
Supporting Distributed Shared Memory on Multi-core
Network-on-Chips Using a Dual Microcoded Controller

Xiaowen Chen†,‡, Zhonghai Lu‡, Axel Jantsch‡ and Shuming Chen†
†National University of Defense Technology, 410073, Changsha, China
‡KTH-Royal Institute of Technology, 16440 Kista, Stockholm, Sweden
†{xwchen,smchen}@nudt.edu.cn ‡{xiaowenc,zhonghai,axel}@kth.se

Abstract—Supporting Distributed Shared Memory (DSM) is es-
sential for multi-core Network-on-Chips for the sake of reusing huge
amount of legacy code and easy programmability. We propose a
microcoded controller as a hardware module in each node to connect
the core, the local memory and the network. The controller is
programmable where the DSM functions such as virtual-to-physical
address translation, memory access and synchronization etc. are
realized using microcode. To enable concurrent processing of memory
requests from the local and remote cores, our controller features two
mini-processors, one dealing with requests from the local core and the
other from remote cores. Synthesis results suggest that the controller
consumes 51k gates for the logic and can run up to 455 MHz in 130
nm technology. To evaluate its performance, we use synthetic and
application workloads. Results show that, when the system size is
scaled up, the delay overhead incurred by the controller may become
less significant when compared with the network delay. In this way,
the delay efficiency of our DSM solution is close to hardware solutions
on average but still have all the flexibility of software solutions.

I. I NTRODUCTION

It’s a trend that high-performance single-chip computing ar-
chitectures evolves from single-core to multi- and even many
cores [1][2]. Network-on-Chip (NoC) [3][4][5] is recognized as
the scalable solution to interconnect and organize so many cores
and hence has attracted significant attentions over the last ten
years since various buses do not scale well with the system size.
For instance, in 2007, Intel researchers announced their research
about a prototype multi-core NoC architecture containing 80 tiles
arranged as a 10x8 2D mesh network [6]. Another trend is that
the rapid development of integrated circuit technology enables
more and more computing resources and storage elements to be
integrated on a single chip [7]. The embedded memory content in
System-on-Chips (SoCs) increases from 20% ten years ago to 85%
of the chip area today and will continue to increase in the future
[8]. Memories are preferably to be distributed for medium and
large scale system sizes because centralized memory has already
become the bottleneck of performance, power and cost.

Following the two trends, a key question for such multi-core,
distributed memory architectures is what kind of communication
paradigm,shared variableor message passing, to support? In our
view, we envision that there is an urgent need to support Dis-
tributed but Shared Memory (DSM) because of the huge amount
of legacy code and easy programming. To increase productivity
and reliability and to reduce risk, reusing proven legacy code is a
must. From the programmers’ point of view, the shared memory
programming paradigm provides a single shared address space
and transparent communication, since there is no need to worry
about when to communicate, where data exist and who receives
or sends data, as required by explicit message passing API.

A multi-core NoC chip integrates a number of resources and
may be used to support many use cases. Its design complexity
results in long time-to-market and high cost. This motivates us
to look for a flexible way to address DSM issues on multi-core

NoCs. As we know, performance and flexibility are paradoxical.
Dedicated hardware and software-only solutions are two extremes.
Dedicated hardware solutions can achieve high performance, but
any small change in functionality leads to redesign of the entire
hardware module and hence the solutions suffice only for lim-
ited, static cases. Software-only solutions require little hardware
support and main functions are implemented in software. They
are flexible but may consume significant cycles, thus potentially
limiting the system performance. Microcode approach is a good
alternative to overcome the performance-flexibility dilemma. Its
concept can be traced back to 1951 when it was first introduced by
Wilkes [9]. Its crucial feature offers a programmable and flexible
solution to accelerate a wide range of applications [10].

Along the aforementioned consideration, we adopt the mi-
crocode approach to address DSM issues on multi-core NoCs,
aiming for hardware performance but maintaining the flexibility of
programs. We present a programmable hardware module, named
Dual Microcoded Controller (DMC), to allow users to implement
various functions. Each node hosts a DMC connecting the core,
the local memory and the network. Each DMC features two min-
processors to be able to concurrently deal with requests from the
local core and remote cores via the network. The execution of
the mini-processors is triggered by memory requests in form of
command. Basic DSM functions are realized and experimental
results shows that, when the system size is scaled up, the overhead
incurred by the DMC may become less significant when compared
with the network delay. The DMC solution is demonstrated to be
a viable way and its delay efficiency is close to hardware solutions
on average but still have all the flexibility of software solutions.

