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Jürgo-Sören Preden3, and Enn Õunapuu1
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Abstract. In real-time health analytics, smart cities, military sensing
systems and others, big data analytics is enabled by the introduction
of appropriate sensing and actuation systems. The introduction of next
generation of sensing and actuation systems or the Internet of Things
era have been facilitated by affordable low-power 32-bit microcontrollers
combined with low-cost and effective sensors with appropriate power
supplies, mobile and local data collection (local big data) capabilities,
adaptive behavior using machine learning and evolving model-based be-
havior, etc. While Cloud computing offers big data processing and actua-
tion capability at the server level, mist computing offers data processing
and actuation capability at the very edge of the network. Fog computing
offers the same capability in the middle at edge gateways. Mist com-
puting is an enabler for many applications, which cannot be realized
with alternative methods, such as smart cities, where city streets adapt
to the changes happening in the city, socially intelligent houses where
indoor environment management is integrated with inhabitants health
monitoring or military sensing systems where situational information is
automatically deduced from raw data and delivered to the information
consumers. While these visionary applications promise to change our
environment and the way we interact with the environment we face se-
rious challenges in the implementing these systems, such as reliability of
data exchange between nodes and routers, power distribution, quality of
decision making etc.

1 Introduction

As our capacity for monitoring and measuring objects, activities and
processes is growing exponentially, we also find many new applications
in our immediate environments, our bodies and our homes. Wearable
sensors for measuring our leisure and sports activities as well as our
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health conditions have proliferated and gained acceptance. Already to-
day many of us continuously carry around several sensing, computing
and communicating devices wherever we go. Also, our homes are be-
coming increasingly smart as they are equipped with cameras, motion
detectors, and environmental sensors that provide data for air condi-
tioning controllers, surveillance, and medical monitoring. The advances
of sensing, computation and communication technology are also being
utilized in military applications. While the military solutions used to
represent the cutting edge of technology, with the rapid advancement of
computing and sensing technology civilian applications are showing the
way for future solutions.
The focal topic of the book - where and how the data processing should
be performed in future systems, is a very relevant one for the private
spaces of our bodies and our homes due to three main considerations:
efficiency, privacy and dependability. The alternatives to be considered
are between the two extremes of fully centralized and fully distributed
processing. All the sensed data can be sent to a cloud server, recorded,
archived, processed and used for making decisions that are then either
returned to an actuator close to the sensor, or sent to another appropriate
agent like a hospital. At the other end of the scale the sensor nodes
themselves could do almost all the data analysis and decision making
and only selected, abstracted data is sent to outside agents such as the
hospital which is necessary to realize a required function.
Transferring data to the cloud for processing takes time and resources,
and the delays are not always acceptable in latency sensitive applications
like health-monitoring, emergency-response etc. [1]. The solution is to in-
troduce a hierarchy where time-sensitive processing is done at the edge
of the network. This is where Fog computing emerged along with IoT,
with the role to mediate resource-abundant and slow cloud computing
and agile but only partially informed edge computing. Edge computing
can offer especially low latency response by providing limited computing
resources at the very edge of the network. A more capable variant of Edge
Computing - ”Mist computing” offers the same benefits with more flexi-
bility and manageability - with Mist computing nodes forming dynamic
partnerships for data exchange and execute complex tasks requested by
other Mist, Fog or Cloud nodes. Due to added resilience against commu-
nication instabilities the Mist computing is often discussed in connection
of outdoor applications e.g. connected vehicles, intelligence surveillance
etc.
Cloud computing can be also a source of data privacy concerns. The pri-
vacy of individuals is easier protected if the sensitive data does not leave
the sensor, the body or the house where it originates. Once the data
has left the private sphere we need sophisticated, complex and expensive
technical, institutional and legal solutions to ensure a robust protection
of privacy. However, if locally processed data does not leave the private
sphere it is relatively easy to install mechanisms to guarantee that data is
transmitted to outside agents only with explicit permission of the owner.
E.g., we have used wearables with accelerometer and pulse rate mea-
surement to differentiate between different in-door activities/behaviours
with a good success rate for decision making about the physical health
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of the individual [2]. Still, it is an information which is not expected to
leave the private sphere.

The growing concern in the IoT era is the energy consumption. Even
mostly in low power mode, the 14 billion network enabled devices, which
are currently in use worldwide, waste 400 TWh (terawatt-hour) of elec-
tricity per year. With 50 billion devices in 2020, the consumption is
expected to increase by a factor 3.5 to over 1,400 TWh [3]. Since com-
munication over the network requires energy, the overhead of sending
data to a cloud server for processing is proportional to the amount of
data and the distance. On the other hand, processing data locally re-
quires more complex and costly nodes. This implies a complex trade-off,
in particular if local nodes are powered by battery or harvested energy.
While the specific shape of the trade-off curves depends on the applica-
tion details, we can identify the main factors. First, the energy for local
processing has to be compared with the energy for communication plus
the energy for cloud processing. Second, as will be explored below un-
der the term ”attention”, the possibility to tune the amount of sensed,
communicated and processed data to the actual needs in a particular
situation of the system, can save significant energy by avoiding unnec-
essary activities. Local processing has the advantage to be able to react
faster to changing needs due to the omission of communication delays.

In fact, it can be argued that sophisticated local processing not only can
lead to reduced energy consumption but also to improved adaptation and
more robust behavior. Self-awareness holds the promise that the local
node or sub-system has a comprehensive understanding of its situation
and its environment which leads to better decisions on what data to
collect, how to process it, what data to communicate and what decisions
to take. Self-awareness implies [4, 5]

– that a device can assess the quality of the sensed data, i.e. it keeps
track of precision, accuracy and completeness of the collected data;

– that the system understands its own performance, i.e. if it has per-
formed well or badly in the recent past and over a longer time period;

– that the system understands if the environment is meeting its expec-
tations, e.g. if it is in fact in an environment in which its operation
is meaningful.

An active and quickly growing area of research [6–10] explores the pos-
sibilities, costs and implications of self-awareness in various application
domains. In this chapter we will focus on the base of case studies how
self-awareness can be realized in these application domains and its po-
tential benefits.

