
22

Toward Smart Embedded Systems: A Self-aware System-on-Chip
(SoC) Perspective

NIKIL DUTT, University of California Irvine
AXEL JANTSCH, TU Wien, Austria
SANTANU SARMA, University of California Irvine

Embedded systems must address a multitude of potentially conflicting design constraints such as resiliency,
energy, heat, cost, performance, security, etc., all in the face of highly dynamic operational behaviors and
environmental conditions. By incorporating elements of intelligence, the hope is that the resulting “smart”
embedded systems will function correctly and within desired constraints in spite of highly dynamic changes
in the applications and the environment, as well as in the underlying software/hardware platforms. Since
terms related to “smartness” (e.g., self-awareness, self-adaptivity, and autonomy) have been used loosely in
many software and hardware computing contexts, we first present a taxonomy of “self-x” terms and use this
taxonomy to relate major “smart” software and hardware computing efforts. A major attribute for smart
embedded systems is the notion of self-awareness that enables an embedded system to monitor its own state
and behavior, as well as the external environment, so as to adapt intelligently. Toward this end, we use
a System-on-Chip perspective to show how the CyberPhysical System-on-Chip (CPSoC) exemplar platform
achieves self-awareness through a combination of cross-layer sensing, actuation, self-aware adaptations, and
online learning. We conclude with some thoughts on open challenges and research directions.

Categories and Subject Descriptors: C.2.2 [Smart Embedded Systems]: Computing Architecture

General Terms: Smart Embedded System, System-on-Chip, Run-time System, Self-Awareness, Self-
Adaptation, Autonomous System

Additional Key Words and Phrases: Index terms—dynamic power management, dynamic reliability man-
agement, reliability modeling, variability, resilience sensor, resilience estimation, prediction

ACM Reference Format:
Nikil Dutt, Axel Jantsch, and Santanu Sarma. 2016. Toward smart embedded systems: A self-aware system-
on-chip (SoC) perspective. ACM Trans. Embed. Comput. Syst. 15, 2, Article 22 (February 2016), 27 pages.
DOI: http://dx.doi.org/10.1145/2872936

1. INTRODUCTION

The ubiquitous deployment of computing in virtually every facet of today’s society has
led to the colloquial usage of terms as such “embedded computing,” “CyberPhysical
Systems,” and, more recently, the “Internet of Things (IoT).” At the heart of such
systems are software/hardware computing platforms that interact with the physical

This work was partially supported by the National Science Foundation, under grant CCF-1029783 (Variabil-
ity Expedition).
The authors are in alphabetical order and contributed equally to this manuscript.
Authors’ addresses: N. Dutt, Department of Computer Science, Zot Code 3435, Donald Bren School of In-
formation and Computer Sciences, University of California, Irvine, Irvine, CA 92697-3435, USA; email:
dutt@ics.uci.edu; A. Jantsch, Gußhausstraße 27-29, 1040 Vienna, Austria; email: jantsch@ict.tuwien.ac.at;
S. Sarma, Computer Science Department, University of California Irvine, 8730, Costa Verde Blvd, Apt #
2459, San Diego, CA -92122, USA; email: santanus@uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 1539-9087/2016/02-ART22 $15.00
DOI: http://dx.doi.org/10.1145/2872936

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.1145/2872936
http://dx.doi.org/10.1145/2872936

22:2 N. Dutt et al.

world through sensors, actuators, communication/networking, and decision-making
engines. These systems range from the tiniest of embedded devices (e.g., small sensor
motes [Hengstler 2007; Polastre 2005; Fang 2005; Stoianov 2007; Shnayder et al. 2005;
Sudevalayam and Kulkarni 2011]) to complex system-of-systems, such as autonomous
swarms of robots [Rubenstein et al. 2012, 2014] and complex human-in-the-loop sys-
tems (e.g., an Airbus 330 [INAGAKI 2005; Hoffman et al. 2007]). For the purpose of
this article, we refer broadly to all of them as “embedded systems.” A common charac-
teristics across this diverse set of embedded systems is the need to operate correctly
in the face of highly dynamic environmental conditions and changing application char-
acteristics, as well as changes in the computing platforms itself (e.g., degradation or
failures). Moreover, depending on the embedded system context, their architectures are
highly customized to achieve the often conflicting constraints of performance, energy
efficiency, cost savings, reliability, and the like. Furthermore, the complexity of the em-
bedded software and hardware can vary over several orders of magnitude depending
on the application domain, the usage context, and their physical deployment. Conse-
quently, designers of embedded systems aim to increase the level of “smartness” in these
systems to adapt seamlessly to changes, increase the level of autonomous operation,
and incorporate learning strategies. Depending on the type of embedded system, these
needs typically translate into guarantees for functional and nonfunctional constraints,
adaption to dynamism, and the ability to tolerate failures.

With the increasing complexity of tasks faced by embedded systems, the designers
of software and hardware systems have naturally borrowed concepts from biological
systems in an attempt to mimic their ability to be self-aware, evolve, and achieve a high
level of resilience in the face of highly dynamic and unpredictable environments. A large
body of research in intelligent autonomous systems, agent-based distributed systems,
and advanced control theory have all used variants of the phrase “self-x,” where “x”
variously refers to capabilities such as awareness, healing, optimization, adaptation,
and the like. Unfortunately, with this alphabet soup of terminology, there is little
consensus of what these terms mean in the context of software and hardware systems
and for embedded systems in general. To disambiguate loosely used terminology in
the embedded systems literature, in Section 2, we begin by reviewing notions of self-
awareness, self-adaptivity, and autonomic systems in the large body of the literature in
cognitive sciences (Section 2.1) and on large software systems (Section 2.2), embedded
systems (Section 2.3), and Systems-on-Chips (SoCs; Section 2.4). We then propose a
taxonomy in Section 3 to structure the terminology and related work.

In spite of the bewildering diversity of embedded systems in general, at the core of
all these embedded systems are integrated circuits made of silicon. As the number and
variety of those devices grow exponentially, it becomes increasingly harder to guar-
antee perfect functionality and performance over the entire lifetime of these devices.
This article will therefore focus on Smart Embedded Systems (SESs) primarily from
the perspective of a SoC, and the associated challenges for developing software and
hardware platforms upon which reliable, autonomous, and SESs can be built.

Integrated circuit technology has reached the nanoscale era, introducing a multi-
tude of challenges stemming from the end of perfect Dennard scaling [Esmaeilzadeh
et al. 2011; Raghavan et al. 2012; Ferdman et al. 2012] and worsening process
variations [Borkar et al. 2003]. “Dark silicon” will be a defining feature of future SoCs,
where only small portions of a chip may be powered on at a time in order to manage
power density and heat [Esmaeilzadeh et al. 2011]. Further complicating matters,
systems are typically not very energy proportional due to high static power and a
dearth of active low-power modes aside from CPU Dynamic Voltage/Frequency Scaling
(DVFS) [Barroso and Hölzle 2007; Barroso et al. 2013]. The dark silicon phenomenon
and the need for greater energy proportionality and efficiency are major driving forces
behind research and development in many-core SoCs and heterogeneous devices,

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:3

architectures, and systems. In particular, many-core computational platforms already
face significant resiliency challenges, with errors resulting from manufacturing
process variability, exponentially increasing power dissipation and heating, environ-
mental effects (e.g., radiation-induced soft errors [Baumann 2005]), and aging/wearout
[Bernstein et al. 2006]. These problems are exacerbated in the nanometer era with
exploding core counts and on-chip resources. The combined systemic and random
effects in nanoscale technologies result in high variability (and thus higher error
rates) manifested from the circuit level all the way to the architecture and system
levels [Borkar et al. 2003], requiring new strategies for ensuring application resilience
when executing on these computing platforms. Therefore, in Section 4, we present
the CyberPhysical System-on-Chip (CPSoC) platform as an exemplar for a self-aware,
sensor-actuator-rich SoC platform that incorporates some of the key features required
to deliver SESs, including: dynamic balancing of multiple objectives, effective man-
agement of limited on-chip resources, self-monitoring and self-awareness to enable
adaptation, and learning mechanisms to allow the system to evolve over time.

We conclude in Section 5 with a brief discussion of opportunities, challenges, and
research directions for the overall topic of SESs.

