
Buffer Minimization of Real-Time Streaming Applications
Scheduling on Hybrid CPU/FPGA Architectures

Jun Zhu, Ingo Sander, Axel Jantsch
Royal Institute of Technology, Stockholm, Sweden

{junz, ingo, axel}@kth.se

Abstract

We address the problem of real-time streaming appli-
cations scheduling on hybrid CPU/FPGA architectures.
The main contribution is a two-step approach to min-
imize the buffer requirement for streaming applications
with throughput guarantees. A novel declarative way of
constraint based scheduling for real-time hybrid SW/HW
systems is proposed, while the application throughput is
guaranteed by periodic phases in execution. We use a
voice-band modem application to exemplify the schedul-
ing capabilities of our method. The experimental results
show the advantages of our techniques in both less buffer
requirement and higher throughput guarantees compared
to the traditional PAPS method.

I. Introduction
The current trend toward systems-on-chip (SoCs) con-

sisting of several modules of processor, custom cir-
cuit and memory (e.g., the hybrid CPU/FPGA architec-
ture [1]) makes the global analysis of heterogeneous soft-
ware/hardware (SW/HW) systems essential. Meanwhile,
the real-time streaming applications on such platforms
always have stringent demands on non-functional proper-
ties (e.g., timing, design cost, energy dissipation), besides
functional correctness. To capture all the design concerns
globally, while making optimal design decisions at an early
system level, is still a big challenge.

Synchronous data flow (SDF) has been widely used
to model and analyze streaming applications on single-
/multi-processors [2], [3]. An example of such a model
is illustrated in the upper part of Figure 1, which is
used as a tutorial example in this paper. Nodes denote
the computation processes. Edges associated with FIFOs
denote the communication channels with finite storage,
which decouples the input and output data streams of each
communication channel. For instance, FIFO i,j decouples
the input data stream s1 from the output data stream s2 of

mapping mapping

Architecture model

Application model

FPGA

CPU + RTOS

s3s2 s4s1
pi pj pk

ρk

chj,kchi,j

mi,jni,j mj,knj,k
FIFO i,j FIFOj,k

M
em

or
y

Fig. 1: An example application mapped onto the hybrid
CPU/FPGA architecture.

the communication channel chi,j between process pi and
pj . Processes read tokens from the input-side FIFOs, and
emit the result data tokens to the output-side FIFOs at the
end of the computation. The input/output token numbers
are fixed at each execution [2] and denoted as symbols at
each side of the communication channels (e.g., process pj
with mi,j input tokens and nj,k output tokens).

The application model is mapped onto the hybrid
CPU/FPGA architecture below. Process pi and pk are
implemented as SW and scheduled sequentially by the
real-time operating system (RTOS) on the same CPU, and
process pj is implemented as HW custom circuit. The
computation modules (both SW and HW) communicate
via tightly coupled memory for data operations. Needless
to mention, the general architecture platform considered
may have multiple CPU or custom circuit modules.

Due to the static nature of SDF models, we can af-
ford to use sophisticated algorithms to compute optimized
schedules at compile time. In this paper, we propose
our constraint based scheduling methodology for real-time
streaming applications with minimal buffer requirements
on such a hybrid SW/HW platform.

A. Related Work
Lee and Messerschmitt [2] present techniques to con-

struct periodic admissible sequential schedules (PASS) on
single-processors or periodic admissible parallel schedules
(PAPS) on multi-processors. Later, Bhattacharyya et al. [4]

have taken buffer minimization into consideration using
heuristics in PASS (but not PAPS) construction.

Govindarajan et al. [5] address the parallel schedul-
ing techniques for SDF applications to obtain maximal
throughput with minimized buffer requirement without
computation resource constraints, i.e., with unlimited num-
ber of processors. Furthermore, Stuijk et al. investigate the
buffer minimization of applications with different specified
throughput requirements with the same assumption on
computation resources [6]. In our previous work, buffer
dimensioning has been addressed on reconfigurable FPGA
HW [7]. Nevertheless, none of these techniques can handle
the global optimization of both sequential SW (RTOS)
and parallel HW scheduling on our hybrid CPU/FPGA
architecture.