The paper is organized as follows: The cloud, fog, and mist computing
in various application areas is examined in section 2. In section 3, a self-
aware data processing at fog and edge nodes is discussed. There are four
related case studies - health monitoring in section 4, home patient safety
monitoring and training support, described in section 5, household self-
and remote control in section 6, and intelligence surveillance in section 7.
The analysis of fog-level smart gateway implementation feasibility and
options is discussed in section 8. The final section 9 offers concluding
remarks.
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2 Cloud, Fog and Mist Computing Networks

Taking a step back and analyzing why we deploy sensing systems, we
realize that the reason for this is to collect data for decision making.
The decisions could be made by a machine or a human, based on the
type of the decision that must be made, the types and amount of data
being collected and the data processing methods must be selected. This
selection process is part of the data to decision paradigm, introduced by
Broome[11]

Table 1. Selected attributes of Mist, Fog and Cloud computing. While Cloud comput-
ing can provide the highest (conceptual) level decisions, the limited resources of Mist
computing are sufficient only for simple operational control. The Fog capabilities fall
in between allowing adaptive (functional level) decision making. The figures give only
an approximate order of magnitude.

Abstraction Distance
Delay (Processing
+Communication) Bandwidth Power

[m] [s] [b/s] [W]

Mist Operational 10−2 10−6 103 10−2

Fog Functional 102 10−3 106 102

Cloud Conceptual 106 100 108 105

With the data to decision paradigm the data collection is driven by the
decision making processes, from the data and information perspective it
does not make any difference whether the data is being processed in the
device that collects it or whether it is sent to the cloud for processing.
However, many of the functional and non-functional system parameters
are affected by the selection of the computing architecture when choosing
between Cloud, Fog and Mist computing architectures as seen in Table
1. Some of these parameters include latency of control loops, bandwidth
usage, storage requirements, security and privacy aspects, system robust-
ness and reliability. In applications where low latency from the sensor to
the data consumer (which can be an actuator) is critical Mist Computing
architecture is beneficial, which is also the case when potentially large
amounts of data are collected, which could be processed locally. Fog
Computing architecture provides value when data from multiple sensors
need to be fused and the resulting information be provided to a con-
sumer locally, which may be the case for example when the heating or
cooling requirement for a building needs to be determined based on the
occupancy level of all the rooms in the building.
Cloud computing is applicable when we are either processing big amounts
of data, which processing methods may be complex (e.g., data collected
over long period of time, when the amounts of data are too big to be
processed by edge devices or when the processing methods are too com-
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plex to be executed on edge devices) or when the data sources are so
distant that collecting data to a central location is feasible for example
when behavioural data is collected from a city population.
Fog computing brings computation closer to the edge of the network.
In Fog computing a more capable device (e.g., the gateway) bears the
responsibility for data processing or IoT application execution, regard-
less whether the application is just simple data collection or building
automation with many actuation tasks. Placing the application logic in
a gateway has many advantages, such as simplicity of coordination (the
centralized control paradigm used with Fog computing is very similar to
conventional programming paradigms), simple management of applica-
tion logic (the application logic is all concentrated in a single device) and
having access to macro-level information (e.g., house or city block) in the
application from all sensors. However, this approach also has drawbacks,
such as increased delays in applications involving control, unnecessary
high bandwidth requirements as all data must move through the gate-
way. The gateway is a single point of failure for applications that must
be executed on the network and the operation of the entire network is
dependent on the gateway.
Mist computing takes Fog computing concepts even further by pushing
appropriate computation to the very edge of the network, to the sensor
and actuator devices that make up the network. With Mist computing
the computation is performed in the microcontrollers of the sensor or
actuator nodes. The Mist computing paradigm decreases latency as de-
vices are able to communicate directly with each other (making data
directly available to the consumer) and further increases the autonomy
of a solution.
When designing a solution using Mist Computing principles a monolithic
architecture with dedicated device roles and interaction patterns is not
feasible as it severely limits the applicability of the solution. To create
a solution, which can be deployed in variable configurations and that
adapts to the changes of configurations a service based architecture is
optimal. By applying the principles of a service-based architecture, the
application can be described as a combination of services, which are
dependent on each other. Any device that has access to the network can
subscribe to a service that is offered by any of the devices on the network.
Hence in a temperature control application a heating unit can subscribe
to temperature information from all the temperature sensors that are
located in the room, which the heating unit is heating. The sensors can
start providing their temperature data directly to the heating unit using
the interval specified by the heating unit (the interval being dependent
on the properties of the room and the power of the heating unit, and the
relation of the parameters can be determined automatically at run time
by the heater). No human involvement is therefore needed for setting up
the application, simplifying network configuration.
Unlike a system with a fixed structure, where the functionality of the
components and their interaction patterns are well controlled and pre-
dictable, in a dynamic Mist Computing scenario the interactions are not
fixed as the system configuration itself is not fixed during design time.
In the context of non-deterministic interactions between systems, the
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temporal and spatial validity of the data that is exchanged is crucial for
ensuring correctness of the outputs of algorithms using the data as an
input.
Therefore, each device in the network must be aware of its location as
most applications tend to be location dependent. The necessary ’location
awareness’ can be created at installation time (by telling the device its
location), or the devices can determine their location autonomously by
determining their location relative to some existing beacons, with known
locations (for example a light fixture in a room may be aware of the room
where it is located and all other devices in the room can determine their
location based on proximity to the light fixture). Also the devices must
share a common clock or there must be a way of temporal alignment of
data to ensure temporal validity of data used in computations.
The services provided by end devices may also be requested by mobile
devices or servers, in which case the service request reaching a specific
network is routed to the device, which is able to provide the specific ser-
vice. This means that in one network end devices and a gateway may be
both providing services to the same server. As an example in a building
automation scenario we may be interested in room occupancy informa-
tion for every single room, so all the occupancy sensors in the individual
rooms must report information directly to the server, while the opera-
tion times of standalone AC units may be aggregated (in the gateway)
to estimate the total power usage of AC units in the building.

3 Self-Aware data processing

The umbrella term self-awareness encloses a number of concepts such as
self-adaptation, self-organization, self-healing, self-expression, and other
self-* properties. Different authors endow these terms with different, only
partially overlapping meanings, but probably most will agree that self-
awareness in computing devices holds the promise, that those devices
exhibit more sensible behavior under novel conditions and adapt more
gracefully to faults, failures and changing environments. Ultimately, a
self-aware system should fully understand its own situation and detect
its own misbehavior or under-performance due to

– faults, that may be caused by aging, accidents, or a physical attack,
– a malicious attack on its functions, or
– functional design errors in its hardware or software.