2. SELF-AWARE, SELF-ADAPTIVE, AND AUTONOMIC SYSTEMS

2.1. Theories of Cognition

Cognitive science has a long and rich history of theories about the mental faculties that
link perception to action [Vernon et al. 2007]. Two main categories can be distinguished:
cognitivist and emergent systems approaches. The cognitive paradigm is based on the
classic view that cognition is a “kind of computation” that uses symbolic and abstract
representations of the real world and that algorithmically calculates actions [Pylyshyn
1984]. In contrast, proponents of the emergent systems paradigm, which includes con-
nectionist, dynamical, and enacting systems approaches [Vernon et al. 2007], argue that
cognition is an emerging phenomenon in self-organizing, dynamic systems that inter-
actively identify and use regular patterns in the environment to continuously adapt,
react, and anticipate [Thelen and Smith 1994; Clark 2001]. Cognitivist approaches
assume the existence of an objective reality that should be abstracted and symboli-
cally represented, whereas the emergent systems community views the system and its
environment as mutually dependent and continuously co-evolving.

The CPSoC approach described in Section 4 resembles and is inspired by the emer-
gent systems paradigm in that it provides for simple faculties of monitoring, actuating,
and control in a bottom-up manner to allow larger systems to evolve more potent
capabilities as individual and as groups of collaborating systems. However, it hopes
to short-cut long learning cycles by equipping systems with key capabilities without
waiting for their emergence through evolution.

One cognitive theory of consciousness, which falls into the emergent systems camp
and which is relevant for our topic, is Baars’s Global Workspace Model (GWM) [Baars
1989]. Many parallel processes operate unconsciously and concurrently, but only one, or
one coalition of processes, obtains access to the global workspace at any time, allowing
it to broadcast its message globally and thus to marshal many global resources for
its purpose. Hence, the global workspace serves to allocate and synchronize limited
resources. Since its formulation, many phenomena predicted by the GWM have been
confirmed in experiments [Baars 2002; Baars and Franklin 2009] making it today the
top contender for explaining consciousness.

2.2. Awareness in Software Systems

The insight that a sense of awareness can facilitate robust and dependable behavior
even under radical environmental changes and drastically diminished capabilities have

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:4 N. Dutt et al.

Fig. 1. Hierarchy of self-* properties [Salehie and Tahvildari 2009].

inspired researchers to study the utility of cognitive features like adaptivity, awareness,
or consciousness for robots, large scale-software systems, and embedded systems. The
benefits are more obvious for some features such as adaptivity but less for awareness or
consciousness. Hence, adaptivity, and in particular self-adaptivity, has been the focus
of much research. In complex software systems, self-adaptivity is expected to help
in managing the complexity [Salehie and Tahvildari 2009]. Manual troubleshooting,
reconfiguration, and maintenance are demanding and error prone. Above a certain
complexity of the system, these become infeasible. Self-adaptive behavior is triggered
either by changes of the system’s self (internal causes like faults or mode transitions)
or by changes of the system’s context (external events like changes in user request rates
or user objectives) [Salehie and Tahvildari 2009].

In 1997, a DARPA Broad Agency Announcement offered a definition of self-adaptive
software: “Self-adaptive software evaluates its own behavior and changes behavior
when the evaluation indicates that it is not accomplishing what the software is in-
tended to do, or when better functionality or performance is possible” [Laddaga 2001],
which points to several important aspects: (i) The system monitors its own behavior,
(ii) it knows what behavior is expected, (iii) it compares its observed behavior to the
expected behavior, and (iv) performance matters in addition to functionality. At about
the same time, Oreizy et al. highlighted the importance of the environment: “Self-
adaptive software modifies its own behavior in response to changes in its operating
environment” [Oreizy et al. 1999], which requires that (v) the system monitors its en-
vironment, (vi) knows what behavior of the environment is expected, and (vii) knows
its own appropriate behavior for a given environment.

Features (i)–(iv) are related to self-awareness and (v)–(vii) to context-awareness,
which form the bases of all self-modifying capabilities such as self-configuration, self-
optimization, or self-adaptivity. In the often used hierarchy of self-x properties, these
are located in the primitive level below the major level that is populated by specific
self-changing capabilities [Salehie and Tahvildari 2009], as illustrated in Figure 1.

IBM’s original vision of autonomic computing [Kephart and Chess 2003], formulated
in the early 2000s, puts its emphasis on the upper levels, implicitly assuming that
awareness is a simple capability. In contrast, we argue that achieving awareness is
hard, but, once achieved, realizing the higher level properties at the major and general
levels are difficult but tractable engineering tasks.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:5

In reaction to the DARPA initiative and IBM’s vision, research on self-x properties
has flourished. Two recent surveys on self-healing by Ghosh et al. [2007] and [Psaier
and Dustdar 2011] discuss the approaches taken for detecting and reacting to
faulty states of a system. Self-healing is rooted in work on fault-tolerant and self-
stabilizing [Dijkstra 1974] systems but emphasizes continuous availability and focuses
on the recovery process. Both surveys agree that a kind of self-awareness is critical,
but they often view it narrowly as a mechanism to detect faults, which then triggers
recovery procedures. Hence, the system perceives itself to be in one of two states:
healthy or not healthy. Our understanding is broader and implies a richer perception
of a system’s own well-being and performance that allows for a nuanced assessment
as to which degree expectations and goals are met including a track record and a sense
of historical performance.

Partially overlapping are efforts to design self-adaptive systems as elaborated from
a variety of aspects in a book edited by Cheng et al. [2009a]. A self-adaptive system is
more general than a self-healing system because it also adapts gracefully to changing
environmental conditions. Again, publications on self-adaptivity view self-awareness
rather narrowly as a means to detect unusual states and focus mainly on the reac-
tion to such observations. However, it has been noticed that a more comprehensive
approach to self-awareness aspects would be both desirable and challenging. For in-
stance, Cheng et al. [2009b] note that knowledge of expectations by the environment,
for which Finkelstein has coined the term requirements reflection, would be useful and
conclude that “Future work is needed to develop technologies to provide such infras-
tructure support” [Cheng et al. 2009b].

In control applications, models of the self have reached significant sophistication.
Kaindl et al. propose an explicit, symbolic representation of self for the purpose of
monitoring and self-configuring the system based on changing needs and require-
ments [Kaindl et al. 2013]. An emotion-based approach to assess the inner state and
the wellness of a system is described by Sánchez-Escribano and Sanz [2014]. They
use a prioritization mechanism to compare and relate the importance of otherwise
independent states or events and call it “emotion.” Sanz et al. have gone furthest by
incorporating an explicit self-model in the control system, one elegantly based on the
model of the system used during the design process [Sanz et al. 2007] and resembling
requirements reflection mentioned previously. This establishes a secondary control loop
in which the primary control algorithm can be adapted.

A. Morin [2006] has formulated nine neurocognitive models of self-awareness distin-
guishing unconsciousness, consciousness of external stimuli and events, self-awareness
of public and private self-aspects, and meta self-awareness. Based on Morin’s classifi-
cation, Lewis et al. [2011] consider categories of self-awareness with respect to their
relevance to computing systems. They offer a working definition distinguishing be-
tween information that a system has about its own state (private self-awareness) and
knowledge about how it is perceived by its environment (public self-awareness). Also,
organization of self-aware systems in groups of peers leading to group-awareness is
considered. The categorization outlined in Section 3 [Jantsch and Tammemäe 2014] is
consistent and to a large degree aligned with Lewis et al.’s definition, but our concepts
are more detailed and formulated with the objective of engineering self-aware systems
under tight resource constraints.

Chen et al. have proposed a pattern-based approach to the design of self-aware
systems [Cheng et al. 2014]. Based on Lewis’s classification, they formulate seven pat-
terns for specific functions relevant to self-awareness: basic information sharing, coor-
dinated information sharing, temporal knowledge sharing, temporal knowledge aware-
ness, goal sharing, temporal goal awareness, and meta-self-awareness. Architectural
patterns and a methodology for designing self-aware and self-expressive systems are

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:6 N. Dutt et al.

formulated and applied to case studies with cloud computing and a smart camera
networks application.

2.3. Awareness in Embedded and Cyber-Physical Systems

In embedded and Cyber-Physical Systems (CPS), the main problem is not so much
the size-induced complexity of an individual system but rather the tight resource con-
straints, the large number of those systems and their interaction, and the unpredictable
environmental conditions of their deployment. Analysts expect 26 billion devices con-
nected to the Internet of Things by 2020 (www.gartner.com/newsroom/id/2636073).
Manual maintenance, diagnostics, and repair of most of these devices will soon be
impossible. Thus, there is a growing need for CPSs to have a better understanding of
their own state, their behavior, their performance, and the surrounding conditions. We
call this “better understanding” awareness, which improves the behavior of systems,
making them more robust while reducing processing, communication, and energy re-
quirements. A variety of bio-inspired approaches have been proposed for the operation,
modeling, design, optimization, and verification of embedded systems and SoCs, as
a recent collection illustrates [Cong-Vinh 2011]. For instance, Zakaria et al. [2011]
describe techniques to handle uncertainties because of faults due to process varia-
tion and limited yield in the management of power consumption and synchronization
between different clock domains in SoCs. Evolvable hardware is hardware that can
change its architecture and behavior dynamically and autonomously [Yao and Higuchi
1999; Higuchi et al. 2006]. The hardware design is encoded in some kind of “chromo-
some,” and evolutionary techniques such as genetic algorithms are deployed to modify
this chromosome and thus the hardware as a reaction to a changing environment
or faulty components. Because Field-Programmable Gate Arrays (FPGA) provide a
perfect medium for the implementation of evolvable hardware, the research field has
flourished since the advent of FPGAs in the 1990s and is continuously exploiting FPGA
features as they emerge [Cancare et al. 2011].