In [8], Madsen el at. validate the sanity of several ex-
isting scheduling policies (i.e., rate monotonic and earliest
deadline first) of the multi-processor RTOS on a SystemC
model. However, a systematic way to explore and find out
an optimal schedule according to the required throughput
is still an open issue.

In this paper, we aim to provide such kind of buffer
minimization schedules for real-time SDF streaming appli-
cations on hybrid CPU/FPGA architectures. Different from
all the previous (operational) work mentioned, we focus
on describing the constraint based scheduling problems
(a declarative way), but apply the existing successful
optimization techniques [9] for problem solving.
B. Paper overview

The rest of the paper is organized as follows. Section II
motivates our work and Section III proposes our schedul-
ing work flow. We formalize our problem as constraint
based scheduling in Section IV. Section V shows the
experimental results. Finally, Section VI concludes the
paper.

II. Motivation
Here, we introduce the streaming applications execution

semantics and motivate our work by several schedules with
varying buffer requirements and throughput guarantees.
A. Execution semantics

In this paper, we only consider SDF models which
can run infinitely with bounded buffer and are said to
be consistent [2]. Given the communication channel chi,j
between process pi and pj with the input data rate ni,j
and output data rate mi,j , for consistent SDF models,
pi and pj can run in a repetitive pattern with non-trivial
(non-zero) firing times ri and rj , where ri and rj are the
minimum integer solutions of a set of balance equations
ri ·mi,j = rj · ni,j for all the communication channels.

To quantify the process computation and FIFO storage
capabilities of the application model, a process compu-
tation latency list T contains computation time tC,x to

execute each process px once and a FIFO size list Γ
contains the storage capacity γy,z in data tokens for each
FIFO FIFOy,z . For instance, the example application in
Figure 1 has T = [tC,i, tC,j , tC,k] and Γ = [γi,j , γj,k].

A process is enabled and ready for execution when both
the input-side FIFOs have sufficient data tokens and the
output-side FIFOs have enough vacant space. A process
executes only when it is enabled and allowed by the
scheduling policy. While a process is computing, the data
tokens remain on the input-side FIFOs until the compu-
tation is completed [6]. At the end of each execution,
the output results are available in the output-side FIFOs.
We capture the data stream s as a time indexed set of
events, s = {e0, e1, · · · , en, · · · }. Each event en = (n, vn)
represents the number vn ∈ N0 of data tokens present
during the time slot n.

B. Schedules with varying buffer requirements
Here, the example application is instantiated with com-

putation latency list T = [1, 4, 2] and process input/output
token numbers ni,j = 1, mi,j = 2, nj,k = 3 and mj,k = 1.
Thus, the process firing times vector is < ri, rj , rk >=<
2, 1, 3 > for the example application in Figure 1. We
assume there are some initial tokens in buffers FIFO i,j

and FIFOj,k, which are denoted as B0
i,j = 2 and B0

j,k = 0
respectively.

Using the application to architecture mapping as shown
in Figure 1, three valid periodic schedules are illustrated
in Figure 2. Figure 2a is the PAPS [2] with unroll factor1

J = 1. The process and FIFO status are listed in separated
rows. The time evolution is depicted in corresponding
columns and advances 1 per column. At each time tag n,
a process px in executing (shadowed) state has a number
to denote the remaining execution time slots, a stalling
(non-shadowed) process status is denoted as 0, and a
buffer FIFOy status is denoted as the occupied storage
space (existing tokens plus space reservation) in tokens.
At time tag 0, the process status list is T ′0 = [1, 4, 0],
in which pi and pj are executing with 1 and 4 time
slots left respectively and pk is stalled; in the meantime
the FIFO status list is Γ′0 = [3, 3], with 3 tokens space
used each FIFO. As the schedule advances to time tag
10, the application encounters the same status lists as
at time tag 0 (i.e., T ′10 = T ′0 and Γ′10 = Γ′0), and
enters a periodic phase. The periodic phase has length
Lperiod = 10, in which the sink process pk always runs 3
times. Consequently, the schedule guarantees an average
output data rate ρk = 3·mj,k

Lperiod
= 3

10 at process pj and
requires buffer storage Γ = [4, 3], which are the maximum
buffer usages at each FIFO.