After deviations are detected by the self-awareness monitor, appropriate
actions can be taken by are parts of the system that are typically consid-
ered outside the self-awareness monitor proper. Such actions may range
from raising an alarm to an abrupt stop of all operations, or be a less
extreme adaptation of behavior.
Recently, many projects have been initiated to fulfill parts of this promise.
Due to the breadth and versatility of the term, its application in a
wide range of different domains with various objectives and assump-
tions have been reported under diverse labels such as autonomic [12],
nature-inspired [13], organic [14], self-organizing [15], self-adapting [16],
cognitive [17] or self-aware [18] computing.
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Since there is no widespread consensus on the meaning of these terms,
we review briefly the properties that we consider to be part of self-
awareness [4, 19, 20].

Semantic Interpretation includes an appropriate abstraction of the
primary input data and a disambiguation of possible interpretations
and an assessment of the reliability of the data [5].

Desirability Scale provides a uniform goodness-scale for the assess-
ment of all observed properties.

Semantic Attribution maps properties into the desirability scale sug-
gesting how good or bad an observation is for the system.

Attention determines which data should be collected and analyzed,
given limited resources [2].

History of a Property: Awareness of a property implies awareness of
its change over time.

Goals provide the context in which interpretation and semantic attri-
bution is meaningful.

The Purpose of a smart embedded systems is to achieve all its goals.
Expectation on Environment: The system expects a specific envi-

ronment and detects if the environment deviates significantly from
expectations.

Expectation on Subject: Similarly, the system’s own state and con-
dition are continuously assessed to detect deviations, degradation,
performance and malfunctions.

The Inspection Engine continuously monitors and assesses the situ-
ation and integrates all observations into a single, consistent world-
view.

Recalling the objectives of fog computing, namely efficiency of, privacy,
and reliability, it turns out, that self-awareness is apt to play a useful
role. Sophisticated assessment of the system’s objectives, resources, and
needs, will facilitate all three goals. First, self-awareness and overall effi-
ciency follow similar trajectories in the design space. The more complete
and correct the self-assessment is the more effective will be the usage
of resources with respect to given goals. A full understanding can lead
to minimize the amount of computation and communication necessary
close to the theoretically possible. Second, if privacy is acknowledged as
an important objective by the system, the self-awareness component can
track it and prevent unwarranted information leakage. And finally, max-
imizing local intelligence in the form of self-awareness, makes the local
system more independent and resilient against disturbances in the wider
system.
Hence, it can well be argued that self-awareness is a potentially significant
asset in a fog computing setting, but the specific trade-offs are sensitive
to the constraints and requirements of the application.

4 Case Study I: Health Monitoring

The combination of progress in sensor technology and data analytics fa-
cilitates ever more sophisticated monitoring of vital signals for medical,
professional sport or leisure purposes. Inexpensive sensors for heart rate,
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Table 2. Early Warning Scores derived from [22]

Score 3 2 1 0 1 2 3

Heart rate (bpm) <40 40–51 51–60 60–100 100–110 110–129 >129

Systolic
BP(mmHg)

<70 70–81 81–101 101–149 149–169 169–179 >179

Breath rate
(/min)

<9 9–14 14–20 20–29 >29

SPO2 (%) <85 85–90 90–95 >95

Body temp.(◦C) <28 28–32 32–35 35–38 38–39.5 >39.5

blood pressure, respiratory rate, temperature, blood oxygen saturation,
and many other parameters can be attached to the body for inferring
activities, health conditions, fitness levels and the efficiency of workouts
and training sessions. As a multi-billion Euro market for vital sign mon-
itoring with double-digit growth rates emerges [21], plenty of investment
money is poured into the sector with the consequence that more versatile
and less expensive sensor devices and monitoring equipment will become
available in the forthcoming years. Thus, data from vital sign sensors are
plentiful but must be processed quickly and efficiently.

4.1 Early Warning Score

Consider the Early Warning Score (EWS) [23, 24] system, which is a
manual tool widely used in hospitals to track the condition of patients.
It allows for the evaluation of risks early in order to take preemptive
actions and can be defined as ”a specific procedure for the early detection
of any departure from normal frequencies of clinical cases or serological
reactors of specific diseases by monitoring a sample of the population at
risk” [25]. Based on five physiological parameters, as listed in table 2,
it assigns a score between 0 and 3 to each of them, with a lower score
meaning better condition. Adding up individual scores gives the EWS
score between 0 and 15, which has been demonstrated to be a reasonable
predictor for subsequent health deterioration and even mortality [25].
In current hospital practice EWS is a manual procedure, but recently
attempts have been made to mechanize the measurement and the EWS
calculation based on wearable sensors [26]. This would have the signifi-
cant advantage that the procedure is not bound to the hospital any more
since trained medical personnel does not have to be present for perform-
ing the measurements. Continuous monitoring of patients at home or
at work becomes feasible. Anzanpour et al. have demonstrated an auto-
mated EWS system with wearable sensors, a gateway node that relays
the sensor data to a server, which in turn computes the score and make
the assessment. The server can be located in the hospital and medical
professionals can further analyze the data and take actions as required.
The advantages of this system are decreased costs, increased comfort for
the patient, and increased monitoring coverage outside hospitals. The
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main disadvantages are the inconvenience of carrying sensors and being
wired up, and a potential loss of quality in the measurements, due to in-
correct attachment, loose contacts, and faulty sensors and equipment. To
address these concerns, Götzinger et al. [27] have added the capability to
analyze the data reliability and consistency thus making automated EWS
more robust and reliable. Indeed, a general issue with the proliferation
sensors connected to the IoT in a growing number of applications and
domains is the unknown quality of the collected data. Deployed sensors
exhibit a wide range of accuracy and precision, hardware faults and finite
battery capacity limit their lifetime, and the hardware and software of
the processing and communication equipment may have their own flaws
and limitations. For these reasons it is mandatory that a system like
the automated EWS analyzes the quality of the collected data and keeps
track of meta-information. To this end Götzinger et al. describe an agent
based processing system that assesses the consistency and the plausibil-
ity of the sensor samples by a set of interacting agents that specialize
on several tasks: abstraction, history tracking, confidence derivation, and
binding [27]. They demonstrate that several typical failure conditions in
the data collection and processing chain can be correctly identified to
improve the overall robustness of the EWS system.
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Fig. 1. Architecture of the automated EWS system [22].