The rest of the paper is organized as follows. Section II
discusses the related work. Section III describes our target archi-
tecture: DSM based multi-core NoCs. In section IV, we present
the architecture, the operation mechanism and the hardware cost
of the DMC. Section V realizes the basic DSM functions using
microcode and analyzes the performance. Experimental results
with synthetic and application workloads are reported in section
VI. Finally we conclude in section VII.

II. RELATED WORK

The Alewife [11] machine from MIT addresses the problem
of providing a single addressing space with integrated message
passing mechanism. This is a dedicated hardware solution, and
does not support virtual memory.

Few previous works used the microcode approach to address
the DSM issues in multiprocessor systems. Similar to our pro-
grammable controller, both the Stanford FLASH [12] and the
Wisconsin Typhoon [13] use a programmable co-processor (the
MAGIC in the FLASH, the NP in the Typhoon) to support flexible
cache coherence policy and communication protocol. However,
both machines were developed not for on-chip network based



Fig. 1. a) A 16-node mesh multi-core NoC, b) Processor-Memory node

multi-core systems. The MAGIC only hosts one programmable
coprocessor handling requests from the processor, the network
and the I/O. The NP also uses one programmable coprocessor
to deal with requests from the network and the CPU. If two
or more requests come concurrently, only one can compete to
be handled while the others have to be delayed, resulting in
contention delay. Our DMC hosts two mini-processors to enable
two concurrent processing of requests from the processor and the
network, eliminating this overhead. Introducing another processor
is non-trivial because we also need to address the synchronization
due to possible simultaneous access requests to the same region in
the local memory. Furthermore, the MAGIC and the NP organize
memory banks to form a cache-coherent shared memory. Memory
accesses are handled by the programmable coprocessor to hit
the right memory banks in local or remote nodes. However, this
causes larger processing time, compared with dedicated hardware
solution. It also forces the local processor to spend more time
even on the data only used by itself. In our memory organization,
the memory is partitioned into a private part and a shared part.
The private memory accesses are fast since they bypass the mini-
processors so as to improve the performance. The SMTp [14]
exploits SMT in conjunction with a standard integrated memory
controller to enable a coherence protocol thread used to support
DSM multiprocessors. The protocol programmability is offered
by a system thread context rather than an extra programmable
coprocessor. It utilizes the main processor’s resources, while our
DMC is a synergistic processing module to alleviate the burden
of the main processor.

III. TARGET ARCHITECTURE: DISTRIBUTED SHARED

MEMORY BASED MULTI -CORENETWORK-ON-CHIPS

Fig. 1 a) shows an example of our DSM based multi-core NoC
architecture. The system is composed of 16 Processor-Memory
(PM) nodes interconnected via a packet-switched network. The
network topology is a mesh, which is a most popular NoC
topology proposed today [15]. As shown in Fig. 1 b), each PM
node contains a processor, for example, a LEON3 [16] shown
in the figure, hardware modules connected to the local bus and
a local memory. Our proposal is the hardware module, named
Dual Microcoded Controller (DMC), connecting the processor, the
local memory and the network, and serving requests from the local
processor and the remote processors via the network concurrently.

As can be observed, memories are distributed in each node
and tightly integrated with processors. All local memories can
logically form a single global memory address space. However,
we do not treat all memories as shared. As illustrated in Fig. 1 b),
the local memory is partitioned into two parts:privateandshared.
And two addressing schemes are introduced:physical addressing
and logic (virtual) addressing. The private memory can only be
accessed by the local processor and it’s physical. All of shared

Fig. 2. Architecture of the Dual Microcoded Controller

memories are visible to all nodes and organized as a Distributed
Shared Memory (DSM) and they are virtual. The philosophy of
this design is to speed up frequent private access as well as
to maintain a single virtual space. For shared memory access,
there requires a virtual-to-physical (V2P) address translation.
Such translation incurs overhead but makes DSM organization
transparent to application, thus facilitating programming.

IV. D UAL M ICROCODEDCONTROLLER

In this section, we detail the architecture of the Dual Mi-
crocoded Controller, how it operates and its hardware cost.