However, designing and implementing self-awareness in an ad-hoc manner for every
new system is not feasible. Introducing awareness as a separate concept in the CPS
infrastructure promises to simplify the development and operation of such systems.
Because CPSs are typically Systems-of-Systems (SoS), the awareness must be solved
comprehensively, ensuring that the understanding of the situation is coherent and
consistent across the SoS.

Bakhouya and coworkers draw more explicit parallels to natural phenomena such
as the immune system, cell organization, and ant colonies [Bakhouya 2011; Bakhouya
and Gaber 2014]. They correctly put emphasis on positive and negative feedback loops
that are pervasive in natural systems and a key in the design of adaptive behavior in
SESs.

Awareness is not necessarily confined to individual components; it may just as well
emerge in cooperating SoSs. Preden and coworkers have studied distributed surveil-
lance systems and assign particular importance to the role of attention and context-
aware processing and sensing [Motus et al. 2009; Preden 2012; Preden et al. 2013;
Preden 2014]. They argue that these properties facilitate efficient operation of dis-
tributed sensing systems. Based on Endley’s situation awareness [Endsley 1988],
Preden et al. have developed the concept of situation parameters [Preden et al. 2013].
A situation is defined by the values and interpretation of a set of situation parameters,
which are monitored or computed independently and represent a property of the situ-
ation of interest. The information for generating situation awareness is collected and
processed independently of the application functionality and can be considered as part
of the CPS platform.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http:sol;sol;www.gartner.com/newsroom/id/2636073

Smart Embedded Systems 22:7

Table I. Smart Dynamic Reliability/Resilience Management

Adaptation Type Sensing and Monitoring Decision Making Layer
Cross-Layer Actuation

Level

References Simple*
Self-

Aware† Ckt HW NW OS App Ckt HW NW OS App Ckt HW NW OS App
[Shapiro 2004] � Self-heal � � − � − − − − � ? − − − � ?

[Sylvester
et al. 2006]

� Self-heal � � − − − � � − ? − � � − � −

[Karl et al.
2006]

− − � � − − − � � − − − � � − − −

[Austin et al.
2008]

� − � � − − − � � − − − � � − − −

[Sun et al.
2009]

� − � ? − � − � ? − � − � ? − � −

[Das et al.
2009]

� − � � − − − � � − − − � � − − −

[Reddi et al.
2009]

� − � � − − − � � − ? − � � − ? −

[Reddi et al.
2010]

� − � � − − − � � − − − � � − − −

[Leem et al.
2010]

� − � � − ? � � � − ? � � � − ? �

[Reddi et al.
2012]

� − � � − − − � � − − − � � − − −

[Kleeberger
et al. 2013]

� − � � − − − � � − − − � � − − −

[Mercati et al.
2013]

� − � � − � − � � − � − � � − � −

[Li et al. 2013] � − � � − − � � � − − � � � − − �
[Rehman et al.

2014]
� − � � − ? � � � − ? � � � − ? �

[Mercati et al.
2014a]

� − � � − � − � � − � − � � − � −

[Mercati et al.
2014b]

� − � � − � − � � − � − � � − � −

*Implicit Model †Explicit Model, ? Not explicitly discussed; Ckt = Circuit, HW = Hardware, NW = Network, OS = Operating
System, App = Application.

Witnessing the high interest in this topic are surveys on related and relevant topics
such as on-chip self-monitoring [Kornaros and Pnevmatikatos 2013a], bio-inspired
hardware design [Cong-Vinh 2011], and situation identification techniques [Ye et al.
2012].

2.4. Examples of Smart Embedded Systems

There is a large body of literature on SoCs developed for embedded and CPSs that
exhibit self-awareness characteristics at various levels. We have listed an incomplete
set of examples focusing on reliability and power management in Tables I and II,
respectively. A number of German national projects have focused on computing systems
that incorporate self-x properties, including the Organic Computing project [Organic
Computing], the InvasIC project [Henkel et al. 2011], and the SPP1500 project on
dependable embedded systems [Henkel et al. 2012]. There is also a wealth of research
on power management, thermal management [Brooks and Martonosi 2001; Coskun
et al. 2008; Ebi et al. 2009; Sarma and Dutt 2014b], and, more recently, on an integration
of both objectives [Benini et al. 2000; Mittal 2014; Kong et al. 2012]. The trend toward
the more elaborate management of aspects that are considered critical is apparent in
research but also in industry, and we expect growing sophistication in the handling of
individual concerns such as power consumption, over-heating, reliability, performance,
and the like and a widening of scope to the simultaneous management of multiple,
critical issues.

Most interesting from our perspective are those projects that maintain a more so-
phisticated, internal model about the system’s state, work that often draws on control
theory. For instance, Wang et al. [2009] propose a control algorithm based on an online

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:8 N. Dutt et al.

Table II. Smart Dynamic Power Management

Adaptation Type
Cross-Layer Sensing and

Monitoring Decision Making Layer
Cross-Layer Actuation

Level

References Simple*
Self-

Aware† Ckt HW NW OS App Ckt HW NW OS App Ckt HW NW OS App
[Kumar et al.

2003]
� − − � − � − − − − � − − − − � −

[Wu et al.
2004]

� − − � − − − − − − � − − − − � −

[Wu et al.
2005]

� − − � − − � − − − � � − − − � �

[Isci et al.
2006]

� − � � − − − − � − � − − � − � −

[Nathuji and
Schwan 2007]

� − − � − � � − � � � − − � � � −

[Curtis-Maury
et al. 2008]

� − � � − � − − � − � − − � − � −

[Verma et al.
2008]

� − − � − � − − � − � − − � − � −

[Sridharan
et al. 2008]

� − � � − − − � � − � − � � − � −

[Rangan et al.
2009]

� − − � − � − − � − � − − � − � −

[Wang et al.
2009]

� � − � − � − − � − � − − � − � −

[Bartolini
et al. 2010]

� − � � − ? − � � − − − � � − − −

[Hoffmann
et al. 2011]

� � − � − � � − − − � � − − − � �

[Bartolini
et al. 2011]

� � − � � − − − � � − − − � � − −

[Rotem et al.
2012]

� − � � − − − � � − � − � � − � −

[Sun et al.
2013]

� − � � − − − � � − � − � � − � −

[Shafique
et al. 2013]

� − � � − − − − � − � − − � − � −

[Shafique and
Henkel 2013]

� − � � � − − − � � − − − � � − −

* Implicit Model †Explicit Model, ? Not explicitly discussed; Ckt = Circuit, HW = Hardware, NW = Network, OS = Operating
System, App = Application.

model estimator to control accuracy and system stability. In a similar vein, Shafique
et al. [2013] use implicit models to predict key features such as required resources
for an approaching time interval. The models in these and many other examples are
implicit and serve a narrow purpose. History-based prediction is a good example and
commonly used. Based on a record of an application’s past resource usage, the resource
requirements for a future time interval are estimated. The past resource usage, per-
haps only a single number, is considered a narrow model that represents a property
of interest. Since almost all the approaches in Tables I and II focus on single issues
with relatively simple objectives, they maintain narrow, implicit models of the systems
themselves. The broader the objectives become and the more aspects that are inte-
grated in the decision process, the richer the internal models grow. The power, thermal
and reliability models used in the virtual platform described by Bartolini et al. [2010]
are more detailed and elaborate, even though the models integrated in the final device,
as part of the online feedback based control algorithm, are simplified and optimized.
Often design-time information is not sufficient or accurate enough due to unforeseen
influences or aging effects. To counter such limitations, online self-calibration and
learning techniques are employed to improve the models used in the control algorithms
[Bartolini et al. 2011]. Such needs require more detailed and explicit models to repre-
sent more of the system’s features, thus gradually increasing their sophistication.

Starting from the other end, more systematic approaches toward self-awareness have
been taken by the HAMSoC and SEEC projects.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:9

Fig. 2. Agent hierarchy in the HAMSoC system [Guang et al. 2010b].

