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ABSTRACT Today, there exists a large number of different embedded hardware platforms for accelerating
the inference of Deep Neural Networks (DNNs). To enable rapid application development, a number of pre-
diction frameworks have been proposed to estimate the DNN inference latency on a wide range of hardware
platforms. This work presents a novel smart padding benchmarking method, which allows the profiling of
hardware platforms without requiring detailed per-layer reports. To mitigate the measurement inaccuracies
inherent in the black-box approach, a confidence framework comprising three metrics has been developed.
These metrics not only enhance the interpretation of prediction results but also significantly contribute to the
refinement of the estimation framework itself, as they facilitate to improve the coverage of the training dataset
for relevant layers and detect weaknesses in the training dataset. Empirical results demonstrate the method’s
robustness, with average prediction errors minimized to below 10% for smart padding benchmarking-based
ANNETTE predictions for the Jetson Xavier, NXP i.MX93, and NXP i.MX8M+.

INDEX TERMS Estimation, Latency, Confidence, Neural Network Hardware, Conformal Prediction

I. INTRODUCTION

THE vast design space of optimization, pruning, quan-
tization and mapping DNNs on embedded hardware

platforms makes it almost impossible to quickly find the
best fitting solution for an application. Neural Architecture
Search (NAS) [1], [2] provides a means to achieve a DNN
optimized with regards to certain requirements. Specifically
in hardware-aware NAS the inference latency is often used
as the target constraint and therefore needs to be computed
or measured for each selected DNN architecture. To avoid
the need to deploy each DNN on the requested platforms,
various approaches have been proposed to predict the infer-
ence latency. Solutions to this problem range from the use of
simple proxy metrics (such as the number of floating point
operations) [3] and analytical models [4], [5] to Graph Con-
volutional Networks (GCNs) [6], [7]. Some solutions focus
on specific design spaces to enable hardware-aware NAS and
therefore provide limited generalization capabilities. Other
methods (e.g. ANNETTE [5], nn-Meter [8]) aim to provide
accurate predictions for a wide range of applications and

cover the aspects of graph optimizations in a separate step
to correctly model all steps in the deployment flow.

However, the vast amount of different hardware platforms
available for DNN inferencemakes the adaption of estimation
algorithms for each hardware platform cumbersome. There-
fore, Metrics that provide additional information

Our goal is to address two challenges related to benchmark-
ing and predicting the inference time of neural networks on
constrained devices. First, benchmarking hardware platforms
for specific DNNs is challenging due to layer fusion, de-
pendencies on layer sequences, data loading effects, interfer-
ence of profiling techniques with execution time, and other
complications. Additionally, it is important to gain insights
not only for entire networks but also at the per-layer level.
Currently, achieving this level of detail necessitates the use of
per-layer profiling results to accurately model execution time.
However, there are situations where implementing per-layer
profiling is not feasible or requires additional implementation
effort and possibly generates additional profiling overhead.
We tackle this challenge by developing an intelligent bench-
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marking strategy that allows for the generation of per-layer
abstraction models without relying on detailed insights.

Second, a latency estimate is only useful to designers if
they know to which extent it can be trusted. How can we en-
sure the comparability ofmodels and how canwe trust models
trained on limited data points? To address this concern, we
propose three novel confidence metrics. These metrics pro-
vide quantitative measures of the reliability of our latency
prediction models, enabling informed decision-making when
selecting hardware platforms and DNN architectures for the
application-specific DNN hardware implementation. Addi-
tional applications of latency prediction, such as hardware
aware DNN compression [9], [10] and DNN offloading and
partitioning [11], [12] can also potentially make use those
prediction reliability measures.

Specifically, this paper makes the following contributions:
• We propose a method for profiling the latency of DNN

inference on hardware with padded models;
• We propose a conformal prediction framework for DNN

latency prediction to quantify the confidence of the pre-
dicted values.

II. RELATED WORK
a: Latency prediction
The goal of latency prediction is to estimate the total ex-
ecution time of a network composed of a sequence of N
layers L = {l1, l2, ..., lN}. Each layer in the DNN has spe-
cific attributes and parameters that define its configuration,
computation needs, and connections to other layers. These
connections determine the data flow through the entire net-
work. Current approaches for DNN latency prediction range
from simple analytical models based on the rooflinemodel [5]
to elaborate Machine Learning (ML) based latency estima-
tors [13]. These ML based prediction algorithms are trained
on collected datasets Z = {(x⃗1, y1), (x⃗2, y2), ...}, where x⃗i are
the feature vectors, describing layer i, and yi are the values
to be predicted. In the case of latency estimation, the target
values can represent for example time or compute efficiency.
As a result, ML based prediction algorithms are not limited to
a specific hardware platform. They show good accuracy [14]–
[16] but are mostly limited to the selected design space and
are usually not designed for general network prediction.

Analytical prediction methods such as those presented in
[17] and [18] provide high prediction accuracy for the target
hardware platforms. However, they require in-depth hardware
knowledge and are therefore not suitable when in-depth ar-
chitecture details cannot be obtained due to confidentiality or
when the required effort is excessive.

The latency prediction framework Blackthorn [4] encom-
passes analytical models constructed based on several mea-
surement points. The focus of Blackthorn is on finding op-
timal measurement points to reduce the required amount of
overall measurements to profile NVIDIA Graphic Processing
Units (GPUs).

The framework ANNETTE [5] provides analytical models
based on a refinement of the rooflinemodel which, in addition

to the compute and memory boundary, also takes into account
the underlying compute architecture. In addition, ANNETTE
relies on random forest regression models predicting the per-
operator compute efficiency and also deploys decision trees
to predict operator fusion rules.