Anzanpur et al. take this approach a step further and propose an archi-
tecture that combines self-awareness, situation awareness, an attention
mechanism, and an adaptive resource allocation scheme, illustrated in
figure 1. Based on the sensory input and the system’s expectation on
itself and its environment a model of its own performance and relevant
aspects of the environment are built up. For a correct computation of
the EWS the sensory data is pre-processed with traditional signal pro-
cessing algorithms to suppress noise and extract relevant features. The
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pre-processing stage offers abstractions relevant to the medical applica-
tion of the raw data to the upper layers in the processing chain. The self-
awareness and situation awareness blocks in figure 1 adjust the primary
input data in two ways. First, an ambiguity and consistency analysis
identifies potential errors in the input data. Second, the activity of the
patient is estimated, since the data interpretation is dependent on the
activity pattern. The system distinguished five different activity modes:
sleeping, resting, walking, jogging, and running. Hence, taking both mea-
surement incorrectness and patient activity modes into account, the most
like interpretation of the data is derived and the corresponding EWS
value is computed.
Furthermore, the built-in attention mechanism allows for efficient re-
source usage without compromising the core objective which is a cor-
rect assessment of the patient’s health. The system considers four levels
of severity of the patient’s condition (normal, low, medium, high) five
states for the activity (sleeping, resting, walking, jogging, running), and
four different situations for the environment (indoor night, indoor day,
outdoor night, outdoor day). Depending on the position in this three
dimensional space, priorities are assigned to the activities of the system
and resources are allocated accordingly. The attention block in figure 1
computes the priority vector which is then used by the reconfiguration
configure the sensors and allocate resources properly. Its main objectives
are, first, to maximize the quality of assessment, and second, to mini-
mize power consumption. Possible parameters for sensor configuration
are sampling rate, sample precision, bias and calibration values, activity
modes like sleeping and active.
The backend system in figure 1 might include a cloud server and medical
professionals. It can do further detailed analysis, initiate or fine-tune
medication, or request the patient to visit the hospital. For us most
interesting is the possibility to provide feedback information to the self-
awareness module in the fog layer. This feedback information can be the
basis for learning, adaption and improved performance of the system.

4.2 Discussion

The automated EWS system as described in [26, 27, 22] illustrates the
benefits trade-offs of a sensitive and informed decision making in the fog
layer. A self-awareness module as described above can increase the ro-
bustness of the data analysis and the quality of the assessment of the sys-
tem’s own situation, the monitored subjects state and the environmental
conditions. This in turn is a solid basis for correct decisions regarding
the collection of further information, triggering emergency actions and
a prudent usage of resources. Obviously, all the described functions can
be realized in the server layer on a main server or a cloud computing
infrastructure. However, several aspects have to be considered in this
trade-off.

Energy efficiency By no means is it obvious which alternative is more
energy efficient. Gathering a lot of processing and intelligence locally
in the fog layer can reduce communication costs between sensors and
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the cloud server by orders of magnitude. However, computation may
be more efficient in a high performance server infrastructure because
of an optimized processor architecture, large caches, and deployment
of the latest processor family. Also, if the fog layer runs on battery
a fraction of the energy is lost in non-ideal batteries. On the other
hand, local processing allows for customization by adjusting to the
actual precision needed, by avoiding unnecessary generality in the
architecture, and by eliminating unneeded computation altogether.
Hence, we face a complex trade-off and the most energy efficient
solution may be somewhere between the extremes of all-local and
all-central computation and depend heavily on the specifics of the
application.

Latency Likewise, the latency and response times depend on a vari-
ety of factors. To begin with, not every application is particularly
latency sensitive. If it is, it makes a difference if average or worst-
case latency is more important. On one hand, fog-level computation
avoids the delays of communication between the local node and the
server, but on the other hand, the server may be significantly faster
in doing the required computation. Hence, again, the optimal solu-
tion with respect to latency is application dependent and may be
located between the extreme points of the design space.

Customization of the hardware architecture and software can lead to
significant gains in terms of optimality and efficiency. The downside
is that customization requires effort in design, validation and mainte-
nance. Hence, the optimal point cannot be located in general terms,
depends on the application and will in most cases end up somewhere
between the extremes.

Location of control If most of the processing is performed in the fog
layer, it has two implications which concern efficiency, reliability and
privacy: First, the locally generated data never leaves the local envi-
ronment, such as the person’s private home. Usually, only abstracted
data is sent to the main server and only in specific cases a full record
is requested, for instance when the case is unclear and a physician
wishes to examine the details of the situation. Second, local configu-
ration options, such as which data to sample and to store, is decided
locally and not by the remote server. Locality of data and decision
is an efficiency issue for the reasons discussed above under the terms
energy efficiency and latency. It is a reliability issue, because if even
mundane and simple operations like counting the heart beat is de-
pendent on a flawless internet connection and server infrastructure,
which makes the system vulnerable to many kinds of disturbances.
Finally, it is a privacy issue because only the fog-layer alternative
provides the option that the user can control what data and deci-
sion leaves her private sphere. When data and configuration access
rights are sent and stored at a server, it requires more elaborate and
stringent policies to protect privacy concerns.
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5 Case Study II: Patient safety monitoring and
training support

The cost of hospitalization and elderly social care is increasing world-
wide. Telecare is believed to compensate the reduced traditional clinical
interactions and home nursing. IoT technologies certainly have a role in
traditional telemedicine of chronic disease management as well as guar-
anteeing patients’ safety at home, enabling new services like technology
assisted rehabilitation. The market research company Gartner expects
that healthcare related technologies and services will have 16 percent of
IoT market business value in 2017.

Distributed and mobile sensing devices are well suitable for improving
safety of elderly and special needs patients’ at home. According to Cen-
ters for Disease Control and Prevention about 800000 patients are hos-
pitalized every year in USA due to a fall down [28]. Ibid., 25% of older
adults will fall every year in USA. In addition, it has been shown that
daily activities and cognitive and physical health might be in good cor-
relation [29][30].

Certain modern home telecare systems already provide of fall down de-
tection functionality based on wearable motion sensors, camera systems,
floor sensors [31]. Technologically it is also possible today to predict the
frailty of elderly people based on activity of daily living (ADL) pattern
analysis [32]. However, compared to conventional telecare solutions that
just periodically transmit vital signs measurement data, the real-time
and dependability requirements for such safety critical telecare solutions
are certainly higher. By conventional home telecare systems the mea-
surements are usually conducted twice a day and even by ECG signal
measurements the recording package does not exceed 50 kB. Therefore
traditional central server or cloud based data store for personal health
records (PHR) has been sufficient so far. The technological and also pri-
vacy requirements for novel home telecare solutions employing certain
motion capture or continuous ADL monitoring capabilities are signifi-
cantly stronger which leads to use of alternative - distributed data pro-
cessing architectures. It can be estimated that the raw data stream of
an inertial measurement unit (IMU) capable for sufficiently accurate hu-
man activity or free fall tracking is at least 1 kbps. Similar average data
stream can be expected from low frame rate safety observation cameras.
It is simple to understand benefits of distributed fog-like data processing
for such real-time patient safety monitoring solutions over the centralized
ones. The remote server load and communication channel throughput
can be significantly reduced through the local data aggregation and de-
cision making. Also, from the clinical point of view, only the aggregated
metainformation i.e. number of active hours, mean activity level, sleep
quality and presence of special events like fall downs have significant long
term value worth for preservation in PHR. The rest of raw data has a low
clinical value and rises the privacy concerns if the data is transmitted
outside of the private areas.