HamSoC [Guang et al. 2010a, 2010b, 2011] is an SoC platform with a hierarchical
agent structure as illustrated in Figure 2. The cell agents are hosted by individual
processing cores in a multicore SoC. Clusters are formed along subsystem boundaries,
and the platform agent is responsible for the entire chip. Although the agents at the
platform layer and below are application independent, the application agent is cus-
tomized toward the application needs. The agents perform a set of activities including
Communicate, Configure, Inquire, Order, Report, and Inform [Guang et al. 2010b] with
the objective of monitoring the system’s state and performance, communicate with
other agents across the hierarchy, and reconfigure the system to adapt it to a changed
situation. The agents and their actions are defined in a generic and abstract way to
form a framework suitable for a variety of applications and implementations. As an ap-
plication case, a power management system for an NoC-based multicore SoC has been
implemented and evaluated [Jafri et al. 2012; Guang et al. 2011]. The cell and cluster
agents are realized in hardware whereas the agents at the platform and application
layers are software programs. In the case study, performance and power attributes
are monitored and controlled, but the framework is fairly general and would allow the
monitoring of any interesting property, whereas the decision process could be assigned
to the appropriate agent at the cluster, platform, or application layer.

SEEC [Hoffmann et al. 2010b] is a general framework for self-aware computing us-
ing an Observe-Decide-Act (ODA) paradigm. As illustrated in Figure 3, the system
cyclically monitors key features, applies a control and decision algorithm, and deploys
appropriate actions to adapt to changes in the environment and its own state. It is
based on the heartbeats API library [Hoffmann et al. 2010a], which defines a cyclic
event called a heartbeat. Through API functions, the application can register rate and
latency performance goals in terms of the heartbeat period. Hence, the heartbeats
API is a standardized means to monitor the performance of an application. The appli-
cation itself or a separate agent can then adapt and optimize the system’s behavior,
for instance by allocating and scheduling resources appropriately. The approach has
been further developed and evaluated in several applications for performance opti-
mization [Hoffmann et al. 2010b], power management [Hoffmann et al. 2011, 2013],
and managing of multiple objectives [Hoffmann 2014]. Also, the concept of knobs has
been introduced [Hoffmann et al. 2011] to expose steering facilities such as processor

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:10 N. Dutt et al.

Fig. 3. The SEEC activity cycle [Hoffmann et al. 2010b].

speed or power modes. As a conceptual framework, it allows the user to adopt differ-
ent decision-making strategies and algorithms, which has been explored and studied
extensively [Santambrogio et al. 2010; Maggio et al. 2011].

As we observe the extensive work published in this area, we note that all approach the
domain of self-awareness from different directions and angles. The “single-issue” ap-
proaches, as listed only incompletely in Tables I and II, introduce specific and concrete
aspects of self-monitoring and self-adaptation to solve a particular well, but narrowly
defined problem. Although the proposed techniques lead to effective solutions in the
given scope, they do not easily generalize to a situation where a range of objectives has
to be met simultaneously under a set of constraining conditions. In particular, various
kinds of uncertainties and incomplete information constitute additional complications.

To overcome these limitations, a few general frameworks have been developed, such
as HAMSoC and SEEC. Both propose a basic concept (hierarchical agent network in the
case of HAMSoC and an ODA cycle with the heartbeat paradigm in the case of SEEC)
and apply it to increasingly broad application scenarios while further developing and
refining the frameworks. We note that these endeavors are complementary in terms of
the insight they generate and the techniques they describe and study.

3. CLASSIFICATION AND TAXONOMY/LEVELS OF AWARENESS

In contrast, the classification we describe here starts from the other end and lists the
attributes that we expect to see in a self-aware system. The various concepts reviewed
are certainly multidimensional and have too many facets and aspects to easily press
them into a simple scheme of classification. But if we concentrate for a while on aware-
ness and self-awareness, which are the basis for many higher level cognitive abilities,
we can identify different features that, although not arranged linearly, constitute a
well-structured space that will allow us to better assess specific realizations in SESs.
The framework of awareness that we use [Jantsch and Tammemäe 2014] requires sev-
eral properties before we can say that the system is aware of something or self-aware:

—Abstraction of the primary input data into a semantic domain that is meaningful
for the system at hand.

—Disambiguation of the possible interpretations to always settle on exactly one
interpretation of the reality at any given time. When new data become available, the
interpretation may change, but, at any given time, there is only one interpretation
used by the system.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:11

—Semantic interpretation is the result of abstraction and disambiguation, and it
represents a relevant property of the system or its environment.

—Desirability scale provides a uniform goodness scale for the assessment of all
observed properties.

—Semantic attribution maps properties into the desirability scale, suggesting how
good or bad an observation is for the system.

—History of a property reflects the awareness of a property and implies awareness
of its change over time. This history may be more or less detailed and may slowly fade
as time passes, but it certainly is required to allow for the assessment of properties,
the environment, and the system itself in a historical context.

—Goals provide the context in which interpretation and semantic attribution is
meaningful.

—The purpose of an SES is to achieve all its goals.
—Expectation on environment implies that the system expects a specific environ-

ment, which is a precondition to realize if the environment is profoundly changing.
The system’s goals are often dependent on the environment.

—Expectation on Subject similarly implies that the system’s own state and condition
are continuously assessed to detect deviations, degradation, excellent performance,
and malfunctions.

—Inspection engines that continuously monitor and assess the situation require a
specific machinery that integrates all observations into a single, consistent world.

To realize all these properties in an SES is rather ambitious and not always necessary.
Depending on which of these properties are present and to what degree, we can group
systems into five levels:

—Level 1, Adaptive: A classic PID controller adapts to changes in the environment
by following reference values. Such a system does some abstraction and has some
expectations but in rather limited ways.

—Level 2, Property Aware: The system derives a semantic interpretation and at-
tribution of monitored data. The system has expectations regarding the monitored
property. It also has goals, and the attribution is done with respect to these goals.
The more properties it follows in this way, the larger the share of the environment
becomes that it is aware of. If the system monitors its own properties, we call it
self-aware.

—Level 3, History Aware: If, in addition to properly interpreting and classifying prop-
erties, the system maintains a history of observations, the environmental changes
over time are monitored and assessed. Moreover, a history self-aware system can
monitor and assess its own performance and relate it to expectations and goals.

—Level 4, Predictive: The inspection mechanism that allows the system to observe
and assess the environment and itself can be used to study future scenarios as
support for decision-making. A system with the capability to simulate if-then-else
scenarios is called predictive.

—Level 5, Group Aware: In addition to the self and the environment, the system
recognizes a peer group with shared goals and/or similarity in behavior.

As in many other classifications, the details and boundaries can be debated, but this
gives us a simple framework to categorize the work done in this field. A classification
similar in ambition and scope has been proposed by Lewis et al. [2015] and Faniyi
et al. [2014]. Inspired by Neisser’s work in psychology [Neisser 1997], they distinguish
between the five awareness levels stimulus-aware, interaction-aware, time-aware,
goal-aware, and meta-self-aware. There is no simple mapping to our categorization,
but all concepts found in one can also be identified in the other, although with different

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:12 N. Dutt et al.

emphasis. Our property awareness is similar to Lewis et al.’s stimulus-awareness
but makes the abstraction mechanism explicit. Similarly, our Level 1 of an adaptive
system is related to interaction-awareness but with a focus on adaptivity while keeping
the concept of interaction rather implicit. Our history awareness and Lewis et al.’s
time-awareness resemble each other quite closely. Lewis et al.’s goal-awareness and
meta-self-awareness separate aspects of inspection and reasoning about goals and the
self, which are combined in our predictive level. Our Level 5 of group awareness is not
covered in Lewis et al.’s set of levels, but they consider it as a distinct aspect under
the label of collectives and emergent self-aware systems [Lewis et al. 2015].

This direct comparison of these two schemes of categorization highlights that there
is no single scheme yet that structures the relevant concepts in an obviously more
natural way than others. Depending on preference, emphasis, and objectives, one may
choose and adapt a proper categorization. However, it is also reassuring since different
schemes tend to cover the same ground and thus important aspects have most likely
not been overlooked.

