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Abstract—Self-awareness has a long history in biology, psy-
chology, medicine, and more recently in engineering and comput-
ing, where self-aware features are used to enable adaptivity to
improve a system’s functional value, performance and robustness.
With complex many-core Systems-on-Chip (SoCs) facing the
conflicting requirements of performance, resiliency, energy, heat,
cost, security, etc. – in the face of highly dynamic operational
behaviors coupled with process, environment, and workload
variabilities – there is an emerging need for self-awareness in
these complex SoCs. Unlike traditional MultiProcessor Systems-
on-Chip (MPSoCs), self-aware SoCs must deploy an intelligent
co-design of the control, communication, and computing infras-
tructure that interacts with the physical environment in real-time
in order to modify the system’s behavior so as to adaptively
achieve desired objectives and Quality-of-Service (QoS). Self-
aware SoCs require a combination of ubiquitous sensing and
actuation, health-monitoring, and statistical model-building to
enable the SoC’s adaptation over time and space. After defining
the notion of self-awareness in computing, this paper presents the
Cyber-Physical System-on-Chip (CPSoC) concept as an exemplar
of a self-aware SoC that intrinsically couples on-chip and cross-
layer sensing and actuation using a sensor-actuator rich fabric
to enable self-awareness.

I. INTRODUCTION

The concept of self-awareness has long inspired computer
scientists and proponents of artificial intelligence because of
our own, individual self-inspecting experience and observa-
tions in psychology, biology and brain sciences. Already at the
dawn of theoretical psychology self-awareness and conscious-
ness have been carefully examined by James introducing the
physical, mental, and spiritual selves, and ego [8] and Freud
differentiating between unconsciousness, preconsciousness and
consciousness [6]. Since then psychology has developed a
detailed understanding and rich terminology of phenomena of
consciousness [17]. With the emergence of cognitive theories
elaborate cognitive architectures have been proposed to explain
the emergence of the observed phenomena [27]. The Global
Workspace theory (GW) advanced by Baars in the 1980s [1]
enjoys broad support by cognitive scientists because it cor-
rectly predicts many psychological and neuropsychological
phenomena [2]. It contends that consciousness is a global
resource allocator providing access to the global workspace
and many specialized processing modules that operate un-
consciously and in parallel. A salient feature of GW is that
various contexts powerfully shape the processing of the con-
scious content and the specialized modules. An important and
always present context is the keen awareness of the subjects
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Fig. 1. Hierarchy of self-* properties [19].

own condition (self-awareness) and the current environment
(situation-awareness).

The assumption of GW and most cognitive models that
awareness is functional and benefits the individual motivates
the many attempts of computer scientists and engineers to
equip computers with awareness in the hope to improve their
functional value, performance and robustness.

Responding to increasing software size and complexity
during the 1990s researchers have called for more smartness.
Laddaga contends that self adaptive software understands
“what it does; how it does it; how to evaluate its own
performance; and thus how to respond to changing condi-
tions” [12]. Reacting to the challenges DARPA published a
Broad Agency Announcement of Self-adaptive software [12]
and IBM developed a vision of autonomic computing [11].
In the sequel many self-* properties have been proposed and
studied. As figure 1 illustrates, self-adaptiveness depends upon
the realization of several more specialized properties such as
self-protecting and self-configuration which in turn depend on
the awareness of the system of its own state (self-awareness)
and its environment (context-awareness). These latter, lower
level properties were often considered to be easily realized by
collecting raw state information such as the detection of faults
and processing delays [18]. However, this narrow definition of
awareness is in contrast to our own intuition and to the richness
of this notion in psychology and cognitive science. Assuming
that under relentless evolutionary pressure all costly features
are functional and beneficial other researchers have developed
more elaborate concepts of awareness [3], [14].



Following a similar approach we have defined a set of prop-
erties that we deem necessary or relevant for self-awareness
[4], [9]:

• Semantic Interpretation includes an appropriate ab-
straction of the primary input data and a disambigua-
tion of possible interpretations.

• Desirability Scale provides a uniform goodness-scale
for the assessment of all observed properties.

• Semantic Attribution maps properties into the desir-
ability scale suggesting how good or bad an observa-
tion is for the system.

• History of a Property: Awareness of a property
implies awareness of its change over time.

• Goals provide the context in which interpretation and
semantic attribution is meaningful.

• The Purpose of a smart embedded systems is to
achieve all its goals.

• Expectation on Environment: The system expects a
specific environment and detects if the environment
deviates significantly from expectations.

• Expectation on Subject: Similarly, the system’s own
state and condition are continuously assessed to detect
deviations, degradation, performance and malfunc-
tions.

