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Abstract—Supporting Distributed Shared Memory (DSM) is es- NoCs. As we know, performance and flexibility are paradoxical.
sential for multi-core Network-on-Chips for the sake of reusing huge Dedicated hardware and software-only solutions are two extremes.
amount of legacy code and easy programmability. We propose a pegicated hardware solutions can achieve high performance, but
microcoded controller as a hardware module in each node to connect . . . X .
the core, the local memory and the network. The controller is any small change in functionality Ieads_to redes_|gn of the en_t|re
programmable where the DSM functions such as virtual-to-physical hardware module and hence the solutions suffice only for lim-
address translation, memory access and synchronization etc. areited, static cases. Software-only solutions require little hardware
realized using microcode. To enable concurrent processing of memory support and main functions are implemented in software. They
requests from the local and remote cores, our controller features two are flexible but may consume significant cycles, thus potentially
mini-processors, one dealing with requests from the local core and the . . . . ' .
other from remote cores. Synthesis results suggest that the controller limiting _the system performance. Microcode gp_p_roac_h is a good
consumes 51k gates for the logic and can run up to 455 MHz in 130 alternative to overcome the performance-flexibility dilemma. Its
nm technology. To evaluate its performance, we use synthetic and concept can be traced back to 1951 when it was first introduced by
application workloads. Results show that, when the system size is\Wilkes [9]. Its crucial feature offers a programmable and flexible
scaled up, the delay overhead incurred by the controller may become solution to accelerate a wide range of applications [10].

less significant when compared with the network delay. In this way, . . . .
the delay efficiency of our DSM solution is close to hardware solutions Along the aforementioned CO”S'de,ra“O”’ we ad(?pt the mi-
on average but still have all the flexibility of software solutions. crocode approach to address DSM issues on multi-core NoCs,
aiming for hardware performance but maintaining the flexibility of
. INTRODUCTION programs. We present a programmable hardware module, named
It's a trend that high-performance single-chip computing aBual Microcoded Controller (DMC)to allow users to implement
chitectures evolves from single-core to multi- and even mangrious functions. Each node hosts a DMC connecting the core,
cores [1][2]. Network-on-Chip (NoC) [3][4][5] is recognized ashe local memory and the network. Each DMC features two min-
the scalable solution to interconnect and organize so many copescessors to be able to concurrently deal with requests from the
and hence has attracted significant attentions over the last lwral core and remote cores via the network. The execution of
years since various buses do not scale well with the system sib& mini-processors is triggered by memory requests in form of
For instance, in 2007, Intel researchers announced their reseamimmand. Basic DSM functions are realized and experimental
about a prototype multi-core NoC architecture containing 80 tilessults shows that, when the system size is scaled up, the overhead
arranged as a 10x8 2D mesh network [6]. Another trend is thaturred by the DMC may become less significant when compared
the rapid development of integrated circuit technology enablegth the network delay. The DMC solution is demonstrated to be
more and more computing resources and storage elements t@ b&ble way and its delay efficiency is close to hardware solutions
integrated on a single chip [7]. The embedded memory contenton average but still have all the flexibility of software solutions.
System-on-Chips (SoCs) increases from 20% ten years ago to 85%he rest of the paper is organized as follows. Section Il
of the chip area today and will continue to increase in the futudéscusses the related work. Section Il describes our target archi-
[8]. Memories are preferably to be distributed for medium arncture: DSM based multi-core NoCs. In section IV, we present
large scale system sizes because centralized memory has alréiaeharchitecture, the operation mechanism and the hardware cost
become the bottleneck of performance, power and cost. of the DMC. Section V realizes the basic DSM functions using
Following the two trends, a key question for such multi-corenicrocode and analyzes the performance. Experimental results
distributed memory architectures is what kind of communicatiomith synthetic and application workloads are reported in section
paradigmshared variableor message passingp support? In our VI. Finally we conclude in section VII.
view, we envision that there is an urgent need to support Dis-
tributed but Shared Memory (DSM) because of the huge amount Il. RELATED WORK
of legacy code and easy programming. To increase productivityThe Alewife [11] machine from MIT addresses the problem
and reliability and to reduce risk, reusing proven legacy code ioaproviding a single addressing space with integrated message
must. From the programmers’ point of view, the shared memapgassing mechanism. This is a dedicated hardware solution, and
programming paradigm provides a single shared address spdmes not support virtual memory.
and transparent communication, since there is no need to worrf-ew previous works used the microcode approach to address
about when to communicate, where data exist and who receitles DSM issues in multiprocessor systems. Similar to our pro-
or sends data, as required by explicit message passing APl. grammable controller, both the Stanford FLASH [12] and the
A multi-core NoC chip integrates a number of resources afdisconsin Typhoon [13] use a programmable co-processor (the
may be used to support many use cases. Its design complek&GIC in the FLASH, the NP in the Typhoon) to support flexible
results in long time-to-market and high cost. This motivates gache coherence policy and communication protocol. However,
to look for a flexible way to address DSM issues on multi-cogoth machines were developed not for on-chip network based
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Fig. 1. a) A 16-node mesh multi-core NoC, b) Processor-Memory node
multi-core systems. The MAGIC only hosts one programmabie
coprocessor handling requests from the processor, the network Fig. 2. Architecture of the Dual Microcoded Controller

