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† Institute of Computer Technology, TU Wien, Vienna, Austria,
‡ Institute of Computer Engineering, TU Wien, Vienna, Austria,

Email: ∗{daniel.hauer, lukas.krammer}@siemens.com, †‡{daniel.hauer, denise.ratasich, axel.jantsch}@tuwien.ac.at

Abstract—The increasing importance of decentralized and
volatile energy sources causes huge challenges for future energy
grids. Besides intelligent grid planning, real-time monitoring
and control is necessary to guarantee reliable and sustainable
grid operation. The basis for such applications is dependable
monitoring of the grid. This paper introduces a methodology
for resilient control and monitoring. A self-healing algorithm
ensures that the system can operate even when monitoring devices
or connections fail. Based on that, a model-free context-aware
monitoring algorithm allows for detection of anomalies, drift
and, in general, undesired conditions. These core components
are embedded in a scaleable system architecture that allow for
easy integration even in existing systems.

Index Terms—fault-tolerance, smart grids, dependable sys-
tems, context-aware monitoring, internet of things

I. INTRODUCTION

The increase of diversity of distributed energy producers
and consumers poses a great challenge for the future grid and
its management systems. The generation of renewable energy
as well as e-mobility or demand-response applications require
intelligent planning and management of low voltage grids. To
efficiently facilitate the grid by preventing from overloads and
outages, new control and protection concepts must be devel-
oped [1]. Due to the highly distributed nature of such systems,
traditional measures of established automation systems do not
suffice, but technologies developed in the context of ”Industrial
Internet of Things” (IIoT) are well suited, as they address
dependable system behavior and decade-long life-cycles.

Thus, different kinds of technologies, levels of automation
and sensor densities have evolved in the existing grid. Beside
the ongoing smart meter roll-out, different kinds of IoT devices
and smart sensors are integrated in all kinds of devices
also including grid related consumers and producers (e.g.,
intelligent wall-box, smart substation monitoring systems).
This trend results in a large number of sensors and actuators
in the grid environment, generating an enormous amount of
data, however, with varying and often unknown quality. In
order to realize a resilient grid, it is necessary to have a
guaranteed Quality of Service (QoS) for the sensory data and
the communication network in the smart grid, ranging from
power generation and distribution to customer applications [2].

The presented work is conducted in the ”Trustworthy IoT for Cyber-
Physical-Systems” (863129) project, funded and supported by the Austrian
Research Promotion Agency (FFG).

To optimize the energy flow in smart grids, new concepts
such as self-adaptation or self-aware control and monitoring
are required [3]. Smart grids connected to the Internet further
require to be resilient to system anomalies, including both
faults and security vulnerabilities [4] which can be achieved by
self-healing. These mechanisms are applied on top of a highly-
scalable IIoT communication and computing architecture.

We therefore propose a novel methodology for resilient
control and monitoring in the smart grid domain, by reusing
existing infrastructure and applying novel approaches of data
handling and monitoring with the following key objectives:

A Build the architecture on top of the existing infrastructure.
B Ensure safety and security in the event of faults or threats.
C Guarantee functionality despite the diversity of IoT de-

vices and their individual lack of reliability.
D Ensure that the smart grid is future-proof for technolog-

ical, functional and environmental changes in terms of
maintainability and hardware/software life-cycle.

In order to achieve the goals, the proposed solution consists of
(*) self-healing data collection, (*) context-aware data moni-
toring, (*) optimized control algorithms (e.g., faster overload
prevention), (*) enhanced management support (e.g., efficient
long-term grid expansion).

The system will be applicable to legacy systems by fa-
cilitating existing sensing and communication infrastructure.
Resilient control and monitoring refers to dependability and
security throughout the entire life cycle of a system [5],
[6]. Our methodology focuses on increasing the reliability,
availability and integrity of the collected sensor data by a
self-healing data collection approach in combination with
a context-aware data monitoring. This has a direct impact
on monitoring applications and is a prerequisite for control
applications. Although safety is implicitly improved by the
proposed solution as reliability and availability are improved,
explicit and application-specific safety measures are not ad-
dressed by this approach. Confidentiality is also tackled by
some components of the methodology, but an overall security
concept is out of scope of this work.