• Inspection Engine: Continuously monitoring and as-
sessing the situation requires a specific machinery that
integrates all observations into a single, consistent
world.

In the rest of the paper we present the Cyber-Physical
System-on-Chip (CPSoC) as an exemplar self-aware SoC plat-
form, and then relate and illustrate properties of self-awareness
using this CPSoC exemplar.

II. CPSOC

CyberPhysical-System-on-Chips (CPSoC) [22], [24],
is a smart embedded system paradigm that combines a
sensor-actuator-rich self-aware computing-communication-
control (C3) centric paradigm with an adaptive & reflective
middleware (a flexible hardware-software stack and interface
between the application and OS layer) to control the
manifestations of computations (e.g., aging, overheating,
parameter variability etc.) on the physical characteristics of the
chip itself and the outside interacting environment. Inspired by
the adaptive and learning abilities of autonomous computing
[10] and C3 paradigm of CPSs [13], CPSoC provides a
computing framework that assures the dependability of the
cyber/information processing (i.e., the cyber aspects such as
integrity, correctness, accuracy, timing, reliability and security)
while simultaneously addressing the physical manifestations
(in performance, power, thermal, aging, wear-out, material
degradation, and reliability and dependability) of the
information processing on the underlying computing platform.
Note unlike the reference architecture proposed by Lewis
et al. [15], CPSoC aims to coalesce these two traditionally
disjoint aspects/abstractions of the cyber/information world

and the underlying physical computing worlds into a unified
abstraction of computing by using cross-layer virtual/physical
sensing and actuation to enable a C3 centric self-aware
computing platform.
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Fig. 2. Cross-layer virtual sensing and actuation at different layers of CPSoC
[21], [22].
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Fig. 3. CPSoC architecture with adaptive Core, NoC, and the Observe-
Decide-Act Loop as Adaptive, Reflexive Middleware [21], [22].

The CPSoC architecture consists of a combination of
sensor-actuator-rich computation platform supported by adap-
tive NoCs (cNoC – communication NoC; and sNoC – sensor
NoC), Introspective Sentient Units (ISU), and an adaptive
& reflective middleware to manage and control both the cy-
ber/information and physical environment and characteristics
of the chip [22], [24]. The CPSoC architecture is broadly
divided into several layers of abstraction, for example, appli-
cations, operating system, network and bus communication,
hardware, and the circuit / device layers. CPSoC inherits most



features of MPSoC in addition to on-chip sensing and actuation
to enable the ODA (Observe-Decide-Act) paradigm. Unlike
traditional MPSoC, each layer of the CPSoC can be made self-
aware and adaptive, by a combination of software and physical
sensors and actuators as shown in Fig. 2. These layer specific
feedback loops are integrated into a flexible stack which can
be implemented either as firmware or middleware as shown
by the dotted line in Fig. 4.

CPSoC distinctly differs from a traditional MPSoC in
several ways. Traditional MPSoC paradigms lack the ability
to sense the system states and behaviors across layers of the
system stack due to lack of architectural support; they are
incapable of exploiting and exposing process and workload
variations due to lack of suitable abstractions at multiple layers.
Furthermore, they sacrifice usable performance and energy
opportunities by adopting worst case design (guard-bands), and
lack support for multi-level actuation mechanisms and adapta-
tions to aggressively meet competing and conflicting demands.
Moreover, traditional MPSoCs lack self-learning mechanisms
that can anticipate failures and predict vulnerabilities. CPSoC
overcomes these limitations as detailed below.

A. CPSoC Features

The CPSoC framework supports four key ideas: 1) physical
and virtual sensing and actuation 2) Simple and self-aware
adaptations 3) multi or cross-layer interactions and interven-
tions 4) predictive modeling and learning. We briefly describe
these below. (A detailed description is in our Technical Report
[24].)

1) Cross-Layer Virtual and Physical Sensing & Actuation:
CPSoCs are sensor-actuator-rich MPSoCs that include several
on-chip physical sensors (e.g., aging, oxide breakdown, leak-
age, reliability, temperature, performance counters, as well as
voltage, current, and power sensors [22], [24]) on the lower
three layers as shown by the on-chip-sensing-and-actuation
block (OCSN) in Fig. 3. On the other hand, virtual sensing
is a physical-sensor-less sensing of immeasurable parameters
using computation [23]. It can be viewed as a software sensor
that provides indirect measurement of abstract conditions,
contexts, inferences or estimates by processing (e.g., com-
bining, aggregating, or predicting) sensed data from either a
set of homogeneous or heterogeneous sensors. It is also a
computational technique that enhances and/or adds sensing
capability, introduces sensing options, increases sensitivity,
enables efficient sensor resource uses, and overcomes physical
placement and cost restrictions. When combined with different
kinds of sensors, virtual sensing enables consensus to resolve
faults and errors while providing a test bed for on-chip sensor
fusion [26].