Reviewing the state of the art with our five-level scheme in mind, we observe that
most embedded and CPSs proposed do some abstraction and interpretation of indi-
vidual properties such as power consumption, performance, and occurrence of specific
faults. Regarding these properties, there are also, mostly implicitly, defined goals and
expectations. With the exception of the work done by Preden and Helander [2006] and
the heartbeat framework [Hoffmann et al. 2010a], history records of properties are not
kept or used in any systematic way. The systems described by Sanz et al. [2007] and,
to a more limited extent, by Kaindl et al. [2013] use fairly sophisticated inspection
engines and modeling capabilities. The work by Sánchez-Escribano and Sanz [2014]
is an interesting attempt toward what we have called a unified desirability scale and
a semantic attribution. A kind of desirability scale is found whenever several objec-
tives are targeted simultaneously [Hoffmann 2014; Wang and Wang 2011; Sylvester
et al. 2006]. However, it appears implicitly as part of an objective function that is it-
self often not maintained explicitly, meaning it cannot be generalized. We expect from
a self-aware system that perhaps tens of partially independent observed properties
are easily related to each other with respect to an equally large set of desired goals.
Similarly, purpose and goals are either implicitly hidden in some decision algorithm,
hard-coded at design time, or both. In order to meet a larger set of more or less inde-
pendent goals, which are also likely to change over time, a more systematic and explicit
representation of objectives has to be developed. An interesting step is found in the
heartbeats framework [Hoffmann et al. 2010a], which allows applications to register
performance goals that are then monitored by the framework. It would be interest-
ing to explore if this approach can be generalized to functional objectives and made
sufficiently flexible to allow dynamic formulation of new goals. Along the same lines,
we note that expectations on the environment are handled in a similarly ad-hoc and
implicit way, if at all.

The work by Preden [2014, 2012] and Motus et al. [2009] is to our knowledge the
most advanced attempt toward group awareness, although it is still limited in this
respect. However, the recent strong attention on fog computing [Jennings and Stadler
2014; Satoh 2013; Hong et al. 2013; Bonomi et al. 2012] may speedily advance this field
and contribute to an understanding of group awareness in cooperating systems, how it
emerges, and what it is good for.

In summary, apart from classic control systems that populate Level 1, the overwhelm-
ing majority of the work discussed here appears in Level 2, although researchers realize
property awareness to grossly different degrees. There are some isolated attempts to
address the core features of Levels 3, 4, and 5. No level above Level 1 is covered

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:13

satisfactorily, hence, significant research challenges remain. We try to address some of
these challenges at different levels using a new computing paradigm in Section 4.

4. CYBERPHYSICAL-SYSTEM-ON-CHIP (CPSOC): A PARADIGM AND ARCHITECTURE
FOR SMART EMBEDDED SYSTEMS

From an SoCperspective, SESs are an emerging area of computing system with unique
architectural attributes. SoCs as SES have many similarities with autonomic comput-
ing systems [Kephart et al. 2003] but are severely resource- and capability-constrained.
They can be analyzed through the computing-communication-control (C3)-centric no-
tions of CPSs [Lee 2008] but are limited due to the lack of explicit notions of the op-
erating systems and compilation principles in C3. Furthermore, emerging embedded
computing platforms that deploy complex SOCs will be characterized by the follow-
ing key features that provide both challenges and opportunities for simultaneously
managing system resilience, energy, and adaptivity:

—They will see much larger fault rates. More integration results in larger platforms
facing more dominant failure mechanisms (with technology scaling), causing in-
creased fault rates [Bernstein et al. 2006]. This is especially true for memories in
emerging data-centric platforms [Nassif et al. 2010; Singhee and Rutenbar 2010].

—They will be monitor-rich. To assess the state of health of the system, these com-
puting systems will employ a network of interconnected monitors looking for signa-
tures of faults, wearout, and impending failures [Floyd et al. 2007; Kornaros and
Pnevmatikatos 2013b; Lefurgy et al. 2013]. These monitors will span circuit, mi-
croarchitecture, and software layers.

—They will be aggressively heterogeneous in the computing fabric, covering all dimen-
sions: processing (for accelerating application/domain-specific functions) [Borkar and
Chien 2011], interconnect (to handle scalability and high-throughput) [Shafique et al.
2014], and memory (combining volatile and nonvolatile storage; e.g., Dhiman et al.
[2009]).

—They will be memory-heavy and will deploy heterogeneous memory technologies.
The data-centric nature of several emerging applications creates demand for denser
memories. Memories are likely to dominate energy as well as reliability concerns
[Nassif et al. 2010; Singhee and Rutenbar 2010] for computing systems. Moreover,
technology trends such as 3D integration [Borkar 2011] and heterogeneous memory
organizations (e.g., combining traditional SRAMs with emerging faster, denser, non-
volatile memories) [Wu et al. 2009] pose new challenges for energy efficiency and
resilience.

These concerns highlight the need for SES architectures that dynamically balance
multiple objectives across multiple levels of the design abstraction stack, manage their
limited resources, and are always keenly aware of their own accomplishments and
shortcomings. These abilities and attributes distinguish them from traditional em-
bedded systems design and motivate the need for a new design paradigm specifically
suitable for SES, as proposed in some recent works [Sarma et al. 2013, 2015]. We briefly
discuss such a paradigm and highlight its suitability for SES.

4.1. Overview

CPSoC [Sarma et al. 2013, 2015] is an SES paradigm that combines a sensor-actuator-
rich C3-centric paradigm with that of an adaptive and reflective middleware (a
flexible hardware-software stack and interface between the application and OS layer)
to control the manifestations of computations (e.g., aging, overheating, parameter
variability, etc.) on the physical characteristics of the chip itself and the outside

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:14 N. Dutt et al.

interacting environment. Inspired by the C3 paradigm of CPSs [Lee 2008] and the
adaptive and learning abilities of autonomous computing [Kephart et al. 2003], CPSoC
provides a computing framework that assures the dependability of cyber/information
processing (i.e., the cyber aspects such as integrity, correctness, accuracy, timing,
reliability, and security) while simultaneously addressing the physical manifestations
(in performance, power, thermal, aging, wear-out, material degradation, reliability,
and dependability) of information processing on the underlying computing platform.
Not unlike the reference architecture proposed by Lewis et al. [2015], CPSoC aims to
coalesce these two traditionally disjoint aspects/abstractions of the cyber/information
world and the underlying physical computing worlds into a unified abstraction of
computing by using cross-layer virtual/physical sensing and actuation to enable a
C3-centric self-aware computing platform.

The CPSoC architecture consists of a sensor-actuator-rich computation platform sup-
ported by adaptive NoCs (cNoC, sNoC), Introspective Sentient Units (ISU), and an
adaptive and reflective middleware to manage and control both the cyber/information
and physical environment and characteristics of the chip [Sarma et al. 2013, 2015]. The
CPSoC architecture is broadly divided into several layers of abstraction, for example,
applications, operating system, network and bus communication, hardware, and the
circuit/device layers. CPSoC inherits most features of MPSoC in addition to on-chip
sensing and actuation to enable the ODA paradigm. Unlike traditional MPSoC, each
layer of the CPSoC can be made self-aware and adaptive by a combination of soft-
ware and physical sensors and actuators, as shown in Figure 4(a). These layer-specific
feedback loops are integrated into a flexible stack that can be implemented either as
firmware or middleware, as shown by the dotted line in Figure 4(a).

CPSoC distinctly differs from a traditional MPSoC in several ways. Traditional
MPSoC paradigms lack the ability to sense the system states and behaviors across
layers of system stacks due to lack of architectural support; they are incapable of ex-
ploiting and exposing process and workload variations due to a lack of suitable abstrac-
tions at multiple layers. Furthermore, they sacrifice usable performance and energy
opportunities by adopting worst-case design (guard bands), and they lack support for
multilevel actuation mechanisms and adaptations to aggressively meet competing and
conflicting demands. Moreover, traditional MPSoCs lack self-learning mechanisms that
can anticipate failures and predict vulnerabilities. CPSoC overcomes these limitations,
as detailed later.

4.2. CPSoC Features

The CPSoC framework supports four key ideas: (i) physical and virtual sensing and
actuation, (ii) simple/self-aware adaptations, (iii) multi- or cross-layer interactions and
interventions, and (iv) predictive modeling and learning. We briefly describe these
herein. (A detailed description is found in our Technical Report [Sarma et al. 2013].)

4.2.1. Cross-Layer Virtual and Physical Sensing and Actuation. CPSoCs are sensor-actuator-
rich MPSoCs that include several on-chip physical sensors (e.g., aging, oxide break-
down, leakage, reliability, temperature, and performance counters, as well as voltage,
current, and power sensors [Sarma et al. 2013, 2015]) on the lower three layers, as
shown by the On-Chip-Sensing-and-Actuation (OCSN) block in Figure 4(b). On the
other hand, virtual sensing is a physical-sensorless sensing of immeasurable param-
eters using indirect computation [Sarma et al. 2012]. It can be viewed as a software
sensor that provides indirect measurement of abstract conditions, contexts, inferences,
or estimates by processing (e.g., combining, aggregating, or predicting) sensed data
from either a set of homogeneous or heterogeneous sensors. It is also a computational
technique that enhances and/or adds sensing capability, introduces sensing options,

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:15

Fig. 4. (a) Cross-layer virtual sensing and actuation at different layers of CPSoC. (b) CPSoC architecture
with adaptive Core, NoC, and the Observe-Decide-Act Loop as Adaptive, Reflexive Middleware [Sarma et al.
2013, 2015].