and the 1/0. The NP also uses one programmable coprocess@inories are visible to all nodes and organized as a Distributed
to deal with requests from the network and the CPU. If twgpreq Memory (DSM) and they are virtual. The philosophy of

or more requests come concurrently, only one can competeyifs qesign is to speed up frequent private access as well as
be handled while the others have to be delayed, resulting ¢ maintain a single virtual space. For shared memory access,
contention delay. Our DMC hosts two mini-processors to enaligsre requires a virtual-to-physical (V2P) address translation.
two concurrent processing of requests from the processor and g, translation incurs overhead but makes DSM organization

network, eliminating this overhead. Introducing another processpinsparent to application, thus facilitating programming.
is non-trivial because we also need to address the synchronization

due to possible simultaneous access requests to the same region in IV. DUAL MICROCODEDCONTROLLER
the local memory. Furthermore, the MAGIC and the NP organize|n this section, we detail the architecture of the Dual Mi-
memory banks to form a cache-coherent shared memory. Memergcoded Controller, how it operates and its hardware cost.
accesses are handled by the programmable coprocessor to hit .
the right memory banks in local or remote nodes. However, tHis Architectural Design
causes larger processing time, compared with dedicated hardwards shown in Fig. 2, the DMC, which connects to the CPU
solution. It also forces the local processor to spend more tirgere, the Local Memory, and the network, mainly contains six
even on the data only used by itself. In our memory organizatigrarts, namely,Core Interface Control Unit (CICU) Network
the memory is partitioned into a private part and a shared pdrterface Control Unit (NICU) Control Store Mini-processor A
The private memory accesses are fast since they bypass the nihii-processor B andSynchronization SupporteAs their names
processors so as to improve the performance. The SMTp [Biggest, the CICU provides a hardware interface to the local core,
exploits SMT in conjunction with a standard integrated memognd the NICU a hardware interface to the network. The two mini-
controller to enable a coherence protocol thread used to supgwficessors are the central processing engine. Microprogram is
DSM multiprocessors. The protocol programmability is offeretitially stored in the Local Memory, and will be dynamically
by a system thread context rather than an extra programmaioaded into the Control Store on demand during the program ex-
coprocessor. It utilizes the main processor’s resources, while @gution. The Synchronization Supporter coordinates the two mini-
DMC is a synergistic processing module to alleviate the burderocessors to avoid simultaneous accesses to the same memory
of the main processor. address and guarantees atomic read-and-modify operations. Both
the Local Memory and the control store are dual ported: port A
and B, which connect to the mini-processor A and B, respectively.
The functions of each module are detailed as follows:

Fig. 1 a) shows an example of our DSM based multi-core NoC Core Interface Control Unit
architecture. The system is composed of 16 Processor-Memoryrhe CICU connects with the core, the mini-processor A, the
(PM) nodes interconnected via a packet-switched network. TRECU, the Control Store and the Local Memory. Its main functions
network topology is a mesh, which is a most popular No@re: (l) it receives local requests in form of command from the
topology proposed today [15]. As shown in Fig. 1 b), each PMcal core and triggers the operation of the mini-processor A
node contains a processor, for example, a LEON3 [16] showncordingly; (I1) it uploads the microcode from the Local Memory
in the figure, hardware modules connected to the local bus @odhe Control Store through port A; (lll) it receives results from
a local memory. Our proposal is the hardware module, namigg mini-processor A; (IV) it accesses the private memory directly
Dual Microcoded Controller (DMG)connecting the processor, theusing physical addressing if the memory access is private; (V) it
local memory and the network, and serving requests from the losahds results back to the local core.
processor and the remote processors via the network concurrentlyNetwork Interface Control Unit

As can be observed, memories are distributed in each noddhe NICU connects the network, the mini-processor B, the
and tightly integrated with processors. All local memories caBICU, the Control Store and the Local Memory. Its main functions
logically form a single global memory address space. Howevarg: (1) it receives remote requests in form of command from
we do not treat all memories as shared. As illustrated in Fig. 1 the network and triggers the operation of the mini-processor B
the local memory is partitioned into two partgivateandshared accordingly; (Il) it also can upload the microcode from the Local
And two addressing schemes are introduqat;sical addressing Memory to the Control Store through port B; (lll) it sends remote
and logic (virtual) addressing The private memory can only berequests from the mini-processor A or B to remote destination
accessed by the local processor and it's physical. All of shareddes in format of message via the network; (IV) it receives the

Ill. TARGET ARCHITECTURE DISTRIBUTED SHARED
MEMORY BASED MULTI-CORENETWORK-ON-CHIPS
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remote results in format of message from remote destination nodes
via the network and forwards them to the mini-processor A or B.
Mini-processor A
The mini-processor A connects with the CICU, the register file
A, the Synchronization Supporter, the Control Store, and the Local
Memory. Its operation is triggered by a command from the local
core. It executes microcode from the Control Store through port

Control Store

® &
The miniprocessor A or B

executes the micronstructions of’
the microcode

The execution of the
microcode is completed?

A, uses register file A for temporary data storage, and accesses Fig. 4. Work flow of the DMC
the Local Memory through port A. TABLE |
Mini-prpqessor B . . ?p’\iiTr:iiz:jsfgrE:;S Optimized for speed
The mini-processor B connects with the NICU, the register Frequency 444 MHz (2.25 ns) | 455 MHz (2.2 ns)
file B, the Synchronization Supporter, the Control Store, and th Area (Logic) 44K NAND gates 51k NAND gates
Local Memory. Its operation is triggered by a command from /[ Area (Control Store) 300k NAND gates

remote cores via the network. It executes microcode from tnﬁcroprogram is a set of microcodes. Fig. 4 shows how the DMC

Works (Microprogram is initially stored in the Local Memory).

data storage and accesses the Local Memory through port B. . e : :
. . T This procedure is iterated over the entire execution of the system.
The two min-processors features a five-stage pipeline and four

function units:Load/Store Unit (LSU)Adder Unit (AU) Condition C. Hardware Implementation

Unit andMessage Passing Unit (MPWo provide operations of  the pmcC design is synthesized by Synog&®esign Com-
memory access, addition, conditional branch and message-pas #8r in Charteref® 0.13:m technology and the Control Store