The rest of this paper is organized as follows: After a
review of related work (section II) the proposed methodology
is introduced in section III and further discussed in section
IV by analyzing a comprehensive set of faults, failures and
threats. Conclusions and an outlook are given in section V.
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II. RELATED WORK

The need for a smarter grid and its possible realisations
are extensively discussed in literature. [2], [4] and [7] pro-
vide an overview and highlight some of the most important
enhancements needed to provide a future-proof smart grid.
Key features such as dynamic demand response, self-healing
structures, context-aware monitoring and intelligent bidirec-
tional data and energy flow are discussed and theoretical
implementation concepts are presented. Noteworthy research
and development activities can be found on all these topics.
[2] and [8] discuss different communication infrastructures and
wireless networks in the smart grid. [3] and [9] develop seman-
tic information models for smart grids to unify heterogeneous
grid environments. [10] and [11] propose resilient architectures
for specific use-cases in the smart grid domain (grid stability
and load balancing) but therefore lack a generic system-wide
approach.

Fault-tolerance and self-healing are extensively covered in
literature, not just in the smart grid area but across multiple
domains. In [12]–[14] an overview to fault-tolerance and
self-healing is presented. However, typically the literature on
dependability or resilience is split into fault prevention or pre-
dictive maintenance, fault detection and diagnosis and fault re-
covery or mitigation. A fault detection unit comprises a model
of the expected (specification, cf. runtime verification [15] or
anomaly detection [16]) or anomalous behavior (signature, cf.
intrusion detection [17], [18]), or some redundancy [19] to
compare against the actual behavior of a signal.

Our proposed methodology combines self-healing data col-
lection and context-aware data monitoring. According to [20]
context-awareness means that “the system is aware of its
context, which is its operational environment”. The authors
of this landscape paper claim that context-awareness to-
gether with self-awareness are part of the general property
self-adaptiveness. Recent surveys about self-awareness and
context-awareness can be found in [20] and [21]. Approaches
based on deep learning and data mining could also form
part of the solution, however, they require massive processing
and memory resources [22], which is not available in IoT
devices. Therefore solutions with a small footprint and without
a extensive model building are favoured. Examples can be
found in [23], [24] (medical monitoring) and [22] (health-
monitoring of an AC-motor).

III. METHODOLOGY

Existing sensor and communication infrastructures in a grid
typically provide heterogeneous data sets, e.g., in terms of
redundancy, quality, quantity, and availability. New data sets
can emerge, exiting ones can fail or change its characteristics
during run-time. To enable resilient monitoring and control, we
propose to add self-healing and context-awareness algorithms
before the information is forwarded. The combination of the
strengths of these two algorithms leads to a novel enhancement
for resilient smart grid monitoring and control. Figure 1 shows
the proposed methodology with its four planes: Physical,
Network, Control and Monitoring & Management.

The self-healing unit monitors and (if necessary recovers)
relevant information. Subsequently, a Context-Aware Monitor-
ing (CAM) algorithm is used to enlarge the knowledge about
the system under investigation. We propose two different levels
of CAM. One level can detect the system’s state and health
and optimize this information for the control units (e.g., the
system’s reaction to control interventions can be observed
and abstracted system information can be used to adapt the
control algorithm). The second level of CAM is designed to
provide relevant state and health conditions of the system for
the management level. This information can be used to adapt
or change control mechanisms (e.g., by recognizing recurring
but sub-optimal reactions of the system to control decisions) or
to optimize the infrastructure and plan long-term expansions.

The rest of this section describes the different planes and the
self-healing and CAM algorithm of the proposed methodology.

• Physical plane
The physical plane is the basis of an IoT system and
represents the ”Things”. In IoT architectures sensors and
actuators typically have very limited computing capabili-
ties and they are connected to so-called edge devices [25].
Edge devices have higher computing capabilities to per-
form control applications. For realizing reliable real-time
applications, hardware and software support is necessary.
Since hardware and software have different life-cycles,
one key feature of edge devices is the update-ability.
Applied to a smart grid, which is a highly dynamic
and massively distributed and heterogeneous automation
system, the physical plane can basically be split into
”behind-the-meter” and ”in front of the meter”. Behind
the meter, there are the energy assets such as photo-
voltaic systems, battery storage or electric vehicle charg-
ing stations. These systems and the combination of them
have almost unpredictable behavior. However, there are
further limited means for controlling and monitoring them
from systems in front of the meter. In front of the meter,
there are components to monitor and control the grid.
Monitoring in terms of measuring current, voltage and
power over time is done in substations and at neuralgic
points of the grid with so-called grid monitoring devices.