Similarly, we define virtual actuations [22], [24](e.g., appli-
cation duty cycling, algorithmic choice, checkpointing) that are
software/hardware interventions that can predictively influence
system design objectives such as performance, power, and
reliability. Virtual actuation can be combined with physical
actuation mechanisms commonly adopted in modern chips
(e.g., DVFS and adaptive body biasing (ABB) to control
the chip performance, power, and parametric variations); the
notion of actuator fusion in CPSoC represents virtual and
physical actuations that are combined across different layers
of abstraction [22], [24].

2) Simple and Self-Aware Adaptations: Self-awareness is
used to describe the ability of the CPSoC to observe its
own internal behaviors as well as external systems it interacts
with such that it is capable of making judicious decisions
that optimize performance and other quality of service (QoS)
metrics [10]. Self-aware systems will be capable of adapting
their behavior and resources to automatically find the best way
to accomplish a given goal despite changing environmental
conditions and demands. A self-aware system must be able to
monitor its behavior to update one or more of its components
(hardware architecture, operating system and running applica-
tions), to achieve its goals.

Two key attributes of the self-aware CPSoC are adaptation
of each layer and multiple cooperative ODA (Observe-Decide-
Act) loops. As an example, the unification of an adaptive
computing platform (with combined DVFS, ABB, and other
actuation means) along with a bandwidth adaptive NoC [22],
[24] offers extra dimensions of control and solutions in com-
parison to traditional MPSoC architecture. These cooperative
and hierarchical control loops –e.g., the combination of tradi-
tional control loop (dotted lower box in Fig. 4) together with
virtual sensing enabled optimized loop (upper loop in Fig. 4)
– effectively translate user goals or QoS into one or more
multiple design objectives [22], [24].
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Fig. 4. Adaptation using predictive control model and policies in CPSoC
[21], [22].

3) Predictive Models and On-line Learning: Predictive
modeling and on-line learning abilities of the system behavior
as well as internal and external (environmental) states provide
self-modeling abilities in the CPSoC paradigm. The system
behavior and states can be built using on-line or off-line linear
or non-linear models in time or frequency domains [16]. We
specifically use statistical and neural network approaches [5],
[7] such that the model accuracy can be traded-off for model
computational complexity. We use regression based linear
predictors and nonlinear neural predictors to build models of
the system performance, power and energy consumption using
the cross-layer events, hardware counters, and on-chip sensor
data. In addition, use of coupling parameters (a metric that
quantifies the interactions between layers) helps to develop
application and cross-layer interaction models for nominal
and abnormal operations. We use the predictive and learning
abilities of CPSoC to improve autonomy in managing the
system resources and assisting proactive resource utilization
in the run-time system [22], [24].



III. SELF-AWARENESS IN CPSOC

In section I we described a necessary set of properties for a
system to become self-aware. For a system to be self-aware in
the ideal sense, it should exhibit all of these properties at the
highest levels of fidelity and with maximal range of attributes.
However, depending on the context of the engineered system
to be designed, it may not need all of these attributes, nor
does it need to have maximal coverage in terms of the fidelity
and range of attributes. Indeed, in the SoC context, we are
typically resource constrained, with limited area, power, and
thermal budgets. Thus we need to consider carefully how
to incorporate different self-awareness attributes, and at what
levels they can be designed within the overall envelope of all
the SoC design constraints. Towards that end, we describe
below how the CPSoC exemplar has incorporated the self-
aware properties described earlier. Recall that CPSoC supports
four main concepts: (1) physical and virtual sensing and
actuation, (2) self-monitoring and adaptation, (3) cross-layer
interactions, (4) predictive modeling and learning.

Physical and virtual sensing collects the primary data but
also does a great deal of abstraction with specific goals in
mind. Disambiguation is performed partially and implicitly
but not in a formal manner. Hence, CPSoC offers implicit
semantic interpretation.