A. Architectural Design

As shown in Fig. 2, the DMC, which connects to the CPU
core, the Local Memory, and the network, mainly contains six
parts, namely,Core Interface Control Unit (CICU), Network
Interface Control Unit (NICU), Control Store, Mini-processor A,
Mini-processor B, andSynchronization Supporter. As their names
suggest, the CICU provides a hardware interface to the local core,
and the NICU a hardware interface to the network. The two mini-
processors are the central processing engine. Microprogram is
initially stored in the Local Memory, and will be dynamically
uploaded into the Control Store on demand during the program ex-
ecution. The Synchronization Supporter coordinates the two mini-
processors to avoid simultaneous accesses to the same memory
address and guarantees atomic read-and-modify operations. Both
the Local Memory and the control store are dual ported: port A
and B, which connect to the mini-processor A and B, respectively.
The functions of each module are detailed as follows:

Core Interface Control Unit
The CICU connects with the core, the mini-processor A, the

NICU, the Control Store and the Local Memory. Its main functions
are: (I) it receives local requests in form of command from the
local core and triggers the operation of the mini-processor A
accordingly; (II) it uploads the microcode from the Local Memory
to the Control Store through port A; (III) it receives results from
the mini-processor A; (IV) it accesses the private memory directly
using physical addressing if the memory access is private; (V) it
sends results back to the local core.

Network Interface Control Unit
The NICU connects the network, the mini-processor B, the

CICU, the Control Store and the Local Memory. Its main functions
are: (I) it receives remote requests in form of command from
the network and triggers the operation of the mini-processor B
accordingly; (II) it also can upload the microcode from the Local
Memory to the Control Store through port B; (III) it sends remote
requests from the mini-processor A or B to remote destination
nodes in format of message via the network; (IV) it receives the



Fig. 3. One command triggers a microcode

remote results in format of message from remote destination nodes
via the network and forwards them to the mini-processor A or B.

Mini-processor A
The mini-processor A connects with the CICU, the register file

A, the Synchronization Supporter, the Control Store, and the Local
Memory. Its operation is triggered by a command from the local
core. It executes microcode from the Control Store through port
A, uses register file A for temporary data storage, and accesses
the Local Memory through port A.

Mini-processor B
The mini-processor B connects with the NICU, the register

file B, the Synchronization Supporter, the Control Store, and the
Local Memory. Its operation is triggered by a command from
remote cores via the network. It executes microcode from the
Control Store through port B, uses register file B for temporary
data storage and accesses the Local Memory through port B.

The two min-processors features a five-stage pipeline and four
function units:Load/Store Unit (LSU), Adder Unit (AU), Condition
Unit andMessage Passing Unit (MPU), to provide operations of
memory access, addition, conditional branch and message-passing.
The microinstructions are designed to exploit the hardware archi-
tecture of the mini-processors. the microinstructions are organized
horizontally [17]. For concise presentation, we do not explain the
microinstructions in detail.

Synchronization Supporter
The Synchronization Supporter, which connects with the mini-

processor A and B is a hardware module to support atomic read-
and-modify operation. This is necessary when two synchronization
requests try to access the same lock at the same time.

Control Store
The Control Store, which connects with the CICU, the NICU,

the mini-processor A and B and the Local Memory, is a local
storage for microcode, like an instruction cache. It dynamically
uploads microcode from the Local Memory. It feeds microcode
to the mini-processor A through port A, and the mini-processor
B through port B. This uploading and feeding are controlled by
the CICU for commands from the local core and the NICU for
commands from remote cores via the network.

In summary, the DMC features (i) dual interfaces and dual
processors, (ii) cooperation of the interface units and the mini-
processors, (iii) dual-port shared Control Store and Local Memory,
(iv) hardware support for mutex synchronization and (v) dynamic
uploading microcode into the Control Store.

B. Operation Mechanism

For the DMC, the execution of the mini-processors is triggered
by requests (in form of command) from the local and remote
cores sent. This is calledcommand-triggered microcode execution.
As shown in Fig. 3, a command is related to a certain function,
which is implemented by a microcode. A microcode is a sequence
of microinstructions with anend microoperation at the end. A

Fig. 4. Work flow of the DMC
TABLE I

SYNTHESIS RESULTS

Optimized for area Optimized for speed
Frequency 444 MHz (2.25 ns) 455 MHz (2.2 ns)

Area (Logic) 44k NAND gates 51k NAND gates
Area (Control Store) 300k NAND gates

microprogram is a set of microcodes. Fig. 4 shows how the DMC
works (Microprogram is initially stored in the Local Memory).
This procedure is iterated over the entire execution of the system.

