abstract

Understanding potential changes in future rainfall and their local impacts on
Australian communities can inform adaptation decisions worth billions of dollars in
insurance, agriculture, and other sectors. This understanding relies on downscaling
a large ensemble of coarse Global Climate Models (GCMs), our primary tool for
simulating future climate. However, the prohibitively high computational cost of
downscaling has been a significant barrier. In response, this study develops a cost-
efficient downscaling framework for daily precipitation using Long Short-Term
Memory (LSTM) models. The models are trained with ERA5 reanalysis data and
a customized quantile loss function to better capture precipitation extremes. The
framework is employed to downscale precipitation from a GCM member of the
CMIP6 ensemble. We demonstrate the skills of the downscaling models to capture
spatial and temporal characteristics of precipitation. We also explore regional
future changes in precipitation extremes projected by the downscaled GCM. In
general, this framework will enable the generation of a large ensemble of regional
future projections for Australian rainfall. This will further enhance the assessment
of likely climate risks and the quantification of their uncertainties.

1 Introduction

There is a growing demand for regional precipitation data for the near, medium, and far future. This
data is crucial for understanding the potential impacts of changes in precipitation on various human
and natural sectors and for developing adaptation strategies tailored to the unique climate risks of
specific regions. In particular, understanding the spatial patterns of changes in extreme rainfall events
is essential to enhancing flood or drought resilience and mitigating unexpected economic shocks.
Reliable projections of trends and variability in future rainfall are fundamental for assessing climate
risks, water resources scarcity, and linked systems such as hydropower systems. These systems play a
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pivotal role in achieving Australia’s greenhouse gas emission reduction targets set out in the Climate
Change Act 2022 [1].

The current provision of regional climate projection data over Australia relies on using Regional
Climate Models (RCMs) to downscale Global Climate Models (GCMs). They use outputs from
the multi-model ensemble of the Coupled Model Intercomparison Project version 6 (CMIP6) [2]
from a native coarse resolution of 50-250km to produce a much finer 25km resolution. However,
due to the prohibitively high computational costs associated with running RCMs, current initiatives
have primarily focused on downscaling a narrow selection of potential GCMs and only two out of
five Shared Socioeconomic Pathways (SSPs) [3]. As a result, the downscaled projections will only
partially represent the range of potential future climates. Additionally, the constrained size of the
downscaled ensemble hampers the ability to accurately quantify uncertainties in projected changes, a
critical component for thorough climate risk assessment [4].

Empirical downscaling, which includes statistical methods and machine learning techniques, has
emerged as a cost-effective method for downscaling GCMs [5]. The most common approach, known
as perfect prognosis, establishes an empirical relationship between coarsened reanalysis/observation
(matched to the GCM’s resolution) and a finer reanalysis/observation of the target variable [6]. This
relationship is then applied to downscale GCMs. Though many studies highlight machine learning’s
superior downscaling over traditional statistical methods [7], no specific machine learning algorithm
has been identified as the best. Empirical downscaling using machine learning has employed a diverse
range of algorithms, from simple linear regression to foundation models [8], encompassing both
conventional [9–11] and deep learning techniques [12–18].

This work develops the first machine learning-based downscaling framework for Australia, capable
of generating a large ensemble of regional future precipitation projections. We demonstrate its
effectiveness by downscaling a single GCM from the CMIP6 ensemble and plan to extend this to all
available GCMs, covering all five SSPs. The new framework creates a grid-specific recurrent Long
Short-Term Memory (LSTM) model [19] for each grid cell across the continent while also considering
neighboring grid information. The LSTMs are driven by ERA5 reanalysis [20] and trained using a
custom loss function that combines conventional loss, i.e. MSE, with a quantile loss optimized for
capturing extreme precipitation events [21]. This design addresses four criteria reflecting the distinct
physical and topographic nuances of Australian precipitation: (i) Incorporating atmospheric memory
into the model to effectively capture recurring weather patterns and persistent weather systems;
(ii) Adding spatial awareness from neighboring regions to ensure the model considers influences from
nearby topography and shared atmospheric circulation patterns; (iii) Excluding climatic information
from distant regions, since this may introduce variability imposed by different climate systems
and fail to capture local factors; (vi) Ensuring the framework retains enough flexibility to enhance
downscaling in specific regions where performance may be lacking.