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:16 N. Dutt et al.

Fig. 5. Adaptation using predictive control model and policies in CPSoC [Sarma et al. 2014, 2015].

increases sensitivity, enables efficient sensor resource uses, and overcomes physical
placement and cost restrictions. When combined with different kinds of sensors, vir-
tual sensing enables consensus to resolve faults and errors while providing a test bedfor
on-chip sensor fusion [S. Sarma et al. 2014]. The need for such an overprovisioned sens-
ing architecture [Sarma and Dutt 2014a] for MPSoCs has also been identified by Intel
[Borkar 2013].

Similarly, we define virtual actuations [Sarma et al. 2013, 2015] (e.g., application
duty cycling, algorithmic choice, checkpointing) that are software/hardware interven-
tions that can predictively influence system design objectives such as performance,
power, and reliability. Virtual actuation can be combined with the physical actuation
mechanisms commonly adopted in modern chips (e.g., DVFS and Adaptive Body Bias-
ing [ABB] to control chip performance, power, and parametric variations); the notion of
actuator fusion in CPSoC represents virtual and physical actuations that are combined
across different layers of abstraction [Sarma et al. 2013, 2015].

4.2.2. Simple and Self-Aware Adaptations. Self-awareness is used to describe the ability of
the CPSoC to observe its own internal behaviors as well as external systems it interacts
with such that it is capable of making judicious decisions that optimize performance and
other Quality of Service (QoS) metrics [Kephart et al. 2003]. Self-aware systems will
be capable of adapting their behavior and resources to automatically find the best way
to accomplish a given goal despite changing environmental conditions and demands.
A self-aware system must be able to monitor its behavior to update one or more of its
components (hardware architecture, operating system, and running applications) to
achieve its goals.

Two key attributes of the self-aware CPSoC are adaptation of each layer and multiple
cooperative ODA loops. As an example, the unification of an adaptive computing plat-
form (with combined DVFS, ABB, and other actuation means) along with a bandwidth
adaptive NoC [Sarma et al. 2013, 2015] offers extra dimensions of control and solutions
in comparison to traditional MPSoC architecture. These cooperative and hierarchical
control loops (e.g., the combination of traditional control loop; dotted lower box in
Figure 5) together with virtual sensing enabled optimized loop (upper loop in Figure 5)
effectively translate user goals or QoS into one or more multiple design objectives
[Sarma et al. 2013, 2015].

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:17

4.2.3. Online Learning. Predictive modeling and online learning abilities of the system
behavior, as well as internal and external (environmental) states, provide self-modeling
abilities in the CPSoC paradigm. The system behavior and states can be built using
on- or offline linear or nonlinear models in time or frequency domains [Ljung 1998].
We specifically use statistical and neural network approaches [Haykin et al. 2009;
Fausett 1994] such that the model accuracy can be traded-off for model computational
complexity. We use regression-based linear predictors and nonlinear neural predictors
to build models of the system’s performance and power and energy consumption using
the cross-layer events, hardware counters, and on-chip sensor data. In addition, use of
coupling parameters (a metric that quantifies the interactions between layers) helps
to develop application and cross-layer interaction models for nominal and abnormal
operations. We use the predictive and learning abilities of CPSoC to improve autonomy
in managing the system resources and assisting proactive resource utilization in the
runtime system [Sarma et al. 2013, 2015].

4.2.4. Multi- or Cross-Layer Interactions and Interventions. On-chip self-awareness with
cross-layer virtual and physical sensing and actuation is a key enabling technology
for efficient use of heterogeneous architectures and applications with guaranteed run-
time system goals and QoS (performance, reliability, power, thermal behavior) in a
highly dynamic environment. Our previous work demonstrated the use of multi- and
cross-layer interactions and interventions for managing multiple design constraints
(e.g., power, performance, thermal, resilience, aging), as well as in different design con-
texts (e.g., mobile platforms, data-intensive applications, long-mission applications,
etc.); our Technical Report [Sarma et al. 2013] details several sample applications
where self-awareness is used to improve energy efficiency, increase system lifetime by
reducing aging effects, and improve system performance under thermal constraints.
In the next section, we present sample instances of use cases and applications of
CPSoC.

4.3. CPSoC Application in Smart Embedded Systems Design

On-chip self-awareness with cross-layer virtual and physical sensing and actuation is
a key enabling technology for efficient use of heterogeneous architectures and applica-
tions with guaranteed runtime system goals and QoS (performance, reliability, power,
thermal behavior) in a highly dynamic environment. Our Technical Report [Sarma
et al. 2013, 2015] contains several sample applications where self-awareness is used
to improve energy efficiency, increase system lifetime by reducing aging effects, and
improve system performance under thermal constraints. We highlight a few of these
application opportunities in the following subsections.

4.3.1. Smart Power-Reliability Online Co-Management. Reliability and power modeling for
emerging systems should be cross-layer and consider the full system stack [Quinn et al.
2011; Mitra et al. 2010, 2011; Carter et al. 2010] for holistic system-level optimization
and to avoid the pessimistic and pathological assumptions of a single-layer approach.
As emerging Heterogeneous MultiProcessor Platforms (HMPs) (Figure 4(b)) are mov-
ing toward aggressively heterogeneous architectures distinct in the number and type
of compute cores, the cross-layer and predictive modeling capability in CPSoC can be
used to achieve adaptive policies in the ODA middleware layer in Figure 4(b). These
emerging platforms face diverse multithreaded workloads, requiring a complex OS
scheduler and load balancer to fully exploit the platform’s heterogeneity for managing
power-performance and system resilience. Existing OS kernels’ scheduling and load
balancing schemes (Figure 6(a)) are openly accepted as inefficient for such systems
[Grey 2013]. For instance, the vanilla Linux kernel load balancer evenly distributes

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:18 N. Dutt et al.

Fig. 6. Runtime system for emerging CPSoC/HMP platforms [Sarma et al. 2015].

the workload among cores even if the cores have distinct processing capabilities, re-
sulting in serious performance and energy efficiency loss. Recent efforts to address this
important issue (e.g., the IKS [Mathieu 2013] and the GTS [ARM Inc 2013] Linux ex-
tensions) are limited to the very specific case of ARM’s big.LITTLE with two core types.
Smart and self-aware capabilities specifically help in achieving versatile operating
system support for emerging, aggressively heterogeneous platforms like CPSoC/HMP
in addition to jointly addressing the resiliency and energy efficiency issues of such
architectures.

In an initial investigation, we developed SmartBalance [Sarma et al. 2015], a smart
Linux load balancer that is a closed-loop sensing-driven opportunistic load balancer
that uses on-chip sensing, estimation, and prediction, as well as global optimization
for aggressive HMPs. As shown in Figure 6(b) and (c), SmartBalance consists of three
phases—sense, predict, and balance—executed at runtime in periodic epochs, where
each epoch covers multiple Linux scheduling periods. Unlike the open-loop standard
Linux load balancer, which distributes the threads evenly, this closed-loop feedback-
driven approach makes judicious decisions to distribute the threads smartly (i.e.,
matched to the core type) to best achieve the system goal(s) (e.g., energy efficiency);
it uses predictive models for the performance and power impact of each thread exe-
cuting on different heterogeneous cores without the overhead of sampling at each core
type.

Experiments executed with a synthetic mix of PARSEC benchmarks (represent-
ing a dynamically varying workload) on both the standard vanilla Linux as well as
the SmartBalance-enhanced allocator, with the goal of achieving energy efficiency
(IPS/watt), demonstrate more than 50% energy-efficiency improvement over the stan-
dard vanilla Linux kernel load balancer and 20% improvement over the state-of-the-art
ARM GTS scheme on a quad-core heterogeneous MPSoC [Sarma et al. 2015]. Although
these results look promising for energy efficiency, opportunities exist to extend this ap-
proach to develop policies for a resilience-power-aware load balancer for such emerging
architectures.

4.3.2. Resiliency-Aware Smart Allocation for Improving System Reliability. Task allocation for
emerging platforms has significant impact in heterogeneous resource and resilience

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

Smart Embedded Systems 22:19

management. Although task allocation for homogeneous architectures has been stud-
ied extensively for performance and power management, the implications of cross-layer
heterogeneity on reliability during runtime allocation is an open problem, especially
for emerging HMP platforms. The notion of a lifetime reliability characterization at the
system level for different failure mechanisms using built-in reliability sensors in the
CPSoC paradigm can make a runtime allocator reliability-aware. Although life-time
reliability characterization has been used at the architectural level, elevating it to
the OS and higher abstraction layers requires solving key abstraction and awareness
challenges for such SESs. The lifetime reliability characterization matrix must incor-
porate a number of awareness properties in similar ways, typically as performance and
power characterization matrices [Sarma et al. 2015] at the OS layer. This capability
can enable lifetime reliability at the OS layer and use these for the intelligent alloca-
tion or balancing of threads to improve system reliability for emerging heterogeneous
platforms.