C. Hardware Implementation

The DMC design is synthesized by SynopsysR© Design Com-
piler in CharteredR© 0.13µm technology and the Control Store
is generated by ArtisanR© Memory Compiler. The Control Store
is composed of four 1024*32b Dual Port SRAMs. The synthesis
results are listed in TABLE I. As we can see, the DMC can run
up to 455 MHz consuming 51K gates if optimized for speed.

V. REALIZING DSM FUNCTIONS

Using microcode, we implement basic DSM functions: V2P
address translation, shared memory access and synchronization.

A. Virtual-to-Physical (V2P) Address Translation

To maintain a Distributed Shared Memory environment, each
time the request (in form of command) from the local core or a
remote core comes, the Virtual-to-Physical address translation is
always performed at first to obtain the physical address. And then,
the target microcode related to this command will be executed.
Fig. 5 a) shows this procedure. In the figure, the microinstructions
above the red dash line is used to translate the logic address into
the physical address. Conventional page lookup table [18] is used
to implement the V2P address translation. The translation takes 11
cycles. The remainder microinstructions distinguish whether the
target microcode is local or remote. If local, the execution jumps
where the target microcode is; if remote, a message-passing is
started up to request the execution in the remote destination node.

B. Shared Memory Access

Shared memory access is implemented by microcode. We
categorize it into two types: (1) Local shared access; (2) Re-
mote shared access. Because shared memory access uses logical
addressing, it implies a V2P translation overhead. Here, we use
bursty read and write as an example. Fig. 5 b) shows the microcode
for memory read and write of a burstiness ofn words.



Fig. 5. a) Microcode including V2P address translation, b) Microcode for memory
access, and c) Microcode for synchronization

TABLE II summarizes the shared memory access performance.
We use read transaction to illustrate the performance of the two
types of memory access. If the address is local, the DMC performs
local access. Otherwise, the DMC starts remote access. For a
remote read transaction (Trss and Trsb, α=1), its delay consists of
seven parts: (1) V2P translation latency: Tv2p= 13 cycles (Tf+11),
(2) latency of distinguishing whether the read is local or remote:
Td=2 cycles, (3) latency of launching a remote request message
to the remote destination node: Tm=2 cycles, (4) communication
latency: Tcom = Tcsd (from source to destination) + Tcds (from
destination to source), including network delivery latency for
the request and waiting time for being processed by the mini-
processor B of the destination DMC, (5) latency of filling the
pipeline at the beginning of microcode execution: Tf=2 cycles, (6)
latency of branching where the memory read microcode is: Tb=2
cycles, and (7) latency of executing the memory read microcode:
3 cycles for single read and 1+2*(nb+1)+1 cycles for burst read of
nb words. (1), (2) and (3) are in the mini-processor A of the source
DMC, while (5), (6) and (7) are in the mini-processor B of the
destination DMC. To facilitate discussions in section VI, we merge
(2), (3), (5), (6) and (7) into one part, calling it TMemAcc without v2p,
which is the time for executing the memory access microcode
excluding the V2P translation time.

C. Synchronization

The Synchronization Supporter provides underlying hardware
support for synchronization. It works with a pair of special

TABLE II
TIME CALCULATION OF MEMORY ACCESS AND SYNCHRONIZATION

Fig. 6. Examples of synchronization transactions

microoperations (ll andsc) to guarantee atomic operation. Based
on them, various synchronization primitives can be built. We
implement a synchronization primitive:test-and-set(), as shown
in Fig. 5 c). If an acquire of lock fails, the related command will
be placed to the tail of the command queue in the CICU/NICU
to wait for the next execution. This avoids incurring additional
network traffic and won’t block other commands for a long time.