Other similar approaches with iterative improvements and
slightly different focus with regard to the profiled hard-
ware [19], [20] have been proposed. nn-Meter [8] focuses
on the prediction of mobile devices and deploys similar
principles as ANNETTE relying on a larger training dataset.
MAPLE-X [21] incorporates explicit prior knowledge of
hardware devices to improve the prediction accuracy for
newly benchmarked devices.

Finally, Graph Neural Networks (GNNs) offer the option
to operate directly on the graph structure of the DNN to be
predicted. Sectum [22] deploys a GNN to detect memory
over-commitment in addition to an ANNETTE-like structure.
While frameworks like DNNPerf [13] and GENNAPE [23]
focus on the prediction of other DNN performance param-
eters (such as accuracy, training time, etc.), PerfSAGE [7]
and DIPPM [24] rely on GNNs to predict latency, energy, and
memory consumption and promise high prediction accuracy
for different classes of network architectures. In both cases,
the GraphSAGE architecture is deployed in different variants.
Lastly, SLAPP [6] applies GNNs at sub-graph level to pre-
serve the advantage of gained insights through per-operator
prediction but still relying on a large number of data points.

The black-box approach using smart padding, presented in
this work, can be a valuable method for most of the ML based
latency estimation frameworks. Even though the technique
does not replace detailed per-layer profiles, it enables in-
model latency measurement of single layers or blocks of
layers while decreasing the required effort for implementing
overhead-free per-layer profiling tools.

b: Conformal prediction
The conformal prediction framework, introduced by Vovk,
Grammerman and Shafer [25], [26] provides a general
method for quantifying the uncertainty of predictions for
arbitrary prediction algorithms and provides guarantees on
the prediction error. Traditionally, confidence intervals are
estimated using quantile regression [27], [28] or Bayesian
methods [29]. In the context of this work, which leverages
random forest regression [30], conformal prediction is par-
ticularly beneficial for uncertainty quantification, as it not
only demonstrates good efficiency [31] but also ensures broad
applicability across different machine learning algorithms.
Furthermore, conformal prediction offers many additional ad-
vantages, such as its straightforward interpretability, model-
agnostic nature, and adaptability.

For uncertainty quantification, conformal prediction relies
on the computation of a nonconformity score α for each
instance in a calibration set distinct from the initial training
set. In regression, α is typically computed as the absolute
errorαj = |ŷj−yj| [31], where ŷ is the predicted value. For the
prediction of confidence intervals with significance δ, these
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calculated nonconformity scores are used to formulate the
prediction region for each instance j as Ŷj

δ
= ŷj ± α(δ) [31].

This means the predicted region Ŷ will cover the true value
of y with probability p = 1 − δ. In the standard case, this
results in confidence intervals of uniform width across all
input feature vectors x⃗.
Thus, to minimize the average interval width, it is possi-

ble to implement normalized nonconformity functions [32].
Here, the nonconformity scores are scaled by σ, an estimate of
the model’s accuracy for the predicted instance. The resulting
prediction regions are then computed as Ŷj

δ
= ŷj ± α(δ) · σj.

This quality estimate can be obtained by various methods,
such as predicting the errors with additional trained models
or using the errors of the k nearest neighbors. Conformal
prediction has been successfully applied in various domains,
including medical diagnosis [33], face recognition [34], and
financial risk prediction [35]. However, to our knowledge,
this work presents the first approach to leverage conformal
prediction for confidence estimation in latency estimation of
DNNs.

III. METHODOLOGY
Currently, for latency estimation of DNN hardware accelera-
tors, we encounter two primary challenges:

1. Across the broad spectrum of available DNN accelera-
tors the availability of knowledge, insight, and profiling
tools varies widely. This diversity necessitates tailored
benchmarking and modeling approaches for each type.

2. The accuracy of latency prediction models varies
widely due to variations in benchmarking methodolo-
gies, dataset size (e.g. limited due to the compilation
time), and hardware architectures. These issues com-
promise the reliability of latency estimates and affect
the coverage of the DNN design space.

The following sections address the identified challenges in
estimating latency for DNN hardware. Section III-A provides
an overview of the model generation process, highlighting
the additions to the latency estimation framework. To tackle
issue (1), Section III-B presents a flexible methodology that
allows us to profile hardware platforms based on a minimal
requirement on the available hardware insights and profiling
possibilities. Lastly, to address the diverse latency prediction
model quality (2), in Section III-C we propose the application
of conformal prediction methods as measures for the confi-
dence of the per-layer and per-network estimation.

A. OVERVIEW
Figure 1 depicts the usual stages to compile a trained Neural
Network (NN) for hardware inference:

• The trained DNN model is exported from a training
framework such as Tensorflow or Pytorch to an inter-
mediate exchange format (e.g. ONNX, TFlite).

• Backend independent optimizations are applied to
optimize the graph for inference. These can include
removing layers from the graph that are only required

Backend Dependent Optimizations
(e.g. Opterator Fusion, specific Quantization, ...)

Backend 1
TensorRT

Jetson Xavier

DNN Model 
(e.g. ONNX, TFlite, ...)

Backend Independet Optimizations
(e.g. Batch Norm Fusion, Pruning, ...)

Backend 2
TFlite Runtime
NXP i.MX93

Backend 3
TFlite Runtime

NXP i.MX8

Hardware Specific Flow

Hardware Independent Flow

FIGURE 1. Overview of the compilation flow for inference on embedded
hardware platforms.

for training (e.g. Dropout), or fusing layers while still
maintaining mathematical equivalency (e.g. Batch Nor-
malization). While most inference frameworks apply
this step automatically, it is still recommended to make
use of tools such as NVIDIA’s ONNX-GraphSurgeon 1

or ONNX-simplifier 2 in a separate step. Hence, this step
can similarly be applied in the latency estimation flow.