The microinstructions are designed to exploit the hardware arci-yenerated by ArtisdR Memory Compiler. The Control Store
tecture of the mini-processors. the microinstructions are organinggomposed of four 1024*32b Dual Port SRAMs. The synthesis
horizontally[17]. For concise presentation, we do not explain the.q its are listed in TABLE I. As we can see, the DMC can run

microinstructions in detail. up to 455 MHz consuming 51K gates if optimized for speed.
Synchronization Supporter

The Synchronization Supporter, which connects with the mini- V. REALIZING DSM FUNCTIONS

processor A and B is a hardware module to support atomic readtJsing microcode, we implement basic DSM functions: V2P
and-modify operation. This is necessary when two synchronizatigiidress translation, shared memory access and synchronization.
requests try to access the same lock at the same time. ) _

Control Store A. Virtual-to-Physical (V2P) Address Translation

The Control Store, which connects with the CICU, the NICU, To maintain a Distributed Shared Memory environment, each
the mini-processor A and B and the Local Memory, is a loctime the request (in form of command) from the local core or a
storage for microcode, like an instruction cache. It dynamicaltgmote core comes, the Virtual-to-Physical address translation is
uploads microcode from the Local Memory. It feeds microcoddways performed at first to obtain the physical address. And then,
to the mini-processor A through port A, and the mini-processtire target microcode related to this command will be executed.
B through port B. This uploading and feeding are controlled Wig. 5 a) shows this procedure. In the figure, the microinstructions
the CICU for commands from the local core and the NICU faabove the red dash line is used to translate the logic address into
commands from remote cores via the network. the physical address. Conventional page lookup table [18] is used

In summary, the DMC features (i) dual interfaces and dutd implement the V2P address translation. The translation takes 11
processors, (ii) cooperation of the interface units and the mimiycles. The remainder microinstructions distinguish whether the
processors, (iii) dual-port shared Control Store and Local Memotgyget microcode is local or remote. If local, the execution jumps
(iv) hardware support for mutex synchronization and (v) dynamwhere the target microcode is; if remote, a message-passing is
uploading microcode into the Control Store. started up to request the execution in the remote destination node.

B. Operation Mechanism B. Shared Memory Access

For the DMC, the execution of the mini-processors is triggered Shared memory access is implemented by microcode. We
by requests (in form of command) from the local and remotategorize it into two types: (1) Local shared access; (2) Re-
cores sent. This is callelbmmand-triggered microcode executionmote shared access. Because shared memory access uses logica
As shown in Fig. 3, a command is related to a certain functioaddressing, it implies a V2P translation overhead. Here, we use
which is implemented by a microcode. A microcode is a sequenmarsty read and write as an example. Fig. 5 b) shows the microcode
of microinstructions with arend microoperation at the end. A for memory read and write of a burstinessrofvords.