A desirability scale is built into in the system for each
sensor or their combination in the virtual sensing approach.
All the functions – from the collection of sensory data to the
control algorithms and the actuation mechanisms – use this de-
sirability scale for accurate sensemaking and deriving insights,
(e.g., how the system should perform and what constitutes a
malfunction). CPSoC may appear to use an implicit desirability
scale but in fact uses an explicit one through mapping functions
and calibration tables as discussed in the implementation of a
temperature sensor in [20], [24]. An explicit mapping function
(based on look-up tables (LUTs)) in a ring oscillator based
thermal sensor transforms the ring oscillator frequency to
that of actual temperature reading on the die (measured in
ôC) is used as the desirability scale for thermal awareness.
Moreover, as the mapping functions and LUTs are virtualized
in software [24], the provision for re-purposing these sensors,
for example, a ring oscillator based leakage power or aging
sensor can be realized. An explicit desirability scale has the
advantage of increased flexibility by decoupling observations
from decisions. When new types of sensory data and new
observations have to be interpreted, they are explicitly mapped
onto a desirability scale allowing the control and decision
algorithms to remain unchanged while still taking the new
information into account. Hence, we consider that CPSoC
has an explicit desirability scale while performing semantic
attribution implicitly.

CPSoC keeps track of the historic evolution of properties
by using explicit notions of epoch and sampling time [22],
[25]; hence it embodies this dimension of awareness. As an
example, the state space dynamic models in [21], [22] uses
explicit notions of states in the previous epoch to predict the
states value in the current epoch. Additionally, sensor data
across multiple epochs are stored as history in order to make an
assessment of the average behavior of certain states of interest.

CPSoC has clear goals such as the maximization of energy

efficiency and the ability to detect and tolerate faults and failing
components. Again, these goals are configurable and can be
specified, selected, or changed in the control algorithms, which
make them efficient and effective and provides flexibility
to adapt to new goals during the system’s lifetime. As an
example, the online Simulated Annealing based optimization
scheme in [22] is made configurable to accept or change the
objective function at run-time by using a Linux system call for
performance maximization while achieving energy efficiency.

The purpose is only defined partially, because CPSoC is
a platform that can be used in a range of applications. By
definition a platform will always only define some the system’s
goals, such as detecting and tolerating faults, but will leave the
definition of other goals to the application.

CPSoC being a platform with system level goals (e.g,
thermal efficiency) is aware of some aspects of the environment
(e.g. the ambient temperature) and has consequently expecta-
tions on the environment in addition to the expectations
on itself as encoded in the sensing and control algorithms.
However, these expectations are implicit and reactions to envi-
ronmental changes are limited to specific cases corresponding
to the system-level goals.

The inspection engine is based on prediction models (or
their variants) as in Fig. 4 , thus providing the capability to
inspect state variables in time and space.

In summary, the design of the CPSoC framework has care-
fully considered how to balance the needs of self-awareness in
an SoC context, and has realized different self-aware attributes
with the dual goals of maximizing self-awareness, while min-
imizing overheads and simultaneously meeting the complex,
interdependent set of constraints faced by the system. Hence,
it can be considered as a self-aware system as defined above
and in our earlier work [4], [9], to the extent reasonable in an
SoC context. Indeed, it should be noted that more awareness
is not necessarily better. There is a trade-off between the
cost of awareness, the efficiency of implementation, and the
flexibility and generality that would come with higher degrees
of awareness. This is particularly important in the specific
context of self-aware SoCs that must meet a multitude of cross-
purpose constraints.

IV. CONCLUSIONS

While there has been a large body of work in attempting
to achieve adaptivity through self-aware computing systems,
the phrase ”self-awareness” has been used rather loosely,
typically with no well defined model of what properties a self-
aware system must exhibit. Towards that end we first reviewed
the concept of self-awareness as applied to the domain of
computing systems. Since there is no agreed-upon definition of
self-awareness within the computing realm, we then defined a
set of necessary or relevant properties for a computing system
to be considered self-aware. Emerging SoCs arguably face an
even more complex set of conflicting constraints, in the face
of highly dynamic workloads, as well as process and environ-
mental variability. Furthermore, with increasing complexity of,
and heterogeneity in the SoC platform architecture, there is a
critical need for these SoCs to be self-aware, and perform in an
adaptive manner. We presented the Cyber-Physical System-on-
Chip (CPSoC) platform as an exemplar of a self-aware, hetero-



geneous many-core SoC platform. CPSoC achieves self-aware
adaptation through a principled orchestration of ubiquitous
(virtual) sensing and actuation, coupled with health-monitoring
and statistical model building. We then briefly described how
each of the self-awareness properties are manifested in the
CPSoC platform. Since these facilities must be tightly woven
into the SoC’s hardware and software fabric, CPSoC’s self-
awareness properties have been engineered carefully to prevent
the excessive overheads of intrusive sensing/actuation. We
believe the CPSoC exemplar provides one view of a self-aware
SoC. Other papers in this special session provide additional
perspectives on building self-aware SoC platforms.
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