• Network plane
The network plane is responsible for the connectivity
in the whole system. In a typical IoT system, there are
different types of connections: In a local network, sensors
and actuators are connected to edge devices. In order
to perform control applications, this connection fulfills
dedicated quality-of-service requirements such as high
reliability and real-time performance. As shown in Figure
1 the network plane is also responsible for collecting and
forwarding network related data (network statistics) to
the monitoring algorithms. In the smart grids domain,
networking is a crucial topic. There, it is basically distin-
guished between technologies and components ”behind
the meter” and ”in front of the meter”. Behind the meter,
mainly wired technologies based on Ethernet or twisted-
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Fig. 1. Resilient methodology for monitoring and control in smart grids

pair media are used. For retrofitting applications even
wireless technologies such as Bluetooth-LE or protocols
based on IEEE 802.15.4 can be used. While technologies
such as ZigBee or Bluetooth-LE are mainly used for
consumer-grade applications, technologies like 6TISCH
are used for real-time applications [26]. Time-sensitive
networking (TSN) technologies [27] can be used for
realizing dependable control applications. In front of the
meter, various communication technologies are applied.
Within a secondary substation, local systems are used
to connected sensors and actuators with the automation
station which represents the edge device. For connecting
substations to the backend system of a grid operator
(in the cloud or on-premise), wide-range communication
technologies such as fibre optics connections, power-
line communication or mobile communications (e.g., 4G,
GPRS, etc.) are used. For connecting sensors at neuralgic
points of the grid directly to the backend, technologies
such as LoRaWAN or Narrowband-IoT can be used.

• Control plane
The control plane is the heart of our proposed method-
ology. All collected data is processed by a self-healing
algorithm to provide a constant and resilient set of infor-
mation for the next levels even in terms of unforeseen
changes in the physical and network plane. The healed
information is then used to detect operating states and the
health condition of the system with our so called ”Low
Level CAM” algorithm. Such context-aware knowledge
can then influence existing control units by providing
additional information such as drifts, reoccurring states
or suspicious behavior (both relevant for safety and
security). For example, data sets from spatially separated
distribution stations can be used to identify global effects
of local control interventions and to optimize the control
parameter. Both CAM and the self-healing algorithm will
be explained in detail in the following sections.

• Monitoring and Management plane
Complex automation and control systems require super-
vision and management. This plane can be basically
distinguished in a functional and non-functional part.
The non-functional part consists of system management
functions that allow for keeping the software base systems
as well as the applications on top up-to-date. In addition,
it supports the update of applications if the system
changes or a new functionality is added. Furthermore, the
system management must allow for parameter updates of
applications such as self-healing or CAM.
From a functional point of view, the monitoring and
management plane closes the loop of our proposed
methodology. Long term data collection and context-
aware monitoring is used to observe the systems state and
health from a grid operator’s point of view. It is therefore
an extension to existing systems like SCADA, which are
more restricted to high voltage transmission networks
only [2]. We propose a second ”High Level CAM”
algorithm which is parameterized to detect global and
long term events in the grid. This abstracted information
can be used to change the underlying algorithms (control
unit, self-healing, CAM), restructure parts of the grid
(e.g., prevent overload through re-meshing) or to use the
information to cost-effectively expand the current grid.
For example, CAM can detect reoccurring malfunctions
and therefore adapt the corresponding control strategy.

A. Self-Healing by Structural Adaptation

Faulty observation data used by subsequent units like con-
trollers or monitors can lead to failures decreasing the system’s
dependability. Traditional fault-tolerance is designed to over-
come critical failures. Self-healing can be applied to react also
to failures not specifically considered during design-time, e.g.,
faults caused by functional, environmental or technological
changes or zero-day malware.
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A component is designed to provide some information
(e.g., a in Fig. 2). However, additional information (a1 . . . c3)
often becomes available during runtime by connecting new
subsystems to the network. For instance, the physical entities
(CPS variables) observed (e.g., voltage, current, power on
different power lines) can be related to each other, thus
providing implicit information redundancy. Such redundancy
can be used to detect faulty information by comparing it to
related information [28], and to substitute failed information
by spawning a substitute component advertising the failed
information by consolidating related information, we refer to
as self-healing by structural adaptation (SHSA) [29].

a

a1

=

a = fb(b1)

b1

a = fc(c1, c2, c3)

c1

c2

c3
subsystem/component

information

Fig. 2. Components providing related information through its interfaces
(relations can be arbitrary functions, learned or defined by a domain expert).

The central part of SHSA (as it is self-healing and self-*
in general) is a knowledge base. The SHSA knowledge base
encodes the relations and the availability of the information,
e.g., as a set of Prolog rules [28]. Given some CPS variable
or signal under test, the knowledge base is searched to find
related information for comparison or substitution. Further-
more, the knowledge base is adaptive, that is, the relations and
availability of signals may change during runtime, in order to
cope with various system changes. SHSA is implemented as
an additional service acting on the communication network
of a system (monitoring messages and substituting signals in
messages). The SHSA service may run on a separate platform
and connect to existing systems [30].