4.3.3. Resiliency-Aware Scheduling for Power Management. Resiliency-awareness through
the metric of lifetime reliability captures the impact of several failure mechanisms that
eventually causes permanent faults. However, the lifetime reliability metric does not
capture transient and intermittent reliability issues (e.g., Single Event Upset [SEU]
and Single Event Transients [SET]). A metric for transient and intermittent faults at
the OS level to complement the lifetime reliability metric can improve the awareness
capability of existing systems substantially by impacting the effect of transient errors
while sustaining the required lifetime of emerging platforms. A resiliency-aware intel-
ligent scheduling scheme that can directly manage system power at the system level
can lead to a synergistic scheduler capable of coordinating between the scheduler and
the power management governors.

5. CHALLENGES AND RESEARCH DIRECTIONS

Embedded systems lie at the heart of computing in its many forms, from large CPSoSs,
to the ubiquitous Internet-of-Things. The design and implementation of these embed-
ded systems face tremendous challenges for correct operation in the face of highly
dynamic environments, as well as in managing disparate and often cross-purpose con-
straints. The notion of “smartness” borrowed from biological systems is touted as a
possible solution to deal with these challenges, but, unfortunately, there is little com-
mon understanding of the inherent properties underlying smartness. This article first
reviewed commonly used “self-x” terms (e.g., self-awareness and self-adaptivity) and
presented a taxonomy to define and structure terminology related to smartness, then
used this taxonomy to position a sampling of the large body of related work in smart
software and hardware systems. We then focused on a SoC perspective for SESs and
presented the CPSoC platform as an exemplar for a hardware/software platform that
exhibits the properties of self-monitoring and self-awareness to enable adaptation as
well as learning mechanisms to evolve the system over time.

This article has barely scratched the surface of a wide range of challenges and op-
portunities facing the designers of next-generation SESs. In trying to raise the level
of “smartness,” there are significant challenges in embedding new models of cogni-
tion and intelligence emerging from neuroscience and psychology, all within the typ-
ical constraints of an embedded system (e.g., cost, power/energy, thermal, reliability,
weight, etc.). Lightweight abstractions of these neurobiological learning concepts need
to be developed, not only to fit into the multidimensional constraint envelope, but also
with a view to making such smart techniques easily implementable (e.g., design or
programming), especially given the shrinking design cycles for modern embedded sys-
tems. Furthermore, there is a whole slew of traditional and emerging challenges when

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

22:20 N. Dutt et al.

smartness is embedded into these systems; some of them are novel design challenges
not experienced in traditional algorithm-design methodologies but are encountered in
the context of evolvable hardware [Yao and Higuchi 1999]:

—How do we express “correctness” when the smart system compensates for smaller
and bigger misbehavior anyway?

—How do we validate a smartly adapting system?
—Shall we replace conventional specify-design-validate methodologies by a provide-

smartness-and-set-objectives paradigm?
—How can we perform tradeoff analysis for smartness features?
—How can we quantify uncertainty, dynamicity, and variability in the platform, the

environment, and the applications?
—How do we develop efficient learning algorithms to support smart, resource-

constrained embedded systems?

These are but a few of the many challenges and opportunities facing designers of
next-generation SESs, and they call for a principled approach toward a design science
for smart software and hardware systems.

ACKNOWLEDGMENTS

We would like to thank (in alphabetical order) Luca Benini, Hank Hoffmann, Joerg Henkel, Dionisios N.
Pnevmatikatos, Xin Yao for their useful comments and feedback in improving the manuscript.

REFERENCES

ARM Inc. 2013. big.LITTLE technology: The future of mobile. Retrieved from http://www.arm.com/files/
pdf/big_LITTLE_Technology_the_Futue_of_Mobile.pdf.

Todd Austin, Valeria Bertacco, Scott Mahlke, and Yu Cao. 2008. Reliable systems on unreliable fabrics. IEEE
Design & Test of Computers 25, 4 (2008), 322–332.

B. J. Baars. 1989. A Cognitive Theory of Consciousness. Cambridge University Press.
B. J. Baars. 2002. The conscious access hypothesis: Origins and recent evidence. Trends in Cognitive Science

6, 1 (2002), 47–52.
Bernard J. Baars and Stan Franklin. 2009. Consciousness is computational: The LIDA model of global

workspace theory. International Journal of Machine Consciousness, World Scientific Publishing Com-
pany (2009).

M. Bakhouya. 2011. A bio-inspired architecture for autonomic network-on-chip. In Autonomic Networking-
on-Chip Bio-Inspired Specification, Development, and Verification, Phan Cong-Vinh (Ed.). CRC Press,
1–20.

M. Bakhouya and J. Gaber. 2014. Bio-inspired approaches for engineering adaptive systems. Procedia Com-
puter Science 32 (2014), 862–869. DOI:http://dx.doi.org/10.1016/j.procs.2014.05.503 The 5th Interna-
tional Conference on Ambient Systems, Networks and Technologies (ANT-2014), the 4th International
Conference on Sustainable Energy Information Technology (SEIT-2014).

Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. 2013. The datacenter as a computer: An introduction
to the design of warehouse-scale machines. Synthesis Lectures on Computer Architecture 8, 3 (2013),
1–154.

Luiz André Barroso and Urs Hölzle. 2007. The case for energy-proportional computing. IEEE Computer 40,
12 (2007), 33–37.

Andrea Bartolini, Matteo Cacciari, Andrea Tilli, and Luca Benini. 2011. A distributed and self-calibrating
model-predictive controller for energy and thermal management of high-performance multicores. In
Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011. IEEE,
1–6.

Andrea Bartolini, Matteo Cacciari, Andrea Tilli, Luca Benini, and Matthias Gries. 2010. A virtual plat-
form environment for exploring power, thermal and reliability management control strategies in high-
performance multicores. In Proceedings of the 20th Symposium on Great Lakes Symposium on VLSI.
ACM, 311–316.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://www.arm.com/files/pdf/bigLITTLETechnologytheFutueofMobile.pd f
http://www.arm.com/files/pdf/bigLITTLETechnologytheFutueofMobile.pd f
http://dx.doi.org/10.1016/j.procs.2014.05.503

Smart Embedded Systems 22:21

Robert C. Baumann. 2005. Radiation-induced soft errors in advanced semiconductor technologies. IEEE
Transactions on Device and Materials Reliability 5, 3 (2005), 305–316.

L. Benini, A. Bogliolo, and G. De Micheli. 2000. A survey of design techniques for system-level dynamic
power management. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 8, 3 (June
2000), 299–316. DOI:http://dx.doi.org/10.1109/92.845896

Joseph B. Bernstein, Moshe Gurfinkel, Xiaojun Li, Jörg Walters, Yoram Shapira, and Michael Talmor. 2006.
Electronic circuit reliability modeling. Microelectronics Reliability 46, 12 (2006), 1957–1979.

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog computing and its role in the
internet of things. In Proceedings of the ast Edition of the MCC Workshop on Mobile Cloud Computing
(MCC’12). ACM, New York, NY, 13–16. DOI:http://dx.doi.org/10.1145/2342509.2342513

Shekhar Borkar. 2011. 3D integration for energy efficient system design. In Proceedings of the 48th Design
Automation Conference. ACM, 214–219.

Shekhar Borkar. 2013. Achieving energy efficiency by HW/SW co-design. In Proceedings of the 3rd Berkeley
Symposium on Energy Efficient Electronic Systems. https://www.youtube.com/watch?v=ZKVObiEjANE.

Shekhar Borkar and Andrew A. Chien. 2011. The future of microprocessors. Communications of the ACM
54, 5 (2011), 67–77.

Shekhar Borkar, Tanay Karnik, Siva Narendra, Jim Tschanz, Ali Keshavarzi, and Vivek De. 2003. Pa-
rameter variations and impact on circuits and microarchitecture. In Proceedings of the 40th Annual
Design Automation Conference (DAC’03). ACM, New York, NY, 338–342. DOI:http://dx.doi.org/10.1145/
775832.775920

David Brooks and Margaret Martonosi. 2001. Dynamic thermal management for high-performance micropro-
cessors. In Proceedings of the 7th International Symposium on High-Performance Computer Architecture
(HPCA 2001). IEEE, 171–182.