Nowadays the smartphones are frequently used as telemedicine gate-
ways and wireless communication is widely used. For the majority of
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sensor signals i.e. temperature, conductance, movement and position, il-
lumination, the wireless transmission consumes 100-1000 times more en-
ergy than processing that is also motivating the local data aggregation.
Distributed fog computing also increases the dependability of wirelessly
networked systems. Today Bluetooth Low Energy, ANT+ and different
IEEE802.15.4 standard compliant radios are mainly used for the per-
sonal area networking. Due to the throughput limits the real-time data
streaming may seriously affect the reliability of the communication. Fog
computing reduces such risks as well because because of relaxed require-
ments for the communication channel throughput. Even more, if the
real-time critical data processing is done locally, redundunt communica-
tion channels i.e. over wireless MESH network can be effectively used. A
typical distributed ADL safety monitoring system is shown in Figure 2.

Fig. 2. ADL safety monitoring and estimated data rates of various I/O channels.

Theoretically it would be possible to acquire required user activity, lo-
cation and falling information from one wearable IMU device and pro-
cess the data within the same sensor device. Modern IMUs usually have
built-in free fall event detection. Combined use of linear accelerometer,
gyroscope and magnetometer data should be sufficient for dead reckoning
based movement monitoring. In practice sensor fusion with alternative
smart home sensors still has to be used because of internal errors of in-
ertial motion sensors. In real life human fall down cannot be sufficiently
reliably detected with inertial sensors only and due to nonlinearities of
IMUs the dead reckoning movement tracking is reliable just for some
meters. Due to the unpredictable network delays the described sensor
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data fusion cannot be made at a remote location. Therefore the sensor
data fusion, fog-based aggregation and possible reasoning at the gate-
way device is the most appropriate solution for intelligent home telecare
systems supporting ADL analysis and hazard detection.
Reablement through the support to physical activities extends the inde-
pendent living time and therefore reduces the needs for expensive tra-
ditional social care. For example, it has been reported cumulative cost
savings of 30% in 2-5 years through the trainings [33]. However, reable-
ment process itself that includes human assisted trainings and validation
of new skills is costly and time consuming. It is expected that wear-
able sensors and other IoT devices will enable teletrainings and safety
validation of home-basedexercising.

Fig. 3. Home-based training assistance.

Remote validation of physical training exercises through the home tele-
care systems may be possible the near further. Such technological solu-
tions would significantly reduce the needs for physiotherapists and clin-
ical visits. For example, specific home exercising is required during the
stroke recovery [34] and after joint replacement surgeries [35]. In both
cases rather simple exercises has to be performed to avoid irreversible
processes of joint stiffening. For the training efficacy certain exercising
speed and amplitude have to be preserved which was not possible earlier.
Today the training process may be well monitored with wearable IoT de-
vices giving real time feedback to the user if the exercising is accurate
or not. It would be logical to connect such training assistance unit with
the above described home telecare system, which will effectively enable
the targeted machine-assisted exercising. Essentially the system should
transmit the quantity and quality of performed training exercises to the
PHR cloud server where the clinicians and physiotherapists can access



Self-Aware Fog Computing in Private and Secure Spheres 15

the data and make further treatment decisions as seen in Figure 3. As in
a previous ADL monitoring example, it is feasible to process the sensor
data locally in the fog to minimize the load of communication channels
and save resources of PHR repository server. In this particular case the
decision about exercising correctness has to be essentially made on-site.
Local decision support is required to provide exercising feedback in real-
time, without noticable latency, and to meet safety critical dependability
needs of the full data path. The most practical is to implement training
assessment processes in the gateway device which usually has sufficient
amount of the computing power and can access to the context infor-
mation regarding the environment and user. Fog-based local decision
support also preserves the user privacy because minimizes the personal
information amount to be transmitted to the remote locations.

6 Case Study III: Smart House

In the chapter we analyze the experience and lessons learned from the
multi-year use of a smart house solution. The focus is on smart house
energy management (HEM).
Main principles used in implementation of this smart house solution are
following:

– Computations are made up close to the sensors and actuators, both
for security as well as the latency reasons. Home gateway (a fog com-
puting node) is the place where they are held. The Cloud computing
is used for analyzing big amount of data and for decision models
developing and testing.

– Self-Awareness is widely used. System adapts to the specific sensed
situation. The system is very cautious with respect to non-authorized
objects. Process of the authorization the object is two-step - at first,
the system administrator has to introduce the device to the system,
and only after that the device will be added to the system. The sys-
tem continuously scans the devices accepted and in case of mismatch
refuses to interact with the device.

Abowd and Day [36] introduced the primary context types:
– Location – location data from the GPS sensor,
– Identity – Identify object based on the RFID tag,
– Time – read time from clock, also daytime,
– Activity – what activities are in progress?

There is also a secondary context type, which is derivative information
that we can use based on the primary context. For example, using Iden-
tity, we can obtain considerable information about a person in social
networks and the internet.
In our case, the context information is the place where we can begin
our analysis. Our system has ability to react to the new situations and
learn from results. For our approach, the adaptive and self-organizing
properties are exceptionally valuable. Instead of attempting to find the
most optimal solution based on the available information, we attempt
to use self-organization methods. For example, it is known that house
energy planning is a highly complex and difficult problem. The situation
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can change notably quickly, and our perfect plan fails. Instead of careful
planning, we attempt to use adaptive techniques. For example, we can
obtain information about energy needs from the sensors and quickly use
stored energy (Tesla Powerwall).
Before we go to real examples lets look at the concept of the smart
solution.
The smart-solution concept is notably important in the context of this
example. Smart refers to quick intelligence. People are considered smart
when they show up a rapid ability to respond intelligently to different sit-
uations. As we observe, smartness is strongly connected with the concept
of intelligence. It is a long debate regarding whether we can exhibit the
intelligence to computers or software. Todays computers can do many
things that require intelligence, such as driving a car off-road or on city
streets.
The term intelligent systems is used to describe the necessary level of
capabilities to achieve the system goals. Intelligence has been scientifi-
cally categorized as a biological stimuli response mechanism. In our case,
we obtain the stimulus from the environment using different sensors and
make a response using the knowledge that we have and the actuators
that are connected to the system. During her lifecycle, the system learns
from experience. The learning ability is precisely what makes the system
intelligent. Computer power and the amount of information and sensors
make a system smart.
Smart solutions are composed of smart objects [37]: ”One definition of
smart objects is a purely technical definition – a smart object is an item
equipped with a form of sensor or actuator, a tiny microprocessor, a com-
munication device, and a power source. The sensor or actuator gives the
smart object the ability to interact with the physical world. The micro-
processor enables the smart object to transform the data captured from
the sensors, albeit at a limited speed and at limited complexity. The com-
munication device enables the smart object to communicate its sensor
readings to the outside world and receive input from other smart objects.
The power source provides the electrical energy for the smart object to
do its work.” These objects can learn and adapt to different real-world
situations, and different machine learning algorithms are used [38].