TABLE II lists the synchronization performance. Synchroniza-
tion is categorized into two types: (1) Local shared; (2) Remote
shared. For acquiring a remote lock, its delay (Tsync r) consists
of seven parts (similar with shared memory access): (1) Tv2p, (2)
Td, (3) Tm, (4) Tcom = Tcsd + Tcds, (5) Tf , (6) Tb, (7) latency
of executing test-and-set(), 8 cycles. The (5), (6) and (7) are
multiplied by the acquire times, nl . We also merge (2), (3), (5), (6)
and (7) into one part, calling it TSync without v2p, which is the time
for executingtest-and-set()excluding the V2P translation time.

To further analyze the DMC performance, we choose synchro-
nization as an example to illustrate its execution procedure in Fig.
6. Assume that the lock is on node#k. As we can see, the mini-
processor A and B in node#k concurrently deal with lock acquire
commands from the local node and the remote node, respectively.
The mini-processor A acquires the lock previously, so the mini-
processor B fails. The command re-enters into the command queue
in the NICU in node#k. Since there are no other commands in the
queue, the mini-processor B is activated again by this command
to acquire the lock again. This procedure continues until the mini-
processor A in node#k accepts the release command to release
the lock. Then, the acquire of the lock by node#l succeeds and
the success message is returned to node#l.



Fig. 7. Average read transaction latency for uniform and hotspot traffic

VI. EXPERIMENTS AND RESULTS

We performed experiments to evaluate the DMC in terms of
execution overhead in a multi-core NoC platform, applying both
synthetic and application workloads.

A. Experimental Platform

We constructed a DSM based multi-core NoC experimental
platform as shown in Fig. 1. The multi-core NoC has a mesh topol-
ogy and its size is configurable. The network performs dimension-
order XY routing, provides best-effort service and also guarantees
in-order packet delivery. Moving one hop in the network takes one
cycle. In all experiments, commands’ corresponding microcodes
have already uploaded into the Control Store.

B. Simulation Results with Synthetic Workloads

We first apply two synthetic workloads:uniform andhotspot.
Shared Memory Access
Since reads are usually more critical than writes, we use read

transactions for all traffic. For a read with nb words, one request
is sent from the source to read nb words from the destination.
For uniform traffic, a node sends read requests to all other nodes
one by one. Initially all nodes send requests at the same time. A
new request will not be launched until the previous transaction
is completed. For hotspot traffic, a corner node (0, 0) is selected
as the hot spot node. All other nodes send read requests to the
hotspot node. Simulation stops after all reads are completed.

Fig. 7 illustrates the effect of transaction size. It plots the
average read transaction latency for uniform and hotspot traffic
versus burst length in a 8x8 mesh multi-core NoC. The burst
length varies from 1, 2, 4, 6 to 8 words. For the same trans-
action size, the overhead of TMemAcc without v2p is the same. For
the single reads, the DMC overhead TDMC (TDMC = Tv2p +
TMemAcc without v2p) equals to 24 cycles (13 + 11). Under uniform
traffic, the communication latency Tcom is 24.52 cycles. So the
total time Ttotal (= Tcom + TDMC) is 48.52 cycles (24 + 24.52).
In this case, the DMC overhead is significant. However, under
hotspot traffic, the network delivery time significantly increases
because of increased contention in the network and waiting to be
processed by the mini-processor B in the destination DMC. In this
case, the DMC overhead is little. When increasing the transaction
size, TMemAcc without v2p and Tcom are increased, resulting in the
increase of Ttotal. For all hotspot traffic, Tcom dominates Ttotal.
To compare the per-word latency (Ttotal/nb), we draw two lines,
one for uniform and the other for hotspot traffic. We can observe
that, while increasing transaction size increases Ttotal, the per-word
latency is decreasing for both uniform and hotspot traffic.

Fig. 8. Burst read latency under uniform and hotspot traffic

Fig. 8 illustrates the effect of network size. It plots burst read
latency under uniform and hotspot traffic. With respect to the same
transaction size (nb = 8), the DMC overhead (TDMC) of a remote
read is a constant, 41 cycles (Tv2p=13, TMemAcc without v2p=28) for
different system sizes, while TDMC of a local read for the single
core is 37 cycles (Tv2p=13, TMemAcc without v2p=24) since there is
no microcode execution in the destination node. As the network
size increases, Ttotal increases because the average communication
distance increases. For uniform traffic, the increase in Ttotal is
rather linear, and for hotspot traffic, the increase goes nearly
exponentially. This is due to balanced workload in uniform traffic
in contrast to centralized contention in hotspot traffic. We also plot
the average per-word latency (Ttotal/nb) for the two traffic types.
The per-word latency for both traffics increases with the network
size but much smoother. This suggests it is still advantageous to
use larger transaction size, especially for larger size networks.