However, a periodic parallel schedule (not the PAPS
in in [2]) with minimized buffer (i.e., Γ = [2, 4]), which

1The iteration number of the minimal repetitive pattern (Section II-A).

0 0

00

3 4 4 2 2 2 2 2 2 3 4 4 44 2

3 3 3 3 3 2 2 1 1 3 3 3 33 3

1 2 3 4 5 6 87 9 10111213140
pi

FIFOj,k

FIFOi,j

p
k

p
j

0 0

time tag

1234 1234

2 1 2 1 2 1 2

1 1 1 1

with Lperiod = 10
periodic phase

(a) PAPS with ρk = 3
10

2 2 2 1 2 2 2 2 2 2 2 2 22 1

3 3 3 3 3 3 3 2 2 4 4 3 33 3

1 2 3 4 5 6 87 9 10111213140
pi

FIFOj,k

FIFOi,j

p
k

p
j

0

0 0

0 0

0

time tag

1234 1234

1 1

2 1 2 12 1

1

with Lperiod = 10
periodic phase

(b) A minimal buffer schedule with ρk = 3
10

2 2 2 2 2 2 2 2 2 3 22 22 3

3 3 3 3 3 3 2 2 4 4 3 3 33 3

1 2 3 4 5 6 87 9 10111213140
pi

FIFOj,k

FIFOi,j

p
k

p
j

0 0 0

00

0 0

time tag

1234 1234

2 1 2 1 2 1 2

1 1 1 1

with Lperiod = 9
periodic phase

(c) A minimal buffer schedule with ρk = 3
9Fig. 2: Comparison of different schedules of an instance of the example application, in which pi and pk are mapped onto

the same processor and can only be scheduled sequentially.

extended τ

YES

Output Γmin

Constraint based
scheduling

Periodic phase
checking

feasible?
Is

periodic?
Is

revise
Application and

specifications
architecture

NO YES NO

τ = τ + ∆τ

Fig. 3: Scheduling work flow with minimal buffer require-
ment and guaranteed throughput.

guarantees the same throughput ρk = 3
10 , does exist

in Figure 2b. Furthermore, a schedule with 10% higher
throughput guarantee ρk = 3

9 can still be achieved in
Figure 2c, which has the same buffer cost Γ = [3, 4].

Although the application throughput can be improved
by increasing J in PAPS, the implementation cost of
the periodic phase and buffer requirement both increase
accordingly (see the case study in Section V), and a
systematic way is still lacking [2]. In this paper, we intend
to provide a systematic way to construct optimal schedules
with minimal buffer requirement and higher throughput
guarantees.

III. Work flow
In Figure 3, we propose a two-step scheduling work

flow. The work flow inputs (in shadowed box) are the ap-
plication and architecture specifications, e.g., the applica-
tion model, specified application and architecture mapping,
required throughput, a time period τ considered. The work
flow can be described as follows.
Step 1: When the constraint based scheduling problem

is feasible, a pending schedule with minimized buffer
is got; otherwise, the specifications need to be revised
(which is out of the scope of this paper).

Step 2: The throughput guarantees are checked for the
pending schedule (whether a periodic phase could be
found). If the throughput guarantee or maximum execu-

tion time is met, it stops and outputs the valid schedule
with minimal buffer sizes Γmin ; otherwise, it increases
the considered τ with ∆τ and goes back to Step 1.

Apparently, only when the throughput guarantees are met
in Step 2, the output results are valid. The initial values
of τ and ∆τ are application dependent and are given
empirically.

IV. Streaming application scheduling
In this section, we first illustrate our event model

for streaming data flows. Subsequently, we formalize our
constraint based scheduling problems.

A. Event model

We construct our event model as cumulative func-
tions [10], [11] on streaming data flows. Each time slot
equals to an abstract clock cycle.