2 Data and Methods

Spatial Domain We build a separate downscaling model for each of the 546 coarse grid cells
(150km) in the spatial domain (Fig. 8). These models are then used to downscale daily pre-
cipitation output from a CMIP6 model to 25km. In this study, we have chosen to downscale
CNRM-ESM2-1 [22], an Earth System Model developed by the Centre National de Recherches
Météorologiques denoted hereafter by ’GCM’. GCM’s data used in this study is listed in Tab. 1 and
consists of projections of daily fields under the highest emission scenario SSP5-8.5 and covering
the period 1979 to 2070. Predictors from both ERA5 and GCM are regridded to 150km before
downscaling. Throughout this paper, a coarse resolution refers to 150km, while a fine resolution
denotes 25km.

Predictors Training the downscaling models is driven by ERA5 reanalysis. The predictor set
encompasses a range of coarse climate variables listed in Tab. 1. These include daily atmospheric vari-
ables at both the surface level and the 850hPa pressure level from the current and all neighboring grid
cells (up to 8). Additionally, we add spatial encodings, to help the model capture spatial dependencies
between fine grids enclosed within the coarse grids, by adding latitude and longitude in the form of
Cartesian coordinates ck = [cos(latk)× cos(lonk), cos(latk)× sin(lonk), sin(latk)]. Similarly, we
compute two additional predictors to capture temporal patterns within a year, this enables the model to
learn seasonality, which would bring value in areas where seasons have a strong effect on precipitation.
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Figure 1: Performance (downscaled vs. ERA5 groundtruth) over the testing period [2010-2020].
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Figure 2: Extreme precipitation index, r40mm (Tab.2) calculated over the testing period [2010-2020]
based on coarse ERA5, ERA5 groundtruth (ERA5-target) and downscaled ERA5 (ERA5-prediction).

This is achieved according to this equation, tday = [sin(2π × day/366), cos(2π × day/366)].
All predictors are first coarsened to a 150km resolution. The predictand, on the other hand, is the
fine-resolution daily precipitation from ERA5 at 25km. In this setting, the downscaling model
computes daily precipitation fields for 36 subgrids (25km) enclosed within each coarse grid. ERA5
data is split into training [1979-2005], validation [2006-2009], and testing [2010-2020] sets.

Architecture and Loss Function We use an LSTM since it is well-suited for analyzing and
predicting sequential data. Additionally, it is lightweight and performs the prediction task in an
auto-regressive fashion. Standard MSE loss for such a regression task will be able to capture the
main shape of the distribution but will fail to properly capture its tails (Fig. 4). These tails represent
extreme precipitation events. To account for extreme events, we add a second statistical/quantile loss
term. The combined loss is defined as

L(p̂k,1:T,pk,1:T) = αMSE(p̂k,T,pk,T) + (1− α)MSE(q(p̂k,1:T),q(pk,1:T)), (1)

where q ∈ Rnq is a vector containing the non-uniform spaced nq-th quantiles of precipitation time
series pk,1:T ∈ R1×T. The factor α is used for weighting, and was set to 0.6. The index k refers to a
fine grid cell, and T is the length of the sliding window used for training.

3 Experiments and Results

Model Configuration We use PyTorch [23] for building and training the models. The neural
network architecture consists of four LSTM cells with a hidden size of 50, followed by a single
fully connected layer that maps the 50 hidden states of the last cell to a scalar prediction output.
We train each network for 50 epochs, with a static learning rate of 10−3, standard Adam optimizer,
and a batch size of 36. The model is selected by the lowest validation loss. We train it on two
Tesla V100S-PCIE-32GB and use sliding windows with a window size of T = 56 days (stride=1 for
training and stride=2 for validation). We are able to train 6 models at once and the training for 546
models took ≈ 6.3 days. The evaluation and model inference on the ERA5 testing period and GCM
data are performed in an autoregressive fashion.