TABLE I

01) sub A0, L_ADDR, BADDR ;CalculateL_ADDR (logical addr.)~-BADDR (boundary addr.)
02) 6P TIME CALCULATION OF MEMORY ACCESS AND SYNCHRONIZATION
=
03) pfe A0, A1, A0 :Extract page No./page offset into AQ /AL '% V2P Translation: T, =T+ 11 [:| in the mini-processor A in the mini-processor B z :(1] ::z::zz :??:e
04) nop z Local Shared Remote Shared
05) add A3, A0, V2P_HADDR  ;Compute the index of page frame No. in the V2P table. g
hus i 1
06) nop g Single MemAce Tiss :|Tv2p+Td+T:nTTf+Th+3+Tcsd+ﬁ*TCtl>
07) addA7,A3,3 ;Compute the index of destination node No. in the V2P table. = :_’_’_’_’_’_’_‘
08) Ifiw *A3, A2 :Load the page frame No. from the V2P table into A2. = Burst MemAce Trsblevlp"'Td"'TmTTT+Tb+1+2*(ub+1)+1+Tcsd+ﬂ-*Tcds
09) Ifw *A7, A4 ;Load the destination node No. from the V2P table into A4, § F o -
10) setAS, 1 ; A5<->QoS, 1-Best Effort Syne. Tsw_r'f TUZrferJrT"'JfH:TfJr Ti#8)*nit Tesa+ Teas
1) __pmA2,ALAS __  ;Mergeframe No.(A2) and offset(Al), obtaining physical addr. |
. ine i i === e = e 1 =
12) beqAd4, SNODE, LOCAL  ;Branch to the LOCAL line if the accessislocal. | Mini-processor A Mini-processor B ] | Mini-processor A ‘
13) P ) : on Node #k on Node #k : on node #/
14) mp Ad, A5, A6, DATA ;Forthe remote shared memory, start transferingthe data. | = |l=——ececec—cmm——m = —— e
) Y Acquire
15) nop e Acuuire The lock is on Node #&. '_ Lll,lllr
16) end 3 ;Return '3', the data will be back from the remote node. 1 r |
17)LOCAL: jmp START ADDR ;Jump to where the target microcode is. [ 1 I T2
2P
18) nop | Ty | | |
3 | | |y |
I yTy | Iy
;BURST_LOAD_WORD ;BURST_STORE_WORD | * Tc | Acquire from e S|
set AO, n set A0, n ;set the burst number | * b | "ﬂfff.--—""'"—--. | |
BLW: sub A0, A0, 1| bneqz A0, BLW BSW: sub A0, AQ, 1 || bneqz A0, BSW | m=1{ | Ts | o |
Iw*A6, cpu_core | add A6, A6,4 sw*A6, DATA | add A6, A6,4  ;use the branch slot | I TL I f |
end1 end 1 E _:'_ - | =i |
b) g < Success I |
; d SET lock T A ' I
{TEST and SET loc e, Release g fail | |
01) 11 *A6,A0 ;load the lock’s value S |
r 1 |
02) nop | | Locally I |
03) nop | T2 I > pulling m | |
04) bneqz A0, FAILED :distinguish the lock is locked ornot L It I fimes | |
d
05) nop R T I I
06) SUCCESS: s¢ ¥A6, 1 I b T | |
07) nop A A b | |
08) end 1 HR | |
A Success et
09)FAILED:  sc *A6, AD - e LR, | |
10) nop v g Success e
s P ‘g Success
11) end 2: local polling, enter the tail of the queue.

©) Fig. 6.

Fig. 5. a) Microcode including V2P address translation, b) Microcode for memomicrooperationsl{ and s¢) to guarantee atomic operation. Based
access, and c) Microcode for synchronization on them, various synchronization primitives can be built. We
TABLE Il summarizes the shared memory access performangaplement a synchronization primitivéest-and-set()as shown
We use read transaction to illustrate the performance of the timoFig. 5 c). If an acquire of lock fails, the related command will
types of memory access. If the address is local, the DMC perforives placed to the tail of the command queue in the CICU/NICU
local access. Otherwise, the DMC starts remote access. Faio avait for the next execution. This avoids incurring additional
remote read transaction {Jand Tsp, =1), its delay consists of network traffic and won't block other commands for a long time.
seven parts: (1) V2P translation latencypFE 13 cycles (T+11), TABLE Il lists the synchronization performance. Synchroniza-
(2) latency of distinguishing whether the read is local or remotton is categorized into two types: (1) Local shared; (2) Remote
Tq=2 cycles, (3) latency of launching a remote request messagared. For acquiring a remote lock, its delay,(J;) consists
to the remote destination nodep,¥2 cycles, (4) communication of seven parts (similar with shared memory access): (3), T2)
latency: Teom = Tesa (from source to destination) +cds (from  Tg, (8) T, (4) Teom = Tesd + Teas (B) Tr, (6) Ty, (7) latency
destination to source), including network delivery latency fasf executingtest-and-set() 8 cycles. The (5), (6) and (7) are
the request and waiting time for being processed by the mimnultiplied by the acquire times,;.We also merge (2), (3), (5), (6)
processor B of the destination DMC, (5) latency of filling thend (7) into one part, calling it nc without vop, Which is the time
pipeline at the beginning of microcode executiofp=a cycles, (6) for executingtest-and-set(excluding the V2P translation time.
latency of branching where the memory read microcode js2T  To further analyze the DMC performance, we choose synchro-
cycles, and (7) latency of executing the memory read microcodgzation as an example to illustrate its execution procedure in Fig.
3 cycles for single read and 1+2%Hl)+1 cycles for burst read of 6. Assume that the lock is on nodd. As we can see, the mini-
n, words. (1), (2) and (3) are in the mini-processor A of the sourggocessor A and B in nodiék concurrently deal with lock acquire
DMC, while (5), (6) and (7) are in the mini-processor B of theommands from the local node and the remote node, respectively.
destination DMC. To facilitate discussions in section VI, we mergehe mini-processor A acquires the lock previously, so the mini-
(2), (3), (5), (6) and (7) into one part, calling ifadmacc without vop,  processor B fails. The command re-enters into the command queue
which is the time for executing the memory access microcogfethe NICU in nodetk. Since there are no other commands in the
excluding the V2P translation time. gueue, the mini-processor B is activated again by this command
o to acquire the lock again. This procedure continues until the mini-
C. Synchronization processor A in nodetk accepts the release command to release
The Synchronization Supporter provides underlying hardwattee lock. Then, the acquire of the lock by no#llesucceeds and
support for synchronization. It works with a pair of speciahe success message is returned to néde