6.1 Case study object characterization

This is a six-member family living house, where electricity use is high
as seen in Figure 4. The system has two heat pumps, gasoline power
generator, and three oil radiators. The largest consumers of electricity
are water heater, washing machine and stove. The house usage is irregular
because the residents are working adults, and some days they do not use
the house. All this makes it difficult to optimize energy use, but gives a
great economic effect.
Traditional approach to make house energy systems is to define system
requirements, designing solution and implement solution by professionals
team. All this is costly and needs time to get results. Typically, the
end user will not be able to actively influence the system behavior and
functionality. In our approach, we choose another path.
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Fig. 4. Typical weekly electricity consumption in house.

1. We enable intelligent decisions by liberating device data across op-
erations.

2. Decisions are defined by user using rules.
3. System collects decision data with context information, analysis in-

formation and makes recommendations.

One example that can be used to optimize the use of energy, is the heating
device duty time. The aim is that upon returning home, the family has a
house comfortably warm, while the heaters are not turned on too early.
The house settings user interface4 is presented in Figure 5. The interface
has both informational role (room temperature, light level, humidity),
as well as the characteristics of actuator triggering role. For example, if
the user clicks a camera icon, he/she gets the camera video stream or in
the case of clicking a plug icon the light or heat pump will be toggled.
Users of the smart house are very satisfied with the solution due to
number of reasons:

– Security. The house has a security system to detect and alarm in case
of smoke/fire. There are day/night surveillance cameras to monitor
the household in habitats absence.

– Convenience. The house itself (heating, airing) is continuously tuned
according to user needs.

– Money savings. Controlled heat pumps and optimized usage of the
water heater reduce costs.

4 Telia Eesti AS https://www.telia.ee Smart Home solution. The service marketing
has been discontinued since 2017
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Fig. 5. Family living house settings user interface.

We plan to complement the solution to the solar panels, energy storage
and energy purchase from the market. It is also planned to set up a
small-scale local energy grid.
In conclusion, it can be said that the principles set in this section, turned
out to be fruitful. Decisions should be taken as close as possible to the
equipment following the fog computing paradigm and using as much as
possible the context information. Only in case of large volumes of data
the advantages of cloud computing should be exploited.

7 Case Study IV: Intelligence Surveillance,
Reconnaissance - military sensing systems

As stated in the beginning of the chapter military sensing systems are
also undergoing an architectural change, driven by the enhanced capa-
bilities of the system components. While Network Enabled Capabilities
(NEC) was a compelling vision in the very beginning of the century,
we can say in 2016 that the technology components and architectures
are catching up with that vision. This section describes an Intelligence,
Surveillance and Reconnaissance (ISR) solution concept, which builds
upon the concepts of Mist and Fog Computing and that is very close to
the NEC vision introduced more than a decade ago.
In the European Defense Agency’s IN4STARS project the Research Lab-
oratory for Proactive Technologies developed an ISR solution prototype,
which relied on Mist and Fog computing methods. The task of the so-
lution was to provide enhanced situation awareness for units in the field
and to remote intelligence operatives. The sensor system deployed in the



Self-Aware Fog Computing in Private and Secure Spheres 19

field processes collected data locally at the sensor level using Mist and
Fog Computing principles and delivers only situational data and infor-
mation that has been requested by the users to the users, following the
Data to Decision [11] paradigm.
Unlike the classical system approaches that assume a central coordinat-
ing agent, the sensor system architecture applied in the project builds
upon a mixed Fog and Mist computing approach, where the individual
Mist Computing nodes are autonomous. When a request for information
is made to a deployed ISR system, any node that is capable to provide
the requested information with an acceptable cost will respond to it.
The specific sensor modalities needed for providing the requested infor-
mation (e.g. detection and identification of tracked vehicles) need not be
co-located with the system providing the information, instead the infor-
mation may be fused from several sources, including both ground based
as well as airborne sources. To enable this kind of operation the nodes
must maintain a certain level of self awareness as well as awareness of
the system itself, in order to find the required sensor sources for generat-
ing the information requested by the information consumer. In order to
achieve and maintain the required self and group awareness the individ-
ual systems must be able to communicate directly and to request services
from other systems. The conceptual system configuration is depicted on
the Figure below.
Applying the D2D approach in a Fog Computing paradigm means that
the requests for situational information made by the information con-
sumer can be directed to the sensor assets in the field, closest to the
area of interest. The routing of information to the specific information
provider may be done using many alternative methods, e.g., geo-routing,
using a central service directory or some other service discovery mech-
anism. Based on the information requests, the algorithms are primed
in the computing device providing the information service (e.g., sensor
or fusion node). Service requests are made to the data sources (sensor
nodes) from which data is needed for computing the requested situational
information. Once the information has been computed it is provided to
the consumer.
The sensor system was built as a wireless sensor network with a dynamic
network structure and functionality and ad hoc communication paths.
Depending on the information request received by the system the ap-
propriate Mist and Fog Computing algorithms are triggered locally to
process the collected sensor data and to deliver the requested information
to the user. Every sensor that was part of the solution was equipped with
a local computation unit and a wireless communication interface, making
it an independent node in a Mist Computing solution. The multimodal
senors (seismic, infra-red, acoustic, visual, magnetic, etc.) employed in
the solution made use of in-sensor signal processing, including novel de-
tection and classification algorithms based on in-depth analysis of sensor
data. The solution comprised several sensors, which were assembled into
a system in an ad-hoc manner, enabling real-time configuration and be-
havior adaptation.
In order to assess the locations and types of the detected objects with
a higher precision and to service the situational information needs of
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Fig. 6. Architecture of the automated EWS system [22].
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Fig. 7. Architecture of the automated EWS system [22].