Without loss of generality, we adopt the example appli-
cation in Figure 1, and characterize the input/output work-
loads of each communication channel and the processing
capabilities of the output side processes as follows.

Definition 1. (Arrival function) The arrival function
Ri,j(t) of the communication channel chi,j is defined as
the sum of tokens arriving from the input data stream
during the time interval [0, t], t ∈ N0.

For instance, Ri,j(t) =
∫ t
0
s1 in Figure 1.

Definition 2. (Output function) The output function R′i,j(t)
from process pi to the communication channel chi,j equals
to the arrival function Ri,j(t) of chi,j .

For instance, R′i,j(t) =
∫ t
0
s1 = Ri,j(t) in Figure 1.

Definition 3. (Service function) The service function
Ci,j(t) of the communication channel chi,j by process pj
is defined as the sum of tokens served and removed from
the buffer FIFO i,j via the data stream by pj during the
time interval [0, t], t ∈ N0.

For instance, Ci,j(t) =
∫ t
0
s2 in Figure 1, which forms

the basis for compositional analysis.

B. Buffer properties

While a process is executing, the extra buffer space
reservation in the scheduling (see Section II-A) can be
modelled with the demand function:

Definition 4. (Demand function) The demand function
Di,j(t) of the communication channel chi,j is defined as
the sum of R′i,j(t) and the demanding space di,j(t) at
time tag t on FIFO i,j from the input side process pi, i.e.,
Di,j(t) = R′i,j(t) + di,j(t), di,j(t) ∈ {0, ni,j}.

For instance,

Di,j(t) =

{ ∫ t
0
s1 + ni,j if pi is executing∫ t

0
s1 if pi is stalling

in Figure 1.
A graphical interpretation of the definitions of Ri,j(t),

Ci,j(t) and Di,j(t) is illustrated in Figure 4, which is con-
sistent with the schedule in Figure 2a. R′i,j(t) is ignored
for its equivalence to Ri,j(t) (see Definition 2).

 0

 1

 2

 0 1 2 3 4 5 6

to
k
e

n
s

time tag

B′
i,j(t)−B0

i,j

Bi,j(t)−B0
i,j

Ci,j(t)

Ri,j(t)

Di,j(t)

Fig. 4: Cumulative functions and buffer properties for the
PAPS in Figure 2a.

Consequently, we derive the following properties.

Property 1. (Backlog) The backlog Bi,j(t) (tokens arrived
but not yet served) in buffer FIFO i,j is the vertical
distance between Ri,j(t) and Ci,j(t) plus an offset of the
initial buffer tokens B0

i,j at time tag 0.

Bi,j(t) = Ri,j(t)− Ci,j(t) +B0
i,j , ∀t ∈ N0 (1)

Property 2. (Buffer usage) In scheduling, the buffer space
in use B′i,j(t) for FIFO i,j (equals to Bi,j(t) + di,j(t)) is
the vertical distance between Di,j(t) and Ci,j(t) plus an
offset of the initial buffer tokens B0

i,j at time tag 0.

B′i,j(t) = Di,j(t)− Ci,j(t) +B0
i,j , ∀t ∈ N0 (2)

Based on the definitions and properties above, a full
list of constraints to formalize the execution semantics of
streaming applications are given in Appendix.

C. Resource limits and throughput requisites

Instead of describing the actual algorithms (the how)
used to find the solution, our declarative method formal-

izes the properties (the what) of the desired solution as
constraints.

Constraint 1. (Sequential execution) In a set of processes
Pa mapped onto the same processor CPUa, at any time at
most one can execute (sequentially) according to:∑

pj∈Pa

Wj(t) ∈ {0, 1}. ∀t ∈ N0 (3)

where Wj(t) = max (Lj(t), Lj(t+ ∆t)), ∀∆t ∈ [1, tC,j]

Lj(t+ 1) =
Ci,j(t+ 1)− Ci,j(t)

mi,j
∈ {0, 1}

in which Wj(t) denotes the computing or stalling 0-
1 status of process pj (different from the fine-grained
process status exemplified in Figure 2), Lj(t+ 1) denotes
the incremental properties (step) of the service function
Ci,j (t + 1).