Examples of synchronization transactions
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Fig. 7. Average read transaction latency for uniform and hotspot traffic Fig. 8. Burst read latency under uniform and hotspot traffic
VI. EXPERIMENTS AND RESULTS Fig. 8 illustrates the effect of network size. It plots burst read

We performed experiments to evaluate the DMC in terms lgtency under uniform and hotspot traffic. With respect to the same
execution overhead in a multi-core NoC platform, applying boff@nsaction size (n= 8), the DMC overhead @uc) of a remote

synthetic and application workloads. read is a constant, 41 cycles,ff=13, Tvemacc without v2p=28) for
_ different system sizes, whilepf;c of a local read for the single
A. Experimental Platform core is 37 cycles (bp=13, Tmemacc without v2p=24) since there is

We constructed a DSM based multi-core NoC experimenta® microcode execution in the destination node. As the network
platform as shown in Fig. 1. The multi-core NoC has a mesh top&iZ€ increases, . increases because the average communication
ogy and its size is configurable. The network performs dimensiofistance increases. For uniform traffic, the increase i Tis
order XY routing, provides best-effort service and also guarantdaéher linear, and for hotspot traffic, the increase goes nearly
in-order packet delivery. Moving one hop in the network takes of&ponentially. This is due to balanced workload in uniform traffic
Cyc|e_ In all experimentsy commands’ Corresponding microcod.@gcontrast to centralized contention in hOtSpOt traffic. We also p|0t

have already uploaded into the Control Store. the average per-word latencyd/ny) for the two traffic types.
The per-word latency for both traffics increases with the network
B. Simulation Results with Synthetic Workloads size but much smoother. This suggests it is still advantageous to
We first apply two synthetic workloadsniform andhotspot ~ use larger transaction size, especially for larger size networks.
Shared Memory Access Synchronization

Since reads are usually more critical than writes, we use readlo experiment on synchronization latency, we use our mi-
transactions for all traffic. For a read with words, one request crocodedtest-and-set(primitive, which performs polling at the
is sent from the source to reag words from the destination. destination. For uniform traffic, all nodes start to acquire locks at
For uniform traffic, a node sends read requests to all other notlee same time. After the acknowledgement (successful acquire)
one by one. Initially all nodes send requests at the same timergturns, each node sequentially acquires a lock in the next node
new request will not be launched until the previous transactié@llowing a predefined order. For hotspot traffic, all nodes try to
is completed. For hotspot traffic, a corner node (0, 0) is selecteeqjuire locks in the same node (0, 0). Simulation stops after all
as the hot spot node. All other nodes send read requests toldtks are acquired. Since locks in the same node acquired by
hotspot node. Simulation stops after all reads are completed. different nodes can be the same or different, we distinguish the