Performance of downscaling Fig. 1 displays the downscaling performance based on three metrics
over the entire testing period [2010-2020]. The results show a consistently high temporal correlation,
with the median exceeding 0.9. This high correlation is anticipated given the aptness of LSTMs to
learn patterns over time scales, especially since they were trained over a wide time window of 8 weeks.
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Figure 3: Precipitation maps for two exemplary days in the testing period corresponding to coarse
resolution ERA5 (coarse), fine-resolution ERA5 (targets), and downscaled ERA5 (predictions).

The Root Mean Squared Error (RMSE) is low over land areas but increases in the tropical regions
in the North near the coasts, corresponding with the high precipitation in those areas. The mean
bias is close to zero across most land areas, but it indicates that downscaling slightly underestimates
precipitation over the ocean in the tropics. Fig. 3 illustrates downscaled precipitation (predictions)
for two random days in the testing period, the corresponding coarse resolution from the coarsened
ERA5 (coarse), and the target fine-resolution from ERA5 (target). Each coarse grid in the "coarse"
map was downscaled using a separate LSTM. The maps reveal that downscaling captures both
precipitation extremes, which were smoothed out in the coarse map, as well as the spatial variations
in precipitation. Additionally, the downscaling is skillful in capturing the spatial characteristics of
extreme precipitation and its magnitude across four extreme precipitation indices: rx1day, r10mm,
r20mm, and prcptot (see Tab. 2 for a full description). This proficiency is underscored by the close
match of these extreme indices between the fine-resolution ERA5 (ERA5-target) and the downscaled
ERA5 (ERA5-prediction) calculated on the testing period as illustrated in Fig. 2 and Fig.7. The
only exception is the downscaling’s tendency to underestimate the maximum one-day precipitation
(rx1day). Moreover, when comparing coarse ERA5 to the downscaled ERA5, it becomes apparent
that downscaling provides added value, revealing regional precipitation extremes that get smoothed
out in the coarse resolution.
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Figure 4: Probability density functions representing the distribution of precipitation in the testing set
(target) and the output of three training settings mse, mse+neigh, and mse+quantile+neigh.

Effectiveness of the loss function To showcase the effectiveness of the quantile loss term and
adding the neighborhood predictor set, we define three training settings: (1) mse: standard MSE
loss, (2) mse+neigh: MSE loss with neighbor information, (3) mse+quantile+neigh: same as (2),
with an additional quantile loss term. LSTM models are trained for each setting on four coarse
grids (i ∈ [49, 227, 301, 468]) randomly chosen from different climate zones (Fig. 8). We compare
the distribution of the predictions and the targets on the testing set (Fig. 4), and we calculate four
metrics of performance as illustrated in Fig. 6. Setting mse exhibits the worst performance while
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setting mse+quantile+neigh achieves the best performance overall. This is indicated by scoring the
smallest bias and a low variance, and by its superior capability in capturing the tail of the distribution.
Nevertheless, all three settings are able to reproduce the shape of the target distribution (Fig. 4).

Projected changes in precipitation extremes Fig. 5 illustrates the projected changes in
four extreme precipitation indices (defined in Tab. 2), for the period [2031-2070] in ref-
erence to [1979-2018]. The change signal in a given index is calculated using the
formula: 100× (future− historical)/historical. In this equation, "future" refers to the precipi-
tation index calculated for the future based on the GCM, while "historical" refers to the precipitation
index calculated for the historical period using groundtruth ERA5 data.
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Figure 5: Future [2031 - 2070] projected changes by the downscaled GCM in four extreme precipita-
tion indices (Tab. 2) calculated in reference to ERA5 [1979-2018].

4 Discussion
The downscaling framework was designed to cater to a broad spectrum of applications and end-users
(e.g., agricultural land managers, and catastrophe modelers). Some users might need data for specific
regions to assess particular risks, such as in flood-prone areas, and may require a larger ensemble than
what can be obtained by downscaling each GCM member in the CMIP6 ensemble (≈50 members). In
such instances, LSTMs developed for similar regions can be adapted to collectively generate a more
expansive ensemble. The method for identifying similar regions can follow the approach described
in [7]. Furthermore, we can incorporate concepts from transfer learning by selecting LSTMs trained
for one region and fine-tuning them to downscale another. This latter strategy is worth investigating.
If successful, it could facilitate using the LSTMs developed here to downscale new regions outside
the Australian domain where computational resources are scarce.