• Backend dependent optimizations represent the
changes applied to the DNN model, that are either
required or beneficial with regard to latency and/or
efficiency, and which are not executable on all hard-
ware platforms. Since each hardware platform provides
a different set of operations and possibly allows for
multiple operations in a pipelined manner (composite
layers) to reduce data transfer these optimizations need
to be considered in the estimation framework [5], [8].

• Lastly, the model is compiled and executed on the
hardware platform using the hardware-specific inference
backend. Some compilers provide different optimiza-
tion targets (e.g. latency, memory) or optimize the work-
load for a specific hardware setting. It has to be con-
sidered that, with the current methods, each prediction
model can only provide the predictions for one specific
combination of compiler and hardware settings.

From the inference workflow, there are different levels
of insights that can be gathered and used for the latency
estimation framework:

• DNN graph before and after backend-dependent opti-
mization

• Per layer latencies
• Overall network latency

Ideally, these insights not only include the hardware map-
ping of the computational graph but also precise timing for
each layer. This would allow for the development of accurate

1https://docs.nvidia.com/deeplearning/tensorrt/onnx-graphsurgeon
2https://github.com/daquexian/onnx-simplifier
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latency estimation models and the identification of further
optimizations, such as combining individual layers into com-
posite layers. In this context, Composite layers refer to the
fusion of multiple neural network operations (e.g., Conv2D
+ ReLU + MaxPool) into a single operation executed as one
unit, enhancing processing efficiency and reducing latency.

However, the level of detail available in profiling data can
vary significantly across different hardware platforms. Some
allow for more detailed analysis than others. Additionally,
the generation of per-layer reports can also lead to addi-
tional overhead resulting in inaccurate latencymeasurements.
In cases where direct profiling at this level is not feasible,
alternative methods, like employing GNNs for overall net-
work latency estimation or block-wise estimation [15], have
been explored. However, these approaches do not provide
insights at the layer-level and are limited in their coverage
of the design space, as they cannot account for all possible
blocks and network configurations in the training dataset.
The experiments conducted in this study demonstrate that
simply benchmarking each layer type through single-layer
measurements (profiling NNs consisting of only one layer)
does not yield the required level of measurement accuracy.
This is due to the overhead associated with data transfer at
the start and end of the execution.

While each hardware architecture presents unique com-
plexities, the smart padding method introduced in this work
enables benchmarking across a wide array of current hard-
ware platforms. This technique accounts for the data transfer
overhead during the measurement process, thus isolating the
actual computation time within a DNN with multiple layers.
However, it operates under the assumption that the hardware
platform performs computations on a per-layer basis. This
assumption aligns with the operational characteristics of most
modern hardware architectures, where parallel execution of
layers typically does not yield substantial performance gains.

As an example, when taking a closer look at the block
diagram of anARMEthosNeural ProcessingUnit (NPU) (see
Figure 2) and the attached main components of the NXP
i.MX93 (Main CPU and DDR Memory), we can gain insight
into the underlying cause of this overhead. During the com-
putation of the NN the intermediate feature maps are stored in
a shared buffer, which is tightly coupled to the compute units.
This setup enables fast data transfer and optimal compute effi-
ciency. However, at the start and end of the NN inference, data
must be transferred via the AXI-bus into or from this shared
buffer. Additionally, potential data reordering or similar steps
can further impede the speed of this process.

Considering the benchmarked hardware as a black-box,
without in-depth knowledge of the specific relationships be-
tween the amount of transferred or processed data and the
resulting latency, the developed methodology therefore needs
to be able to account for this overhead. Furthermore, the
implemented confidence metrics should reflect the added es-
timation uncertainty stemming from the black-box approach.

For this work, we build on Accurate Neural Network Ex-
ectution Time Estimation (ANNETTE) [5], an open-source

NPU  

Clock and
power

module

Central
control

Output unit

Weight
decoder

MAC unit

Shared
buffer

DMA
controllerAXI

APB

IRQ

Clock Q-Channel
Power Q-Channel

Main CPU

DDR

FIGURE 2. Blockdiagram of the ARM Ethos NPU [36] and connections to
the main CPU and DDR.

Estimation Tool

Conformal Prediction

Model Generator

Conformal Prediction

Benchmark Tool

DNN
Model

Single Layer Models

Smart Padding Models

Fusion Rule Models

Latency Prediction Quality Estimation

Latency Prediction

Summation

Bootstrapping
Quality Estimation

FIGURE 3. Overview of the Components in ANNETTE. The color-shaded
components are added in this work.

framework for NN latency estimation on embedded hardware
platforms. Figure 3 provides an overview of the modules of
ANNETTE and the components that are added for this work.
The ANNETTE workflow comprises two phases: the char-

acterization phase and the estimation phase. Initially, in the
characterization phase, Benchmark Tool (Fig. 3) executes
the benchmarks on the hardware, by autonomouslymeasuring
the latencies for a set of parametric dummy network models
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TABLE 1. Definitions of Time-Related Symbols

Symbol Definition
t Latency
T Latency Interval

tdata_in / tdata_out Data transfer latency
tcomp Computation latency
LUM Layer Under Measurement
t̂ Predicted Latency
T̂ Predicted Latency Interval
T Measured Latency

and stores the results in a data frame. Subsequently, theModel
Generator utilizes this data to generate prediction models for
the assessed layer types and fusion rules. Predominantly, the
end user interacts with the Estimation Tool, which loads a
DNN model description in ONNX format and predicts the
latency using the previously generated models. This work
relies on the random forest-based estimation models of AN-
NETTE. However, it is possible to apply the same methodol-
ogy to other latency estimation frameworks, such as nn-Meter
or PerfSAGE since they are compatible with the conformal
prediction approach [37].