22 Kalle Tammemäe, Axel Jantsch, et al.

users a Fog Computing layer was added, which performed in-network dis-
tributed data aggregation and fusion, which relied on a service-oriented
middleware based on a subscription model. At the Fog layer data fusion
methods were applied, with on-demand data to sensors, collecting data
needed for a given fusion operation based on the information requests
that had been made by the user. This logical system structure enabled
hierarchical buildup of situation information by distributed fusion and
aggregation. In order to achieve correctness of data time selective com-
munication was used to provide temporally aligned data for fusion and
aggregation algorithms at the Fog layer.

Fig. 8. Architecture of the automated EWS system [22].

The distributed processing implemented using Fog and Mist Computing
principles was enabled by the Proactive Middleware, which has been de-
veloped at the Research Laboratory for Proactive Technologies at Tallinn
University of Technology. ProWare offers the services of data provider
discovery, on-line data validation and service contract agreements be-
tween data providers and consumers. Such an architecture facilitates pre-
dictable operation also in a changing system configuration. With these
features ProWare enables dynamic creation of data and information ex-
change relationships in a distributed network using a subscriber model.
ProWare solves one of the major challenges in a distributed computing
scenario, which is ensuring the temporal and spatial validity of data -
making sure that the data used in computations originates from the right
location (i.e., from the correct sensor node) and is temporally coherent
with other data used in the computation. The latter is very critical in
sensor data fusion applications, but difficult to achieve when the fusion
is performed in a distributed manner using Mist and Fog principles.
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The sensor systems that made up the ISR prototype can be categorized to
ground sensors and airborne sensors, below both types are described and
the operation of the systems discussed. The object localization solution
based on acoustic arrays utilizes autonomous acoustic arrays working
together for localizing detected objects. The same arrays can be also
used for acoustic classification using any of the available classification
methods as we have also presented in our previous work [39].

8 Requirements and architecture for a smart
gateway based on hierarchical temporal memory

Common in all case studies above is the need for an intelligent pro-
cessing unit capable of learning, model building, behavior adaptation,
and anomaly detection. The backpropagation learning algorithm in tra-
ditional NNs is slow [40] and requires intensive use of floating point
arithmetic (e.g. to calculate sigmoid function), which makes it ill suited
for applications where ’human-like’ quick reaction and continues learning
ability is expected.
Among contemporary continuous learning algorithms the Hierarcical Tem-
poral Memory (HTM) of Numenta, inspired by the architecture of the
neocortex, has proved to be successful in comparison with many other
detector algorithms [41]. Moreover, the Numenta approach is attractive
due to a smaller computational load where instead of complex floating
point calculations simple fixed point and integer arithmetics is used. This
property makes HTM attractive to be tested in application areas where
memory, processing performance and energy are limited.
In this section we discuss an approach for the design of HTM based
microcontroller and SoC computing platforms for fog computing gate-
ways, to meet the required processing capabilities, memory, and energy
consumption.
As illustrated in Figure 9 we consider gateways responsible for the fol-
lowing functions and actions:

– Edge input devices control and power management;
– Input data fusion and time-stamping;
– Data abstraction and conditioning;
– Encrypted data exchange with cloud service;
– Data encoding to Sparse Data Representation format for HTM pro-

cessing (spatial and temporal pooling of data);
– Continuous/dynamic model building, prediction and anomaly detec-

tion;
– The first level reasoning and decision making about the situation;
– User feedback and interaction (Human-Computer Interface)
– Introspection: The service quality over time and the history of ac-

tions.
Microcontroller/microcomputer platforms might be capable for aggre-
gating sensory data and run the HTM (Hierarchical Temporal Memory)
based data processing (prediction and anomaly detection). As an ex-
ample of mobile platforms, even the ARM microprocessor based smart-
phones could be viable solutions due to great connectivity and abun-
dance of memory. Still, the on-line massive computations required by
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Fig. 9. Smart Gateway according to the Fog computing paradigm. C - controller, PIR -
Passive Infrared Sensor, PR - Photo-resistor, D2D - Device-to-Device communication,
HCI - Human-Computer Interface.
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HTM might be largely impeded due to multiple regular applications of
the smartphones. Their energy reserve can’t guarantee 24/7 readiness
and in addition, continuously on-line devices pose a risk to confidential-
ity and privacy [42]. Due to that stationary, single-board-computers like
Raspberry Pi[43], Pine 64 [44] or Odroid C2 [45] might be preferred.
Currently, the HTM tool NuPIC can be compiled to run on desktop or
laptop platforms, there are limited attempts to get it working on single-
board computers like Raspberry Pi 3 or on an Android platforms, which
are actually the most attractive gateway modules in Fog computing due
to their low price, high availability and good community support. As a
result, NuPIC is available for RasPi 3 platform only since June 2016[46].
Despite mentioned above positive properties the pure software implemen-
tation of HTM is resource demanding. Although the basic operations are
simple the need for memory and performance in real-time situations is
high (GigaBytes of memory, multicore processors etc). Due to that na-
ture the HTM is not applicable at far edges of the network but it is rather
a gateway level of functionality to manipulate higher levels of real-time
data which is already pre-processed, filtered, averaged, and fused from
raw data at edge sensor nodes. Still, there is no good comparative study
of energetic aspects of different NN and HTM algorithms.
HTM functionality equipped gateway might be used to learn and assess
the patient safe behavior at home. Still, the behavior of humans is in
great extent defined by environmental and social situations outside of
household, depending of the media influence, environmental conditions,
political situation, emerging trends of society etc. All this in various ag-
gregations is influencing the daily human behavior. Therefore, the rea-
soning abilities of the local (in-house) processing gateways or nodes re-
main always limited due to lack of holistic information i.e. the lack of the
”big picture”. The higher level predictions has to be done in cloud envi-
ronment which does possess necessary information, reflecting all possible
ramifications of the general situation back to the gateway nodes.
The computing capacity problem will be relaxed as the processing capa-
bilities of microcontrollers are improving following the Moore’s law. The
same is valid in case of various systems on chips (SoC). E.g. the high-end
programmable logic SoC-s from Xilinx Zync-7000 family have internal
block memory capacity till 26.5 Mbits (dual-port, programmable, built-
in optional error correction) also they carry Dual-Core ARM Cortex-A9
microcomputer IP [47].
In SW implementation of HTM a neural connection i.e. synapse is a data
record consisting of an address of source neuron along with additional
dynamic information e.g. permanence and activation history. Here, the
permanence represents the stages of growth of the synapse [48]. All this
information has to be present in working memory to guarantee efficient
processing.
As an example, the Numenta NuPic HTM model tool NuPIC [48] pro-
cessing network consists typically of 216 neurons, which is matching well
to number of neurons in mammalian cortical column at layer 3 [49].
Thus, an average HTM module (approximate equivalent of cortical col-
umn layer 3) consists of 2048 (mini)columns, 32 neurons per column i.e.
216 neurons× 20 dendrites per neuron× 40 synapses per dendrite. All
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together, 52 428 800 words are required to record all possible connections
(synapses) in a network. When using regular 32-bit word length, where
16 bits are used as source neuron address of the synapse and 16 remain-
ing bits as a permanence and the activity history value of the synapse
then the minimum amount of allocated memory is 209 715 200 bytes.