Constraint 2. (Application throughput) After some start-
up time period τ0 (τ0 > 0) with no stable output tokens,
a specified throughput ρk should be met to sustain the
required output rate at the application sink process pk.

Ck(τ0 + c ·∆t) > ρk · c ·∆t, ∀c ∈ N0, ∃∆t ∈ N (4)

Scheduling objective. The scheduling objective is to find
the minimal total buffer sizes as follows.

min :
∑

∀FIFOy,z∈F

γy,z (5)

in which F is the set of the buffers being considered and
γy,z is the size of buffer FIFOy,z , subject to Constraint A-
1 - A-5 (in Appendix) and Constraint 1 - 2.

D. Application throughput guarantees
Proposition 1. (Throughput guarantees) For a consistent
SDF streaming application (see Section I), a periodic
phase (see Section II-B) in its schedule always exists.
The required application throughput is guaranteed by the
output data rate during this period.

Proof: A consistent SDF streaming application could
run infinitely. However, the application scheduling status
(process and FIFO status, see Section II-B) space is always
finite. Thus, some scheduling status will be re-visited in
a non-terminating schedule. As we consider determinis-
tic scheduling, the application schedule enters a periodic
phase when a repeated scheduling status is met. The output
data rate during this period could sustain infinitely, which
meets the required application throughput guarantees.

E. Extension to MIMO and cyclic model
The extension of our methodology to multiple input and

multiple output (MIMO) models, as shown in Figure 52,

2For clarity in the graph, the FIFO modules on communication
channels are omitted. Instead, a number of dots are used to denote the
initial buffer token numbers.

is intuitive. Without loss of generality, we use the MIMO
process pj in Figure 5 for illustration.

pj

mj,l

nl,j

pl

nj,l
chj,l

ch l,jni,j
ml,j

mi,j

pk

nj,k
mj,k

chj,k

chi,jpi

Fig. 5: A cyclic MIMO application model.

According to Definition 1 and 3, each input channel
has their individual arrival and service functions (i.e.,
Ri,j(t), Rl,j(t), Cj,k(t), and Cj,l(t)), which have the linear
relations (static firing rates) between them as follows.

Constraint 3. (MI linear relation)

Ri,j(t)
ni,j

=
Rj,l(t)
nj,l

,
Cj,k(t)
mj,k

=
Cj,l(t)
mj,l

, ∀t ∈ N0 (6)

Similarly, the output channels have the linear relations
on the output and demand functions as follows.

Constraint 4. (MO linear relation)

R′j,k(t)
nj,k

=
R′j,l(t)
nj,l

,
Dj,k(t)
nj,k

=
Dj,l(t)
nj,l

, ∀t ∈ N0 (7)

A MIMO model can be analyzed by traversing it
with a set of paths, where each path is a sequence of
communication channels such that the output channels
of a process always succeed its input channels. A set
of paths are complete only when all the communication
channels are covered, e.g., the paths (“chi,j → chj,k” and
“chj,l → ch l,j”) in dashed lines in Figure 5. Based on the
complete set of paths, our scheduling methodology fits the
MIMO application models well.

Furthermore, for directed cyclic graphs as shown in
Figure 5, the data tokens required for loop initialization
can be explicitly modeled as the initial token offsets in
Equation 1 and 2 directly.

V. Case study

CPU1 CPU1 CPU2

CPU2

31 2 1 2 3 2 2

2

1 1

2

1

1

1

2

2

1

1122

t2 = 2 t3 = 2 t4 = 2

t5 = 4t6 = 3t7 = 2

t8 = 4

t0 = 1 t1 = 4

p0 p1 p2

p8

p3 p4

p6 p5p7

Fig. 6: The modem application partitioned for a multipro-
cessor CPU/FPGA architecture.