To facilitate the proposed black-box benchmarking ap-
proach, the set of benchmarks is expandedwith smart padding
models (described in Section III-B). To enable uncertainty
quantification for latency prediction, we apply conformal pre-
diction methods to the random forest regression models (see
Section III-C). This requires modifications to both theModel
Generator and theEstimation Tool to support the conformal
prediction framework. Specifically, the Model Generator is
extended to include support for training the quality estimators
and calculating non-conformity scores. Updates to the Esti-
mation Tool enable the inference of conformal prediction,
including the quality estimators, and the use of bootstrapping
to compute the per-network confidence metrics.

B. BLACK-BOX BENCHMARKING
This section describes the techniques used to achieve per-
layer prediction models for hardware with limited profiling
capabilities. The notation used in this section is outlined in
Table 1.

As mentioned in Section III-A, when measuring individual
layers, there is additional overhead due to data transfer times,
complicating the accurate assessment of execution times.
The measured execution time T of a NN on hardware that
executes layer by layer is determined by the computation time
tcomp,i per layer, as well as the additional data transfer times
tdata_in and tdata_out.

T = tdata_in + tdata_out +
layers∑
i=1

tcomp,i (1)

As a result, when benchmarking single-layer models based
on themeasured latency of the entire model, the estimator will
overestimate the execution time of multi-layer models (see
Section IV). Figure 4 illustrates a model with three layers.
The effects of pipelining result in the overlaps of the compute

and actual data read and data write times (t ′data_in and t
′
data_out)

since the compute unit can start computation without having
all the data available. While in most cases t ′data_in and t

′
data_out

are proportional to the amount of data to be transferred, due to
the irregular pipelining effects, estimating tdata_in and tdata_out
is more complicated and requires a different approach.

Layer 1

Data In

Layer 3

Layer 2

Data Out

tdata_in

tcomp,1

tcomp,2

tcomp,3

tdata_out

t'data_in

t'data_out

FIGURE 4. Relationship between measured, compute and data transfer
times for a DNN with three layers.

At this point, the main challenge lies in disentangling the
data read/write times from the computation latency of the
Layer Under Measurement (LUM) tLUM. At first glance,
this task may seem straightforward; however, the intricate
relationship between layer configuration and the dimensions
of the resulting input and output feature maps requires a smart
approach. To address this issue, we propose a smart padding
strategy to measure the computation latency of the LUM
within a multi-layer model. Figure 5 depicts the models for
the smart padding strategy (Figure 5b,c), alongside a simple
single-layer model (Figure 5a). Our strategy is based on two
key concepts: firstly, to reduce data transfer times (tdata_in and
tdata_out) to a bare minimum, thereby mitigating their impact
on the latency measurements. Secondly, we independently
measure the execution latency of a padding-only model. This
enables the calculation of T LUM by subtracting the times of
the padding-only models (Figure 5b) from the padded layer
model (Figure 5c).
According to Equation 1, the measured latency T a for the

single layer model includes the data transfer times (tdata_in,
tdata_out) and the actual computation time tLUM. The padded
model consists of the LUM padded by an input and output
padding 1×1 2D convolution layer with cin=1 input channels,
for the input padding layer and cout=1 output channels for the
output padding layer. However, to calculate tLUM accurately,
those padding layers also need to be benchmarked separately.
To minimize the error when calculating the latency of the
LUM, we construct those padding-only models by pairing
input and output padding convolution layers with matching
dimensions. Therefore, each measured padding-only model
consists of two convolution layers with the same number
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FIGURE 5. The three models used for benchmarking the different platforms. The Single Layer Model (a) is the simplest way but does not provide accurate
measurements of tLUM. The black-box benchmarking method makes use of padding-only (b) and padded layer models (c) to solve this problem.

Algorithm 1 Smart Padding for Latency Benchmarking
Initialize look-up table for padding-only models
for each required combination of padding-only model do

Construct the padding-only models as in Fig. 5b
Measure total latency Tb,1
Measure total latency Tb,2
Store Tb,1 and Tb,2 in the look-up table

end for
for each LUM to be measured do

Construct a padded layer model as in Fig. 5c
Measure total latency Tc
Load correct Tb,1 and Tb,2 from look-up table
Compute TLUM using the Equation 4

end for

of operations and equal data input and output dimensions.
Equations 2 and 3 describe T b,n and T c.

T b,n = tpadding_in,n + tpadding_out,n (2)

T c = tpadding_in,1 + tLUM + tpadding_out,2 (3)

Padding the LUM with convolutional layers at the input
and output offers two major advantages: Firstly, it reduces
the amount of input data transfer to a minimum since cin
and cout can be set to 1. Consequently, we only need to
determine the latency of the padding layers including the data
transfer times. Secondly, using padding layers allows us to
profile layers with different input and output dimensions (e.g.
convolution layers with stride) compared to other solutions
such as repeating the same layer multiple times.

The algorithm for computing all TLUM is summarized in
Algorithm 1. Firstly, we measure the latency of the padding-
only models with configuration sets characterized by the
height (h), width (w), and channel dimensions (cin and cout).
Thesemeasurements allow the creation of an exhaustive look-
up table that accounts for any combination of input and output
padding dimensions required for the padded layer models.
Secondly, the latencies for the padded layer models are mea-
sured. However, by using Equations 2 and 3 it is neither
possible to determine tLUM nor the distribution between the
input and output padding layers ( tpadding_in,1 and tpadding_out,2).
For layers where the dimensions of the input padding

layer and the output padding layer are not identical, without
per-layer profiling, the exact numbers for tpadding_in,1 and
tpadding_out,2 are not obtainable. However, it is possible to
compute the upper and lower bound of the latency interval
of the LUM with:

tLUM_upper := T c − min
n∈{1,2}

(T b,n)

tLUM_lower := T c − max
n∈{1,2}

(T b,n)