Synchronization
To experiment on synchronization latency, we use our mi-

crocodedtest-and-set()primitive, which performs polling at the
destination. For uniform traffic, all nodes start to acquire locks at
the same time. After the acknowledgement (successful acquire)
returns, each node sequentially acquires a lock in the next node
following a predefined order. For hotspot traffic, all nodes try to
acquire locks in the same node (0, 0). Simulation stops after all
locks are acquired. Since locks in the same node acquired by
different nodes can be the same or different, we distinguish the
same lock and different locks for both uniform and hotspot traffic,
resulting in 4 scenarios: (1) uniform, different locks, (2) hotspot,
different locks, (3) uniform, same lock, and (4) hotspot, same lock.

Fig. 9 illustrates the effect of network size. It plots the syn-
chronization latency for different network sizes under the four
scenarios classified into Type A for different locks and Type B for
the same lock. Note that, due to the huge latency for the hotspot
cases, we use the Log10 scale for the Y-axis. The DMC overhead
(TDMC) is a constant, 29 cycles (Tv2p=13, TSync without v2p=16)
for different system sizes, while TDMC for the single core is 25
cycles (Tv2p=13, TSync without v2p=12) since there is no microcode
execution in the destination node. We can observe that: (1) As the
network size is increased, the DMC overhead is gradually diluted;
(2) As expected, the synchronization latency acquiring the same
lock (Type B) creates more contention and thus more blocking
time for all cases than acquiring the different locks (Type A).

C. Simulation Results with Application Workloads

Besides using synthetic workloads, two applications, matrix
multiplication and 2D radix-2 DIT FFT, are mapped manually



Fig. 9. Synchronization latency under uniform and hotspot traffic

over the LEON3 processors to evaluate the DMC performance.
The matrix multiplication calculates the product of two matrices,
A[64, 1] andB[1, 64], resulting in aC[64, 64] matrice and doesn’t
involve synchronization. We consider both integer and floating
point matrix multiplication. The data of the 2D radix-2 DIT FFT
are equally partitioned inton rows storing onn nodes respectively.
The 2D FFT application performs 1D FFT of all rows firstly and
then does 1D FFT of all columns. There is a synchronization point
between the FFT-on-rows and the following FFT-on-columns.

Fig. 10 shows the performance speedup of the matrix mul-
tiplication and the 2D radix-2 DIT FFT. From this figure, we
can see that the multi-core NoC achieves fairly good speedup.
When the system size increases, the speedup (Ωm = T1core/Tmcore,
where T1core is the single core execution time as the baseline,
Tmcore the execution time of m core(s).) goes up from 1 to
36.494 for the integer matrix multiplication, from 1 to 52.054
for the floating point matrix multiplication, and from 1 to 48.776
for the 2D radix-2 DIT FFT. To make the comparison fair, we
calculate the per-node speedup byΩm/m. As the system size
increases, the per-node speedup decreases from 1 to 0.57 for the
integer matrix multiplication, from 1 to 0.813 for the floating
point matrix multiplication, and from 1 to 0.76 for the 2D radix-
2 DIT FFT. This means that, as the system size increases, the
speedup acceleration is slowing down. This is due to that the
communication latency goes up nonlinearly with the system size,
limiting the performance. We can also see that the speedup for
the floating point matrix multiplication is higher than that for the
integer matrix multiplication. This is as expected, because, when
increasing the computation time, the portion of communication
delay becomes less significant, thus achieving higher speedup.

VII. C ONCLUSION

In this paper, we propose a microcoded controller as a central
hardware engine for managing DSMs in multi-core NoCs. The
controller is programmable and the support for DSM functions
is implemented in microcode. The operation of the controller is
triggered by requests from local and remote cores. In particular, it
features two mini-processors in order to be able to serve requests
from local and remote requests at the same time. Besides its archi-
tecture, we detail its operation mechanism and give examples. Our
experiments on uniform and hotspot workloads suggest that the
overhead of the controller may become insignificant as the system
size increases and the communication delay becomes dominating
performance. Our experiments on application workloads show that
our multi-core NoCs (with the controller in each node) achieves
good performance speedup with increasing system size. Moreover,

Fig. 10. Speedup of matrix multiplication and 2D radix-2 DIT FFT

our synthesis results show the controller runs up to 455 MHz
and consumes 51k gates in a 130 nm technology. Therefore, we
can conclude that the DMC is a viable approach providing an
integrated, modular and flexible solution for addressing the DSM
issues in multi-core NoCs.