To evaluate the potential of our methodology, we use it
on an application of voice-band data modem [3], which

TABLE I: Comparison of scheduling methods.
PAPS CMBS

J throughput buffer timea throughput buffer timea

#1 1 4.8e-2 26 13 4.8e-2 23 270
#2 2 6.1e-2 29 16 6.3e-2 23 230
#3 3 6.7e-2 31 21 6.7e-2 23 240
#4 6 7.4e-2 32 26 7.4e-2 23 195
#5 8 7.6e-2 35 34 7.7e-2 23 190
#6 22 8.1e-2 49 61 8.3e-2 24 190
#7 100 8.3e-2 127 4202 9.1e-2 24 170

a It is the execution time (ms) in solutions finding.

has 9 processes and 11 FIFOs. The application model
with customized specification parameters is illustrated in
Figure 6.

We start from a manual mapping from the application
to an multi-processor CPU/FPGA architecture. The labeled
processes in the application model are partitioned and
mapped onto multi-processors, i.e., p0 and p2 mapped
onto CPU 1, and p3 and p5 mapped onto CPU 2. The
rest processes are mapped onto parallel executing custom
hardware.

We implement our constraint based minimal buffer
scheduling (CMBS) methodology with the public domain
constraint solving toolkit Gecode [9], which is a library
written in C++. We compare our CMBS with the reference
scheduling method, a trivially customized PAPS 3. To
make this comparison more reasonable, we implement
the reference PAPS method in C++ as well and run
both methods on HP xw4600 workstation to solve the
scheduling problems for the modem application.

The experimental results are shown in Table I, which
compares and quantifies the buffer requirement and the
experimental execution time achieved by the schedules
using PAPS and CMBS.

For PAPS, the application throughput may be improved
by increasing the unroll factor J , i.e., the cases from #1
to #6. Correspondingly, we report the results of CMBS
with some competitive throughput (no less than in PAPS).

However, the implementation cost of the periodic sched-
ule increases with higher J and it is still in lack of a
systematic way to find a finite J [2] yielding an optimal
schedule. We simply increase J by 1 each time until the
throughput improvement is negligible (i.e., less than 1e-4
to the throughput at J = 1), which is the ‘optimal’ case
#7 of PAPS with J = 100. In case #7 of CMBS, we
report the results achieved by a schedule with the maximal
throughput guarantees.

From our experimental results, we summarize the ob-
servations made as follows.
• Our CMBS always requires less buffer storage space

upon the equivalent application throughput guarantees.

3Instead of each process being scheduled onto any of the computation
resource, a fixed mapping is adopted, i.e., a process can only be scheduled
onto a particular CPU or custom circuit. This customization makes PAPS
(proposed in [2]) fit our hybrid CPU/FPGA platform.

• In some case (when required throughput is high), our
CMBS can achieve higher throughput guarantees than
PAPS with much less buffer requirement. For instance,
in case #7 CMBS requires 20% of buffer storage
demanded by PAPS but gets 8% higher throughput
guarantees.
• Our CMBS is more flexible to meet the vary required

throughput guarantees. However, the throughput guar-
antees of PAPS are determined by the chosen J , which
has quite limited options.
• The execution time in our CBMB methods is not

sensitive to different throughput guarantees. In fact,
when the throughput requirement is higher, the timing
of constraint based analysis is shorter and might lead
to less execution time. On the contrary, the execution
time of PAPS increases fast when J and throughput are
relatively higher.
• PAPS is faster in execution time when J is relatively

small. However, our CMBS surpasses PAPS upon higher
throughput requirement, e.g., in case #7.

VI. Conclusion
We have studied the problem of constructing schedules

for real-time streaming applications with minimal buffer
requirement on hybrid CPU/FPGA architectures. The prob-
lem has been formalized declaratively as constraint base
scheduling, and can be effectively solved by constraint
solvers. The experimental results show that our methodol-
ogy performs significantly better than the traditional PAPS
method in terms of buffer requirement. It is also flexible
in the sense that it can be used to construct schedules to
guarantee the required (feasible) throughput.

In the future, we plan to further reduce the storage
space requirement by memory sharing between different
buffer modules. We also plan to verify our methodology
with an implementation of a multi-processor system using
industrial RTOS on FPGA platforms.