B. Context-Aware Monitoring

Context-Aware Monitoring (CAM) has originally been de-
veloped for the analysis of body signals for health mon-
itoring [23], [24] and then extended to the monitoring of
AC motors [22] and hydraulic systems [31]. An application
of CAM in the analysis and observation of industry 4.0
manufacturing can be found in [32].

CAM is based on concepts of self-aware systems [21], [33]
and assumes that, with comprehensive data collection and
careful analysis, an abstract ”understanding” of an observed
object can be built dynamically and without pre-developed
models (Figure 3). The CAM algorithm collects all available
sensor data and continuously identifies new and already known
patterns - called ”states” - in the data streams. Initially all
states are new, but with ongoing observation newly emerging
states are unusual and, depending on the context and applica-
tion, may be marked as an anomaly. CAM has the ability

Fig. 3. Context-Aware monitoring system [22]

to recognize normal and unusual sequences of states, and
creeping changes in sensor values assigned to a state are also
recognized as drift symptoms.

Stability Controller

Check stability of input signals

Data Collection

Collect data from all available
sensors and data sources

State Handler

Recognize states and distinguish
between normal operation and

deviations therefrom

Pre-Processing

Pre-process input signals
(abstraction, filtering)

Fig. 4. Block Diagram of the Context-Aware monitoring system [22]

Figure 4 shows the CAM system consisting of data col-
lection and three functional blocks [22]. The pre-processing
block covers both abstraction and filtering (e.g., low-pass) of
the signals. The pre-processed data is then checked for stability
by using a sample history in the form of a sliding window. The
subsequent state handler does the bulk of the work. It tries to
recognize all states of normal operation, to be able to detect
deviations from the normal operation. Detailed information
about CAM can be found in [22]. The main advantages of
CAM can be split in operation and installation benefits:

• Operation: CAM works without pre-developed models of
the object under observation, is general and adaptive, and
can distinguish the ”normal” from the ”unusual” without
an explicit learning phase.

• Installation: CAM has a small footprint and can operate
on top of existing systems without the need for major
hardware changes [32]. Therefore it can easily be applied
to a variety of existing IoT devices. A hierarchical agent-
based toolbox (C++) is available [23].

According to figure 1, we propose a two level monitoring
approach. The goal of the Low Level CAM algorithm is to
detect states or drifts, that might lead to an failure or unhealthy
state (e.g., overload along a power line) and immediately
provide this information to the control units. For instance, it
can detect the activation of various electric vehicle charging
stations and can therefore suggest to limit the individual
charging currents.

While Low Level CAM detects threats for immediate use
at the control units, the High Level algorithm is designed to
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detect global and long-term events. Furthermore the results are
abstracted in such a way that they can be visualized for human
operators. Hence, High Level CAM can detect recurring global
effects of control interventions. For instance, if the grid is re-
meshed due to an overload on one segment, this can lead to
faults in the long run on other segments. Such a pattern can
be detected and Low Level CAM or the corresponding control
unit can be switched to an alternative failure handling.

IV. DISCUSSION

Considering the smart grid and its IoT infrastructure, a
resilient control and monitoring system has to handle different
kinds of failures and threats to ensure the functionality. The
system therefore has to detect and identify faulty, attacked or
failed components during run-time and has to autonomously
maintain resilience [6]. Table I gives an overview on possible
failures and threats in the different planes of a smart grid.

TABLE I
FAILURES AND THREATS WITH RESPECT TO SMART GRID PLANES [6]

Plane Dependability Security Long-term

Physical Broken connector
Uncertainties

Sensor hacking
Physical damage

Material decay
Physical stress

Network Message collision
Interference

Jamming/Flooding
Routing ill-directing

Overload
Protocol violation

Control Input errors
Deadline miss

Signal manipulation
Illegal access

Upgrades/Updates
New requirements

Monitoring
& Manag.

Data corruption
Unavailability

Data poisoning
Eavesdropping

Infrastructure aging
Staff turnover

To justify, that our novel approach ensures resilient control
and monitoring for smart grids, in this section we want to
discuss the threats and failures listed in Table I. In order to
increase readability, similar points are grouped together.