ACKNOWLEDGMENT

The research is partially supported by the FP7 EU project
MOSART (No. IST-215244), the National 863 Program of China
(No. 2007AA01Z108), the Innovative Team of High-performance
Microprocessor Technology, and the National Natural Science
Foundation of China (No. 60676010).

REFERENCES

[1] M. Horowitz and W. Dally, “How scaling will change processor architecture,”
in Int’l Solid-State Circuits Conf. (ISSCC’04), Digest of Technical Papers,
Feb. 2004, pp. 132–133.

[2] S. Borkar, “Thousand core chips: A technology perspective,” inProc. of the
44th Design Automation Conf. (DAC’07), Jun. 2007, pp. 746–749.

[3] A. Jantsch and H. Tenhunen,Networks on chip. Kluwer Academic
Publishers, 2003.

[4] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of
network-on-chip,”ACM Comp. Surveys, vol. 38, no. 1, pp. 1–51, Mar. 2006.

[5] J. D. Owens, W. J. Dallyet al., “Research challenges for on-chip intercon-
nection networks,”IEEE MICRO, vol. 27, no. 5, pp. 96–108, Oct. 2007.

[6] S. Vangal, J. Howard, G. Ruhlet al., “An 80-tile 1.28tflops network-on-chip
in 65nm cmos,” inInt’l Solid-State Circuits Conf. (ISSCC’07), Digest of
Technical Papers, Feb. 2007, pp. 98–100.

[7] “Itrs 2007 document,” inhttp://www.itrs.net/Links/2007ITRS/Home2007.htm.
[8] E. Marinissen, B. Prince, D. Keltel-Schulz, and Y. Zorian, “Challenges in

embedded memory design and test,” inProc. of Design, Automation and Test
in Europe Conf. (DATE’05), Mar. 2005, pp. 722–727.

[9] M. V. Wilkes, “The best way to design an automatic calculating machine,” in
Proc. of Manchester Univ. Computer Inaugural Conf., Jul. 1951, pp. 16–18.

[10] S. Vassiliadis, S. Wong, and S.Cotofana, “Microcode processing: Positioning
and directions,”IEEE MICRO, vol. 23, no. 4, pp. 21–30, Apr. 2003.

[11] A. Agarwal, R. Bianchiniet al., “The mit alewife machine: architecture
and performance,” inProc. of the 22nd Annual Inter’l Symp. on Computer
Architecture (ISCA 1995), Jun. 1995, pp. 2–13.

[12] J. Kuskin, D. Ofeltet al., “The stanford flash multiprocessor,” inProc. of
the 21st Annual Inter’l Symp. on Computer Architecture (ISCA 1994), Apr.
1994, pp. 302–313.

[13] S. K. Reinhardt, J. R. Larus, and D. A. Wood, “Tempest and typhoon: user-
level shared memory,” inProc. of the 21st Annual Inter’l Symp. on Computer
Architecture (ISCA 1994), Apr. 1994, pp. 325–336.

[14] M. Chaudhuri and M. Heinrich, “Smtp: an architecture for next-generation
scalable multi-threading,” inProc. of the 31st Annual Inter’l Symp. on
Computer Architecture (ISCA 2004), Jun. 2004, pp. 124–135.

[15] P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh, “Performance evalu-
ation and design trade-offs for network-on-chip interconnect architectures,”
IEEE Trans. on Computer, vol. 54, no. 8, pp. 1025–1040, Aug. 2005.

[16] “Leon3 processor,” inhttp://www.gaisler.com.
[17] T. G. Rauscher and P. M. Adams, “Microprogramming: A tutorial and survey

of recent developments,”IEEE Trans. on Computer, vol. C-29, no. 1, pp. 2–
20, Jan. 1980.

[18] J. L. Hennessy and D. A. Patterson,Computer Architecture: A Quantitative
Approach (4th Edition). Elsevier, Inc., 2007.