TLUM := [tLUM_lower, tLUM_upper] (4)

Compared to alternative methods, smart padding drasti-
cally reduces the interval width of TLUM. This is due to the
small number of additional operations and minimized data
transfer of the padding layers. For example, when measuring
the single layer model of a 2D convolution layer with a stride
of 1, the time required for data transfer is proportional to
w ·h ·(cin+cout). Here, w and h represent the width and height
of the layer, while cin and cout refer to the number of input and
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FIGURE 6. Computed and measured times for the three models of a 2D
convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 for the
i.MX93

output channels, respectively. The computation time scales
with w · h · cin · cout · kh · kw, where kh and kw are the kernel
height and width. In contrast, when considering the padded
layer model, the data transfer time remains the same for the
input and output padding. However, the computation time
for the entire model is now determined by the computation
time of the LUM and an additional term that accounts for the
computation time padding layers.

tcomp_padded ∝ w · h · cin · cout · kh · kw
+win · hin · cin + wout · hout · cout

(5)

This means that the resulting width of the possible latency
interval is the difference between T b,1 and T b,2. As a result,
there are three major possible outcomes:

1) cin = cout, win = wout, hin = hout:
tLUM_upper = tLUM_lower as a result of T b,1 = T b,2

2) cin ̸= cout, win = wout, hin = hout:
The error margin is dominated by the difference in
computation time of the input and output padding layers

3) cin ̸= cout, win ̸= wout, hin ̸= hout:
The error margin is composed of the difference in
computation time and data transfer time of the input and
output padding layers

As an example, Figures 6 and 7 depict the computed T LUM

for the case 2 (cin ̸= cout, win = wout, hin = hout). We
note that the computed median and error interval of tLUM are
magnitudes smaller than the measured T a for the single layer
model on the NXP i.MX93 development board (i.MX93) and
the NVIDIA Jetson Xavier AGX (Jetson Xavier).

For the final dataset generation, T LUM is computed for
each individual padded model measurement alongside the
calculated interval. Using this method, we can utilize the
smart padding benchmarks for the layer model generation
as described in [4], [5], [8]. In general, the decision to use
2D convolution layers (including a non-linearity) as padding
layers is motivated by two main factors.

Firstly, unlike when padding with slicing or concatenation
operations, it ensures that there is no possibility for the com-
piler to further simplify the computation graph. Secondly, the
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FIGURE 7. Computed and measured times for the three models of a 2D
convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 for the
Jetson Xavier

TABLE 2. Layer Feature Specifications and Sample Sizes

Layer Features

Conv2D + relu h,w, cin, cout, kw, kh,
strideh, stridew, FLOPs, params

DWConv2d + relu h,w, c, kw, kh,
strideh, stridew, FLOPs, params

FC cin, cout,
FLOPs, params

maxpool h,w, c, kw, kh,
strideh, stridew

avgpool h,w, c, kw, kh,
strideh, stridew

add + relu h,w, cin
concat h,w, cin1, cin2

same procedure can be applied to 1D and 3D convolutions
while still achieving a similar reduction in operations and data
transfer. Lastly, based on our understanding, the presented
method of smart padding could be applied to other operators
that meet those specific requirements.
Table 2 contains a list of all used features for the bench-

marked layers. The width and height of the images are limited
to 1024 and the kernel sizes (kh, kw) are limited to 11. The
resulting parameter space is sub-sampled randomly and then
balanced across the FLOPs dimension, to ensure a balanced
dataset. The resulting number of data points is around 1000
per layer type.

C. LATENCY ESTIMATION WITH CONFIDENCE
The primary target of latency estimation frameworks is to
accurately predict the application of optimization strategies
layer execution time of DNNs. However, incorporating con-
fidence metrics into latency prediction frameworks signifi-
cantly improves their interpretability and practical usefulness.
This enhancement not only provides insights into the preci-
sion of the predictions but also informs downstream decision-
making processes by flagging areas of low certainty. The
implementation of confidence metrics should improve the
usability of the predictors for two primary applications:

• Hardware PlatformSelection: Since themodeling pro-
cess does not work with the same accuracy for each
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hardware platform, providing a confidence level helps
in selecting the most appropriate hardware platform.

• Network Architecture Comparison:When comparing
DNNs with different layer types and configurations, it
is important to understand which layers are outside the
distribution of the training datasets and therefore not
correctly predicted by the estimator.

Based on these two major use-cases, the confidence metrics
should demonstrate several key properties at both the layer
and accelerator levels. The confidence metric should:

1) Take into account the method of data acquisition, pro-
viding insights into the reliability of the data, especially
in cases where the black-box measurement method
from Section III-B is deployed.

2) Enable comparison of confidence in estimation at the
levels of per-layer compute efficiency and per-layer
latency.

3) Assess the coverage of the benchmark dataset and
identify configurations of layers that are outside of the
benchmarked design space.

To implement such confidence metrics, we rely on the con-
formal prediction framework which offers various options to
generate statistically valid prediction regions for any under-
lying point predictor [25], [26]. As a result, we implement
three confidence metrics that enable the comparison of DNNs
prediction results and the underlying prediction models, on
layer and network level:

• Confidence Metric Throughput Variance (CMTV)
• Confidence Metric Latency Variance (CMLV)
• Confidence Metric Outliers (CMO)

For these confidence metrics, the concepts of quality estima-
tion for conformal prediction are used to estimate different
systematic uncertainties in the latency prediction models.
Additional confidence metrics could be easily integrated by
following the same principles. In this work, the primary em-
phasis is on the prediction confidence of layer time predictors.
Although the prediction of model optimizations performed
by the optimization toolchain is also crucial in accurately
estimating total network execution times, it is not the central
focus of this study. The motivation behind this decision is
that the correct prediction of fusion rules represents a simpler
challenge than the per-layer latency prediction, due to the
limited amount of possible and useful combinations of layers,
in comparison to the myriad configurations of each layer
type. Nevertheless, the presented concepts have the potential
to be applied to the model optimization predictors in future
work. Furthermore, the following methodology requires that
all occurring layer types within the investigated networks
are benchmarked and modeled with the statistical method of
ANNETTE.