A. Broken connector, Physical damage, Message collision
These failures all lead to one or more sensors or actuators

failing and no longer transmitting data or performing control
interventions. Broken sensors or communication channels are
compensated by our self-healing data acquisition. As long as
there is redundancy in the sensor network, the SHSA algorithm
ensures the data collection and higher-level systems do not
see any changes. If the failure affects an actuator, this fault is
detected by state-of-the-art protective mechanisms on the one
hand (in the worst case by triggering a fuse) and on the other
hand its malfunction also causes a change in grid’s behaviour.
These changes can be detected by CAM.

B. Uncertainties, Material decay, Physical stress, Interference
Both material decay and physical stress cause sensor values

to change their behavior over a longer period of time (drift)
or to fail completely. Uncertainties and inferences lead to
fluctuating measurement data over a short or longer period
of time. In case of failures, the data can be replaced using
our SHSA algorithm as described in the previous point. If
the behavior changes over a long time, one of the strengths
of CAM is that it can detect drifts. Affected sensors or
communication paths can thus be replaced.

C. Sensor hacking, Jamming/Flooding, Routing ill-directing,
Signal manipulation, Illegal access, Data poisoning

Similar to the already mentioned points, these kinds of
security threats lead to a abnormal system behaviour an can
be detected by CAM. Therefore CAM also uses additional
data input such as data rates, network load or status updates
from the sensor and communication networks. This improves
CAM’s ability to detect malicious interventions (e.g., changes
in the network traffic). When detecting malicious behaviour
(regardless if its an attack or malfunction), the grid can ignore
the affected devices and the SHSA algorithm can ensure
operational reliability (as long as redundancy is still given,
otherwise an alarm can be raised). If an intentional attack
is recognized (e.g., by detecting distinctive network traffic
patterns) additional warnings can be sent to the grid operator
beside the immediate fault actions.

D. Overload, Deadline miss, Protocol violation, Input errors

In contrast to e.g., material decay, these threats result in
sudden changes in the behavior of the grid. Either sensor data
cannot be transmitted correctly or successfully, or actuators
receive incorrect control signals. Again SHSA compensates
missing sensor data and CAM is able to detect sudden grid
state changes and react accordingly (e.g., reconfigure commu-
nication network to avoid overload or fix protocol violations).

E. Upgrades/Updates, New requirements

Both SHSA and CAM have a knowledge base that needs
to be updated with each grid update or system change. One
strength of CAM is that changes in the grid operation due to
unknown updates are also recognized as state changes. The
High Level CAM processes the data and provides abstracted
monitoring information for the grid operator and planner. In
case of a planned update, the operator can then mark the
changes as ”healthy” and CAM’s parameter can be adjusted.

F. Staff turnover

The High Level CAM is designed to provide abstracted
grid health information and seamlessly integrate them into
existing monitoring systems (e.g., SCADA). Grid operators
therefore do not have to familiarise themselves with different
and complex monitoring systems and their individual details.
This simplifies staff turnover, saves time and maintenance
costs, and reduces susceptibility for human errors.

G. Unavailability, Infrastructure aging, Eavesdropping, Data
corruption

Data loss or corruption at the Monitoring and Management
plane are not the focus of this work. Common data protection
techniques can be used to ensure functionality of databases
or servers. As safety measures are not explicitly addressed by
this approach, a human operator is still needed to supervise
safety-critical decisions (e.g., detect false positives). Also the
detection of pure eavesdropping without influencing the grid
operation is beyond the scope of our work.
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V. CONCLUSION AND OUTLOOK

This paper proposes a novel methodology for resilient
control and monitoring in the smart grid domain. Our approach
is designed to operate on top of the existing grid infrastructure
without requiring major hardware changes and can be applied
with low investment costs due to its small footprint. First
the self-healing data acquisition algorithm SHSA guarantees
dependable data collection even in the advent of faults or
threats. As long as SHSA sees enough redundancy in the in-
frastructure, it can guarantee functionality despite the diversity
of IoT devices and their individual lack of reliability. Based
on this reliable data and additional information, the context-
aware CAM algorithm detects the grid’s state and health
and forwards the abstracted information to both the control
units and the grid operators and planners on the management
plane. CAM’s output is then used to trigger and optimize
control algorithms for a fast failure correction or failure pre-
vention and for long-term infrastructure optimizations. With
this methodology we ensure that the smart grid is future-proof
for technological, functional and environmental changes.

To validate our proposed methodology, we addressed well-
known failures and threats in the smart grid domain and
discussed how our solution can solve these issues. How-
ever, extensive field tests will be necessary to optimize our
methodology. In future work we will therefore implement
such tests and evaluate the results. Furthermore, CAM is
currently being extended so that the algorithm can include
component models and use feedback information to perform
self-adaptation without human intervention.
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