The implemented downscaling approach is lightweight. A single grid cell model has ≈ 96k parame-
ters and needs 97.65k FLOPs (Floating Point Operations) for predicting the precipitation for a single
day and fine grid cell. Assuming single precision (32 Bytes per parameter), all 546 models occupy
200MB of storage. Considering the case of downscaling the GCM data (1979 - 2070) and solely
focusing on the computational requirements occupied by our algorithm, we can downscale the whole
continent of Australia in 4.55 seconds (on a Tesla V100S-PCIE with 14× 1012 FLOPs per second).

The completion of this project (i.e. downscaling all CMIP6 members) will offer the Australian
policy-making communities the data needed for climate risk assessment across a broad range of
plausible scenarios and future climates, along with a thorough quantification of the uncertainties
associated with climate risks. At present, generating such data using RCMs is not feasible.
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A Appendix

A.1 Data Availability

The ERA5 reanalysis data used is the latest generation of reanalysis of the ECMWF and is publicly
available from Copernicus Climate Change Service: Single level: Single level and Pressure level.
CMIP6 data is available from any of: the ESGF Data Portal, NCAR Climate Data Gateway, the
British Atmospheric Data Centre BADC, and the World Climate Research Programme WCRP
Daily aggregates of these datasets are available on the National Computational Infrastructure for
members.

A.2 Supplementary Tables and Figures
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Table 1: List of predictors for the LSTM downscaling model. All climate variables from ERA5 and
GCM (i.e., CNRM-ESM2-1), are aggregated to a daily temporal resolution. ERA5 predictors are
coarsened from 25km to 150km using simple average. GCM predictors are regridded from 150km to
150km using bilinear interpolation. The atmospheric variables shown in bold represent those at the
850 hPa pressure level. The remaining variables are at the surface level.

Climate predictors (unit) ERA5 short name CNRM-ESM2-1 short name

Temperature (°K) t ta
Specific humidity (kg kg-1) q hus
U wind component (m s-1) u ua
V wind component (m s-1) v va
Geopotential (m2 s-2) z zg
10 metre U wind component (m s-1) u10 uas
10 metre V wind component (m s-1) v10 vas
Maximum temperature at 2 metres (°K) mx2t Tasmax
Minimum temperature at 2 metres (°K) mn2t Tasmin
Cloud area fraction (0-1) tcc clt
2 metre temperature (°K) 2t tas
Mean sea level pressure (Pa) msl psl
Total daily precipitation (mm) Convective p pr
Position (°, °, °)
Time (°, °)

Table 2: List of Extreme Precipitation Indices. These indices are calculated for each year in a time
period and then averaged over all years.

Precipitation Index Description
rx1day Average annual maximum 1-day precipitation (mm)
r10mm Number of heavy precipitation days ≥ 10 mm
r40mm Number of extreme precipitation days ≥ 40 mm
prcptot Average annual total wet day precipitation (mm year−1)

Figure 6: Boxplots illustrating the performance of each downscaling setting: (mse) MSE-based loss
function, (mse_with_neigh) MSE-based loss function and neighbouring grid cells precipitation in
the predictors set, (mse_quantile_with_neigh) same as the previous setting, but the loss function
also includes quantile optimization. The performance metrics are calculated on the testing period
by comparing yearly precipitation time series (downscaled ERA5 versus fine ERA5) from 144
fine-resolution grid cells contained in the four sample grid cells shown in Fig.8.
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Figure 7: Maps illustrating four extreme precipitation indices (Tab.2) calculated over the testing
period [2010-2020] based on coarse ERA5, fine-resolution ERA5 (ERA5-target) and downscaled
ERA5 (ERA5-prediction).

Figure 8: Location of four sample grid cells on a Climate Classification Map generated by the
Australian Bureau of Meteorology based on a modified Koppen classification system [24]. These
grid cells are used to compare the performance of LSTMs across three settings (mse, mse+neigh, and
mse+neigh+quantile).
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