a: Inference
Figure 8 depicts an overview of the confidence estimation
extension for ANNETTE. The network topology is described
by a set of N layers where each layer is described by a feature

Conformal Prediction

Layer 3
Layer 2

Layer 1

s/Operation Regressor
(Random Forest)

Confidence Metric (LV)

Confidence Metric (Outlier)

Confidence Metric (TV)
- Variance Estimator
- Throughput calibrated

- Variance Estimator
- Latency calibrated

- kNN Difficulty Estimator
- Latency calibrated

Bootstrapping

per Layer

per Layer

per Network

L = {l1, l2, l3}

E(t1)
E(t2)
E(t3)

FIGURE 8. Overview of the confidence prediction methodology.

vector x⃗ which is composed of the configuration parameters
describing the layer. Furthermore, x⃗ also includes additional
high-level features such as the number of parameters, number
of input features, etc.:

L = {l1, l2, l3...lN} where li = x⃗i (6)

Based on the measured times for each layer type an individual
random forest regressor is trained. For this work, the target
value is the time per operation top instead of the number
of operations per second. This adaption is required to avoid
potential zero division for broad confidence intervals since
the final computation time of a layer tcomp is now computed
with tcomp = top · numops. Based on the predictions of the
regressors the expected value for the computation time of
the entire network is computed as the sum of the predicted
computation times of all layers:

t̂net =
N∑
i

numops,i · t̂op,i (7)

Consequently, from a probabilistic perspective if PCM(̂ti)
with i ∈ {1, 2, ...,N} are the probability distributions for all
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layers of the network computed by the three different con-
formal interval predictors, the probability distribution for the
total computation time for each interval predictor is computed
by the convolution of the probability distributions. With ∗
as the notation of the convolution operator this results in the
Equation:

PCM(̂tnet) = PCM(̂t1) ∗ PCM(̂t2) ∗ ... ∗ PCM(̂tN ) (8)

To ensure that PCM(̂tnet) is computed correctly in all cases,
we apply bootstrapping. This helps overcome limitations in
the case that only a few data points are used in the calibration
step for the uncertainty quantification.

b: Training
For the training of the conformal regressors this work relies
on the techniques implemented in CREPES [38] a Python
package for generating conformal regressors and predictive
systems. To ensure the robustness of our latency prediction
models, the predictors are specifically trained on the median
of the measured times, focusing on the quantification of the
predictor’s uncertainty rather than variations in latency for the
same network. For each trained regressor CREPES provides
a multitude of methods for the generation of confidence inter-
vals. Firstly, to avoid splitting the training data into calibration
and proper training dataset, we apply out-of-bag calibration.
In contrast to standard non-normalized conformal regressors,
which predict constant confidence intervals for all instances,
normalized conformal regressors produce instance-specific
confidence intervals based on difficulty estimates.

As mentioned in Section II there are several ways to per-
form the difficulty estimate. For CMTV and CMLV, variance-
based difficulty estimation is applied. For CMO, k-nearest
neighbors (k-NN)-based difficulty estimation is used. Addi-
tionally, while the difficulty estimation in CMLV is calibrated
based on the absolute prediction error of the layer latency, for
CMTV it is calibrated based on the absolute prediction error
of the layer efficiency (s/operation). The difficulty estimation
for CMO is solely based on the feature vectors x⃗ of the
calibration data.

The effects of applying the three different normalization
methods are depicted in Figure 9, which shows the 95%
confidence intervals around the predicted value for the mea-
surements performed on the Jetson Xavier from Section III-B
Figure 7.

The confidence interval for CMTV is depicted in Figure 9a.
Since the confidence interval estimation is calibrated via
the absolute error of the time per operation, the resulting
confidence intervals increase with the number of operations.
Hence, this CMTV is more useful when comparing the predic-
tion quality of the compute efficiency rather than the overall
layer execution time.

To address this limitation, we introduce CMLV. For this
measure, the confidence intervals are computed based on
the residuals of the computed layer execution time (see Fig-
ure 9b). It is worth noting that the confidence intervals for this

measure closely align with the error interval extracted earlier,
as shown in Figure 7. As a result, this CMLV is most useful
for comparing the confidence intervals of the overall layer
execution times.
For CMO (Fig. 9c), it can be observed that the width of the

confidence intervals increase towards the boundary values of
cout within the example dataset. This is because the distance to
the k-Nearest Neighbor data points increases for predictions
in those regions. This indicates a sparse local coverage by
the benchmark data, which may compromise the prediction
accuracy. Thus, CMO serves as a tool to pinpoint predictions
for layers with feature vectors that are not well covered by the
training dataset. For feature vectors far beyond the dataset’s
scope, the resulting confidence intervals might extend to
negative values. However, as it is unrealistic for a layer to be
computed in negative time, such wide confidence intervals
should rather be viewed as indicators of underrepresented
areas in the dataset than as precise latency ranges.