Modeling more complex neurons with hundred of dendrites each with
hundreds of synapses the memory requirement can easily exceed a giga-
byte barrier. It is still far from the capacity of top neurons of a human
cortex - a single pyramidal cell can have approximately 12,000 dendrites
and receive around 30,000 excitatory and 1700 inhibitory inputs [50].

In addition there are values to represent column activation, state of every
neuron, threshold values for dendritic segments and columns etc. Finally,
there are parameters helping to control and distribute loads over all
minicolumns and neurons in the network. Processing load is not as serious
problem because due to sparsity principle only 2% of neurons will become
active after the spatial pooling stage, predicting the next state (input).

A block memory of Xilinx ZYNC SoC with size 8KB allows to record
and keep connectivity information about at least a single artificial neuron
with its many hundreds of connections (assuming each word to represent
source address of synaptic connection and permanence value). The top
FPGAs of Xilinx Zynq-7000 series contain many hundreds of block mem-
ories (755 in ”high”-class XC7Z100, 140 in ”consumer”-class XC7Z020)
which allows HW implementation of regular HTM. Still, the connection
resources on FPGA might become an obstacle although inter-neuron
connections can be implemented using Time Division Multiple Access
(TDMA) manner using serial lines only. Integrated multi-core ARM mi-
croprocessors are capable of processing even larger amounts of neural
processing data in external memory, the drawback is remarkably higher
energetic cost.

Still, the NN processing in regular HW/SW technology is power-hungry
and not suitable for applications where available energy and memory
space is limited. Designer of the power limited system has either de-
crease the available ”smartness” of the nodes or insert learning capable
nodes only to locations with low-speed real-time requirements (allowing
majority of time to exploit the sleeping mode), leaving power hungry
tasks to higher level gateways or servers with abundance of power.

As an example, a self-driving car has to process huge amount of high-
resolution mapping, visual, radar and sensory real-time data within tiny
fraction of second (faster than a human driver) to guarantee safe driv-
ing in unpredictable traffic conditions. In contrast, the processes inside
artificial or natural living environments are safe when sampling and de-
cision making intervals have period in seconds or even minutes. In such
a circumstances the usage of sleeping mode allows drastically reduce the
overall power consumption (peak power demand has to be satisfied, of
course). Using analogy in living beings taxonomy then self-driving car
processing speed could be comparable with processing speed of cheetah
visual cortex, processes in living environment are advancing in turtle-
speed. In insect world taxonomy the extremes might be the fly and
caterpillar.
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The typical 8- and 16-bit microcontrollers used at the edge of the system
(in sensory nodes) are capable only for sensory signal filtering, rudimen-
tary fixed algorithm processing and communication with higher level
nodes due to very limited memory, processing and power resources. Still,
quite complex local regulatory functions are possible at edge nodes, e.g.
various PID-controllers fall into this category.
E.g., the highly popular 32-bit ARM Cortex-M (microcontroller proces-
sor) family devices are well suitable for home automation tasks due to
integrated peripherals and power efficiency. The only problem is a lim-
ited integrated memory (up to 256KB SRAM in TM4C129x MCU series
[51]), which restricts their usability in neural or cortical learning type of
algorithm based applications where the number of tightly interconnected
neurons alone might be measured in thousands.
Often more than a single input signal has to be followed to discover an
abnormal behavior of the subject. E.g. in case of rehabilitation care the
inertial measurement units (IMU) are used to assess body part move-
ment. The movement might be wrong in any of six degrees of freedom,
also along the time dimension (too slow or too fast), which is difficult to
represent as an algorithm. Instead of that six separate HTMs, implement-
ing six cortical columns, might be able to follow all signals concurrently
and the decision making can be based on aggregated anomaly score of
those HTMs.
The HTM is not ready to exhibit full capabilities of the mammalian cor-
tical column. Still, it has an useful set of properties to be exploited at
fog level gateways. The HTM enriched gateways can be responsible for
input abstraction, classification, anomaly detection and communication
with cloud level processing nodes, describing the observable situation in
high level abstract terms like ’normality’, ’anomaly’, ’alertness’, ’ atten-
tion’, health’, etc.

9 Conclusion

In this chapter we have confirmed the observation of many authors
that hosting signal analysis and some intelligence in the sensor nodes
(edge/mist computing) and the local gateway (fog computing) is bene-
ficial in a variety of applications with respect to performance, reliability
and privacy. The emerging concepts of self-awareness promise to bring
a new level of sensible and adaptive behavior to the local sensor and
gateways. In all four case studies these potential benefits of local intel-
ligence are apparent even if they have not been fully realized. However,
although the qualitative arguments for distributing computation among
the hierarchy levels are compelling, serious challenges remain:

– The involved trade-offs are poorly understood in quantitative terms.
Moving a piece of computation from the cloud to the smart gateway
or to the sensor node involves a significant change in the communica-
tion needs but also in the computation efficiency, because computing
platforms are radically different in the different locations. A holis-
tic trade-off analysis will depend on the details of the application,
the involved platforms and the protocols. It has rarely been done for
specific cases and is altogether missing in a generally applicable way.
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– Although we have many examples of sensor node and gateway ar-
chitectures, there is no common view on what resources are required
and how the architecture should be organized. Some platforms have
become fairly popular, but it seems that the field is moving quickly
and requirements are shifting. Thus, convergence on one or two win-
ning platforms is not imminent.

– No method with supporting tools have been proposed that can guide
a an application engineer through the design of application while
exploring the trade-offs due to the choice of platforms, functionality,
and the distribution of computation across the hierarchy of mist, fog
and cloud computers.

In this chapter we have illustrated the benefits of intelligence and self-
awareness in mist and fog computing and we have sketched a possible
architecture for an gateway that meets the requirements as we under-
stand them today. However, this also highlights that there are signifi-
cant challenges and work to be done in this still young but very dynamic
emerging field.
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