Fig. 7 illustrates the effect of transaction size. It plots thgame lock and different locks for both uniform and hotspot traffic,
average read transaction latency for uniform and hotspot traffesulting in 4 scenarios: (1) uniform, different locks, (2) hotspot,
versus burst length in a 8x8 mesh multi-core NoC. The bumifferent locks, (3) uniform, same lock, and (4) hotspot, same lock.
length varies from 1, 2, 4, 6 to 8 words. For the same trans-Fig. 9 illustrates the effect of network size. It plots the syn-
action size, the overhead ofyidmacc without v2p IS the same. For chronization latency for different network sizes under the four
the single reads, the DMC overheadbvE (Tomc = Tvzp + SCenarios classified into Type A for different locks and Type B for
TMemace without vzp) €quals to 24 cycles (13 + 11). Under unifornthe same lock. Note that, due to the huge latency for the hotspot
traffic, the communication latency.J, is 24.52 cycles. So the cases, we use the Log10 scale for the Y-axis. The DMC overhead
total time Total (= Tcom + Tomc) is 48.52 cycles (24 + 24.52).(Tpwc) is a constant, 29 cycles (F=13, Tsyncwithout v2p=16)
In this case, the DMC overhead is significant. However, undtar different system sizes, whileglic for the single core is 25
hotspot traffic, the network delivery time significantly increasesycles (T2p=13, Tsync without v2p=12) Since there is no microcode
because of increased contention in the network and waiting to éecution in the destination node. We can observe that: (1) As the
processed by the mini-processor B in the destination DMC. In thigtwork size is increased, the DMC overhead is gradually diluted;
case, the DMC overhead is little. When increasing the transacti@) As expected, the synchronization latency acquiring the same
size, Tvemacc withoutv2p @nd Teom are increased, resulting in thelock (Type B) creates more contention and thus more blocking
increase of L. For all hotspot traffic, Jom dominates L. time for all cases than acquiring the different locks (Type A).
To compare the per-word latency {dy/n,), we draw two lines, ) ) ) o
one for uniform and the other for hotspot traffic. We can obserfe Simulation Results with Application Workloads
that, while increasing transaction size increasgg;,the per-word  Besides using synthetic workloads, two applications, matrix
latency is decreasing for both uniform and hotspot traffic. multiplication and 2D radix-2 DIT FFT, are mapped manually
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Fig. 9. Synchronization latency under uniform and hotspot traffic Fig. 10. Speedup of matrix multiplication and 2D radix-2 DIT FFT

over the LEON3 processors to evaluate the DMC performaneeir synthesis results show the controller runs up to 455 MHz
The matrix multiplication calculates the product of two matricesynd consumes 51k gates in a 130 nm technology. Therefore, we
A[64,1] and B[1, 64], resulting in aC'[64, 64] matrice and doesn’t can conclude that the DMC is a viable approach providing an
involve synchronization. We consider both integer and floatingtegrated, modular and flexible solution for addressing the DSM
point matrix multiplication. The data of the 2D radix-2 DIT FFTissues in multi-core NoCs.
are equally partitioned into rows storing om nodes respectively.
The 2D FFT application performs 1D FFT of all rows firstly and
then does 1D FFT of all columns. There is a synchronization pointThe research is partially supported by the FP7 EU project
between the FFT-on-rows and the following FET-on-columns. MOSART (No. IST-215244), the National 863 Program of China
Fig. 10 shows the performance speedup of the matrix muNo. 2007AA017108), the Innovative Team of High-performance
tiplication and the 2D radix-2 DIT FFT. From this figure, weMicroprocessor Technology, and the National Natural Science
can see that the multi-core NoC achieves fairly good speedfgundation of China (No. 60676010).
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