IV. RESULTS
For the evaluation of the methodology presented in Sec-
tion III we conduct a series of experiments. First, we compare
the smart padding (see Section III-B) benchmarking method
with padded models to simple single-layer benchmarking
in terms of overall prediction quality. Secondly, to evaluate
the confidence prediction method, we perform a series of
experiments to determine if the desired properties listed in
Section III-C are met. The experiments include the results
for three different hardware platforms: the NVIDIA Jetson
Xavier AGX, NXP i.MX 93, and NXP i.MX8M+ develop-
ment board (i.MX8M+). The Jetson Xavier was operated at
maximum power setting with TensorRT as the inference run-
time, using integer 8-bit precision and offering 22 TOPs, not
considering the Deep Learning Accelerator (DLA) cores. The
i.MX93 utilized TensorFlow Lite with 8-bit quantization and
the TensorFlow Lite inference runtime delegate, providing
up to 1 TOPS using the ARM Ethos U65 microNPU. The
i.MX8M+ employed the VeriSilicon VIP9000 NPU, deliver-
ing up to 2.3 TOPS also using the TensorFlow Lite inference
runtime.

A. BLACK-BOX BENCHMARKING
The goal of the following experiments is to compare the qual-
ity of the collected smart padding benchmark data with the
single-layer benchmark data and assess how well they serve
as ground-truth data for prediction models. For the presented
results, we generate ANNETTE prediction models using both
the single-layer and smart padding methods. These generated
predictionmodels are then compared in terms of total network
latency against the measured network latencies. Additionally,
we compare the results to the predictions provided by the
ARMVela compiler 3 for the Ethos U65 NPU on the i.MX93.
Table 3 shows the prediction accuracy for a set of state-of-

the-art DNNs for the i.MX93. In the case of the i.MX93, the

3https://pypi.org/project/ethos-u-vela
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FIGURE 9. Overview of predicted Confidence Intervals for 2D convolution layer with cin = 64, cout ∈ [1, 256], h = 64, w = 64 on the Jetson Xavier: (a)
Confidence s/Operations Normalized, (b) Confidence Normalized with respect to time, (c) Confidence with k-NN difficulty estimation

Network Measured Vela Single Smart
[ms] Compiler Layer Padding

YOLOv5s 103.6 +30.5% +292.5% -9.5%
YOLOv5m 213.0 +21.1% +260.8% -3.6%
YOLOv5l 383.1 +22.2% +233.2% -0.8%
YOLOv8n 67.6 +104.1% +210.6% -3.9%
YOLOv8s 138.9 +83.0% +192.4% -5.1%
YOLOv8m 294.8 +64.6% +172.5% -1.3%
YOLOv8l 486.0 +77.4% +200.6% +5.8%
YOLOv8x 763.8 +56.1% +173.6% +0.5%
MobilenetV1 4.97 +78.8% +759.6% +24.6%
InceptionV4 66.4 +40.5% +492.4% -1.5%
Avg. error 57.8% 298.8% 5.7%

TABLE 3. Percentage prediction errors for the ANNETTE models for the
i.MX93 in comparison to the Vela compiler estimates

Network Measured Per-Layer Single Smart
[ms] Profiling Layer Padding

YOLOv5s 4.6 +0.1% +55.3% -2.1%
YOLOv5m 9.4 +0.0% +65.9% -4.8%
YOLOv5l 14.2 +12.1% +79.1% -7.4%
YOLOv8n 5.5 -21.9% +17.9% -18.3%
YOLOv8s 7.29 -2.5% +53.1% -3.1%
YOLOv8m 13.5 -3.6% +64.3% -6.5%
YOLOv8l 19 +9.9% +80.5% +4.2%
YOLOv8x 28.9 -1.6% +53.9% -9.7%
MobilenetV1 0.45 -17.5% +59.3% -6.1%
InceptionV4 4.82 -14.4% +116.2% +6.0%
Avg. abs. error 8.4% 64.6% 6.9%

TABLE 4. Percentage prediction errors for the ANNETTE models for the
Jetson Xavier in comparison to the ANNETTE model based on the
per-layer profiling

smart padding-based ANNETTE prediction demonstrates su-
perior performance compared to the single-layer ANNETTE
prediction and the Vela estimates, achieving higher predic-
tion accuracy across all networks. The average prediction
errors for the smart padding-based ANNETTE prediction,

Network Measured Single Smart
[ms] Layer Padding

YOLOv5s 87.3 +96.7% -6.6%
YOLOv5m 165.3 +88.4% -5.7%
YOLOv5l 260.1 +84.8% -3.2%
YOLOv8n 54.4 +56.2% -2.5%
YOLOv8s 100.9 +43.7% -2.5%
YOLOv8m 186.4 +37.1% -6.2%
YOLOv8l 286.1 +36.3% -4.7%
YOLOv8x 363.0 +36.6% -7.3%
MobilenetV1 3.69 +305.2% +2.4%
InceptionV4 63.2 +110.8% -51.7%
Avg. abs. error 89.6% 9.3%

TABLE 5. Percentage prediction errors for the ANNETTE models for the
i.MX8M+

single layer-based ANNETTE prediction, and Vela estimates
are 5.7%, 298.8%, and 57.8% respectively. Further in-depth
analysis revealed that benchmarking individual layers on the
i.MX93 results in additional time overhead due to an extra
quantization step. This leads to a more substantial improve-
ment than expected, thanks to the smart padding method.
Likewise, for the smart padding-based and single layer-based
ANNETTE prediction, the average percentage errors are
6.9% and 64.6% for the Jetson Xavier, and 9.2% and 89.6%
for the i.MX8M+. The detailed results for the Jetson Xavier
and i.MX8M+ are shown in Tables 4 and 5, respectively.
Notably, only in 3 instances, the smart padding-based

ANNETTE estimation errors are larger than 10%. These
errors can be explained by the limited dataset used for this
work, which does not cover a stride different than 1 and
asymmetric convolution kernels. These limitations result in
not optimal prediction results for InceptionV4, MobilenetV1,
and YOLOv8n but also allow us to evaluate the confidence
metrics.
To compare the accuracy of the smart padding strategywith
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FIGURE 10. Average normalized 90% confidence intervals for CMTV on the
all tested networks

per-layer profiling, we utilized the built-in per-layer profiling
from the Nvidia benchmarking script for the Jetson Xavier.
The Pearson correlation coefficient between the Nvidia per-
layer profiling and the computed mean value of TLUM was
found to be 0.975. The ANNETTE predictions based on per-
layer profiling data for the Jetson Xavier showed similar
accuracy to those from the smart padding-based ANNETTE
models. Therefore, we conclude that smart padding bench-
marking provides profiling accuracy comparable to per-layer
benchmarking, while significantly reducing implementation
efforts. The overhead associated with the smart padding
benchmarking strategy is limited to measuring 854 padding-
only models.