APPENDIX
List of constraints on execution semantics

Using the application model in Figure 1 as example,
we formalize the constraints below, in which ∀t ∈ N0. We
assume the designer will specify some initial values (e.g.,
Ci,j(0) = 0 in this paper), which are thus not constrained
(considered).

Constraint A-1. (Token ratios) For process pj , the R′j,k(t)
and Ci,j(t) follow the static input/output tokens ratio.

R′j,k(t) ·mi,j = Ci,j(t) · nj,k (A-1)

Constraint A-2. (Computation latency) The incoming
tokens in buffer FIFO i,j takes at least tC,j slots to be

served by process pj .

Ri,j(t)− Ci,j(t+ ∆t) > 0, ∀∆t ∈ [1, tC,j] (A-2)

Constraint A-3. (Space reservation) In the communica-
tion channel chj,k, the demand function of process pj
reserves vacant space tC ,j slots in advance.

Dj,k(t) = Rj,k(t+ tC,j) (A-3)

Constraint A-4. (Buffer size) The buffer size γi,j of buffer
FIFO i,j meets the maximum buffer space requirement.

γi,j > B′i,j(t) (A-4)

Constraint A-5. (Latency and tokens) Process pj has
computation latency tC,j and input/output data tokens mi,j

and nj,k.

Ci,j(t+ tC,j)− Ci,j(t) = mi,j ·Kj(t+ tC,j) (A-5)
Di,j(t+ tC,j)−Di,j(t) = nj,k ·Kj(t+ tC,j) (A-6)

where Kj(t+ tC,j) ∈ {0, 1}

in which Kj(t + tC,j) denotes the incremental properties
of Ci,j(t+ tC,j) and Di,j(t+ tC,j) in a period of tC,j .

Acknowledgments
Thanks to Mikael Lagerkvist for the help on Gecode,

and Dr. Zonghua Gu and anonymous reviewers for helpful
comments to improve the content of the paper.

References
[1] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie,

J. Ortiz, E. Komp, and P. Ashenden, “Programming models for
hybrid FPGA-CPU computational components: A missing link,”
IEEE Micro, vol. 24, no. 4, pp. 42–53, 2004.

[2] E. A. Lee and D. G. Messerschmitt, “Static scheduling of syn-
chronous data flow programs for digital signal processing,” IEEE
Transactions on Computers, vol. C-36, no. 1, pp. 24–35, January
1987.

[3] ——, “Synchronous data flow,” Proceedings of the IEEE, vol. 75,
no. 9, pp. 1235–1245, September 1987.

[4] P. K. M. Shuvra S. Bhattacharyya and E. A. Lee, Software Synthesis
from Dataflow Graphs. Norwell, MA, USA: Kluwer Academic
Press, 1996.

[5] R. Govindarajan, G. R. Gao, and P. Desai, “Minimizing buffer
requirements under rate-optimal schedule in regular dataflow net-
works,” Journal of VLSI Signal Processing, vol. 31, no. 3, pp. 207–
229, July 2002.

[6] S. Stuijk, M. Geilen, and T. Basten, “Exploring trade-offs in buffer
requirements and throughput constraints for synchronous dataflow
graphs,” in DAC ’06, CA, USA, July 2006, pp. 899–904.

[7] J. Zhu, I. Sander, and A. Jantsch, “Performance analysis of reconfig-
uration in adaptive real-time streaming applications,” in Proceedings
of IEEE workshop on ESTIMedia, Atlanta, USA, October 2008.

[8] J. Madsen, K. Virk, and M. J. Gonzalez, “A SystemC-based abstract
real-time operating system model for multiprocessor system-on-
chip,” in Multiprocessor System-on-Chip. Morgan Kaufmann,
2004.

[9] “Generic Constraint Development Environment (Gecode),” http://
www.gecode.org/.

[10] R. L. Cruz, “Quality of service guarantees in virtual circuit switched
networks,” IEEE Journal on Selected Areas in Communications,
vol. 13, no. 6, pp. 1048–1056, 1995.

[11] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework
for analysing system properties in platform-based embedded system
designs,” in DATE ’03. Washington, DC, USA: IEEE Computer
Society, 2003, pp. 190–195.