B. CONFIDENCE METRICS
For the evaluation of the confidence metrics, we display the
results on model, network, and layer levels. Firstly, since
CMTV is throughput calibrated, it mostly serves to compare
the normalized per-layer confidence interval size for different
models. This can, for example, be used to compare the overall
confidence of the previously computed models.

a: Model-Level Comparison
Figure 10 displays the average normalized 90% confidence
interval size for the generated models for all tested networks.
To evaluate the influence of the smart padding method on the
generated latency predictionmodels, we also generate models
based on the mean value without including the previously
computed intervals (see Section III-B).

As outlined in Section III-B, the CMTV, which is used
for this comparison, is calibrated with regard to the layer
throughput. As a result, this metric provides a measure for
comparing the confidence for the compute efficiency pre-
dictions across the tested hardware platforms and all tested
layers. As expected, including the smart padding intervals
in the calibration of the confidence metrics leads to larger
confidence intervals. Notably, the increase of the confidence
interval widths differs for the different hardware platforms.
We conclude that CMTV can be used to determine which
hardware platforms would profit the most from implementing
per-layer profiling and for which hardware platforms, the
smart padding method is sufficient. Furthermore, CMTV can
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FIGURE 11. CMLV for the tested networks.
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FIGURE 12. CMO for the tested networks.

guide engineers in situations where a platformmay show con-
sistently high throughput variance across different network
layers. By using CMTV, engineers can prioritize hardware that
demonstrates lower throughput variance, suggesting more
stable performance across diverse workloads.

b: Network-Level Comparison
For the network-level comparison, the 90% confidence in-
tervals of CMLV and CMO are displayed for all networks in
Figure 11 and 12 respectively. As mentioned in Section IV-A,
these confidence metrics provide a deeper understanding of
the predictions performed for each individual network. It
is noticeable that the confidence intervals for MobilenetV1
and InceptionV4 are particularly large, which aligns with the
occurrence of inaccurate predictions in certain cases. A large
confidence interval for CMLV indicates sub-optimal predic-
tion accuracy due to high variances in the dataset within the
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prediction region. To address this, engineers can use CMLV

as an indicator to refine the training datasets by incorporating
more diverse network configurations that mirror the opera-
tional settings. This can help in reducing the confidence in-
tervals and thus improving the accuracy of latency predictions
Conversely, a large confidence interval for CMO suggests
inadequate coverage of one or more layers in the collected
dataset, potentially leading to inaccurate prediction results.
In this case, we can go one step further and analyze the
prediction results on a layer level.

c: Layer-Level Comparison
CMLV and CMO provide insights into the root causes of
potentially inaccurate prediction on a layer level. Figure 13
displays the confidence interval widths for the latency predic-
tions of YOLOv8n on the Jetson Xavier. The layers with large
confidence interval widths almost exclusively have a stride of
2which is not coveredwell in the example benchmark dataset.
This can be detected by the large confidence interval widths
of the CMO for those specific layers.

On the other hand, the CMLV interval widths for hint layers
1 and 4 at prediction regions with high variance of measured
latencies. However, compared with the per-network CMLV

and CMO, we see that the prediction confidence for Incep-
tionV4 for the Jetson Xavier could be improved by extending
the dataset so that the required layer configurations are well
covered.

For example, in a hardware-aware NAS process, the CMO

can prevent the NAS from settling on a seemingly opti-
mal architecture that performs poorly in untested conditions.
Meanwhile, CMTV and CMLV ensure the chosen architecture
consistently meets performance expectations across a range
of architecture variations, thereby avoiding costly misestima-
tions of network efficiency

V. CONCLUSION
This study introduces a novel approach for benchmarking
DNN accelerators that eliminates the need for per-layer pro-
filing for existing latency estimation frameworks. As a re-
sult, the setup for benchmarking new hardware is simplified,
and the potential profiling overhead can be eliminated. The
experiments underscore the method’s effectiveness across
three distinct hardware platforms (Jetson Xavier, i.MX8M+
and i.MX93), improving the latency prediction accuracy by
a large margin in comparison to single-layer benchmarking
and outperforming the latency prediction of the ARM Vela
compiler. Furthermore, this study integrates three confidence
metrics to improve the usability and interpretability of latency
prediction frameworks.

From the perspective of developers, the introduction of
smart padding not only decreases the implementation effort
when benchmarking new hardware platforms but also allows
benchmarking without profiling overhead. Furthermore, the
adoption of our confidence framework has already yielded
significant insights into the prediction models for certain
hardware platforms. With the guidance of the confidence
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FIGURE 13. YOLOv8n per-layer confidence interval widths of CMLV and
CMO for predictions for the Jetson Xavier

metrics, we were able to precisely identify and correct inac-
curacies in layer-specific predictions.
For end-users, the introduced confidence metrics offer a

more informed basis for selecting hardware and network
models for DNN deployment.
Future research could further refine the smart padding

method by exploring its application across diverse network
layers and other domains like time series and 3D modeling.
Expanding the use of conformal prediction methods to in-
clude GNN based latency prediction methods and developing
automated benchmark point selection based on confidence
levels are also promising directions.
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