F. Cancare, S. Bhandari, D. B. Bartolini, M. Carminati, and M. D. Santambrogio. 2011. A bird’s eye view
of FPGA-based evolvable hardware. In Proceedings of the 2011 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). 169–175. DOI:http://dx.doi.org/10.1109/AHS.2011.5963932

Nicholas P. Carter, Helia Naeimi, and Donald S. Gardner. 2010. Design techniques for cross-layer resilience.
In Proceedings of the Conference on Design, Automation and Test in Europe. European Design and
Automation Association, 1023–1028.

Tao Chen, Funmilade Faniyi, Rami Bahsoon, Peter R. Lewis, Xin Yao, Leandro L. Minku, and Lukas
Esterle. 2014. The handbook of engineering self-aware and self-expressive systems. Computing Research
Repository (CoRR) abs/1409.1793 (2014). http://arxiv.org/abs/1409.1793.

Betty H. C. Cheng and others. 2009b. Software engineering for self-adaptive systems: A research roadmap.
In Software Engineering for Self-Adaptive Systems, Betty HC Cheng, Rogério de Lemos, Paola Inverardi,
and Jeff Magee (Eds.). Springer.

Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Andersson, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, and others. 2009a. Software Engineering for Self-
adaptive Systems: A Research Roadmap. Springer.

A. Clark. 2001. Mindware: An Introduction to the Philosophy of Cognitive Science. Oxford University Press,
New York.

Phan Cong-Vinh (Ed.). 2011. Autonomic Networking-on-Chip: Bio-Inspired Specification, Development, and
Verification. CRC Press. http://www.crcnetbase.com/isbn/9781439829134.

Ayse Kivilcim Coskun, Tajana Simunic Rosing, and Kenny C. Gross. 2008. Temperature management in
multiprocessor SoCs using online learning. In Proceedings of the 45th ACM/IEEE Design Automation
Conference (DAC 2008). IEEE, 890–893.

Matthew Curtis-Maury, Filip Blagojevic, Christos D. Antonopoulos, and Dimitrios S. Nikolopoulos. 2008.
Prediction-based power-performance adaptation of multithreaded scientific codes. IEEE Transactions
on Parallel and Distributed Systems 19, 10 (2008), 1396–1410.

Shidhartha Das, Carlos Tokunaga, Sanjay Pant, Wei-Hsiang Ma, Sudherssen Kalaiselvan, Kevin Lai, David
M. Bull, and David T . Blaauw. 2009. RazorII: In situ error detection and correction for PVT and SER
tolerance. IEEE Journal of Solid-State Circuits 44, 1 (2009), 32–48.

Gaurav Dhiman, Raid Ayoub, and Tajana Rosing. 2009. PDRAM: A hybrid PRAM and DRAM main memory
system. In Proceedings of the 46th ACM/IEEE Design Automation Conference (DAC’09). IEEE, 664–669.

E. W. Dijkstra. 1974. Self-stabilizing systems in spite of distributed control. Communications of the ACM 17,
11 (1974), 643–644.

Thomas Ebi, M. Faruque, and Jörg Henkel. 2009. Tape: Thermal-aware agent-based power econom
multi/many-core architectures. In Proceedings of the 2009 IEEE/ACM International Conference on
Computer-Aided Design-Digest of Technical Papers (ICCAD 2009). IEEE, 302–309.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.1109/92.845896
http://dx.doi.org/10.1145/2342509.2342513
https://www.youtube.com/watch?v$=$ZKVObiEjANE
http://dx.doi.org/10.1145/775832.775920
http://dx.doi.org/10.1145/775832.775920
http://dx.doi.org/10.1109/AHS.2011.5963932
http://arxiv.org/abs/1409.1793
http://www.crcnetbase.com/isbn/9781439829134

22:22 N. Dutt et al.

Mica R. Endsley. 1988. Design and evaluation for situation awareness enhancement. In Proceedings of the
Human Factors and Ergonomics Society 32th Annual Meeting. 97–101. DOI:http://dx.doi.org/10.1177/
154193128803200221

Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam, and Doug Burger. 2011.
Dark silicon and the end of multicore scaling. In Proceedings of the 38th Annual International Symposium
on Computer Architecture (ISCA 2011). IEEE, 365–376.

P. J. Montestruque, L. A. McMickell, M. B. Lemmon, M. Yashan, Sun Hui, Fang Koutroulis, I. Haenggi, M.
Min, Xie Xiaojuan, Xie Fang, and Lei Antsaklis. 2005. Design of a wireless assisted pedestrian dead
reckoning system - the NavMote experience. IEEE Transactions on Instrumentation and Measurement
54, 6 (Nov. 2005 2005), 2342–2358. DOI:http://dx.doi.org/10.1109/TIM.2005.858557

F. Faniyi, P. R. Lewis, R. Bahsoon, and X. Yao. 2014. Architecting self-aware software systems. In Proceedings
of the 2014 IEEE/IFIP Conference on Software Architecture (WICSA). 91–94.

Laurene V. Fausett. 1994. Fundamentals of Neural Networks. Prentice-Hall.
Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,

Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware. ACM SIGARCH Computer
Architecture News 40, 1 (2012), 37–48.

Michael S. Floyd, Soraya Ghiasi, Tom W. Keller, Karthick Rajamani, F. L. Rawson, Juan C. Rubio, and
Malcolm S. Ware. 2007. System power management support in the IBM POWER6 microprocessor. IBM
Journal of Research and Development 51, 6 (2007), 733–746.

Debanjan Ghosh, Raj Sharman, H. Raghav Rao, and Shambhu Upadhyaya. 2007. Self-healing systems -
Survey and synthesis. Decision Support Systems 42, 4 (January 2007), 2164–2185. DOI:http://dx.doi.org/
10.1016/j.dss.2006.06.011

G. Grey. 2013. big.LITTLE software update. Retrieved from http://www.linaro.org/blog/hardware-update/big-
little-software-update/, 2013.

Liang Guang, Ethiopia Nigussie, Pekka Rantala, Jouni Isoaho, and Hannu Tenhunen. 2010a. Hierarchical
agent monitoring design approach towards self-aware parallel systems-on-chip. ACM Transactions on
Embedded Computer Systems 9, 3 (2010), 1–24. DOI:http://dx.doi.org/10.1145/1698772.1698783

L. Guang, G. Plosila, J. Isoaho, and H. Tenhunen. 2011. HAMSoC: A monitoring-centric design approach
for adaptive parallel computing. In Autonomic Networking-on-Chip: Bio-Inspired Specification, Devel-
opment, and Verification, Phan Cong-Vinh (Ed.). CRC Press, 135–164.

Liang Guang, Juha Plosila, Jouni Isoaho, and Hannu Tenhunen. 2010b. Hierarchical agent monitored par-
allel on-chip system: A novel design paradigm and its formal specification. International Journal of
Embedded and Real-Time Communication Systems (IJERTCS) 1, 2 (2010).

Simon S. Haykin, Simon S. Haykin, Simon S. Haykin, and Simon S. Haykin. 2009. Neural Networks and
Learning Machines. Vol. 3. Pearson Education, Upper Saddle River, NJ.

D. Sufen Fong, Aghajan H. Hengstler, and S. Prashanth. 2007. MeshEye: A hybrid-resolution smart camera
mote for applications in distributed intelligent surveillance. In Proceedings of the 6th Internatinoal
Symposium on Information Processing in Sensor Networks (IPSN 2007). Stanford University, Stanford,
CA, 360–369. DOI:http://dx.doi.org/10.1109/IPSN.2007.4379696

J. Henkel, L. Bauer, J. Becker, O. Bringmann, U. Brinkschulte, S. Chakraborty, M. Engel, R. Ernst, H.
Hartig, L. Hedrich, A. Herkersdorf, R. Kapitza, D. Lohmann, P. Marwedel, M. Platzner, W. Rosenstiel,
U. Schlichtmann, O. Spinczyk, M. Tahoori, J. Teich, N. When, and H. Wunderlich. 2011. Design and
architectures for dependable embedded systems. In Proceedings of the 9th International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS 2011). 69–78.

J. Henkel, A. Herkersdorf, L. Bauer, T. Wild, M. Hubner, R. K. Pujari, A. Grudnitsky, J. Heisswolf, A. Zaib, B.
Vogel, V. Lari, and S. Kobbe. 2012. Invasive manycore architectures. In Proceedings of the 17th Asia and
South Pacific Design Automation Conference (ASP-DAC 2012) 193–200. DOI:http://dx.doi.org/10.1109/
ASPDAC.2012.6164944

T. Higuchi, Y. Liu, and X. Yao (Eds.). 2006. Evolvable Hardware. Springer Science+Media LLC, New York.
Eric Hoffman, Peter Martin, Thomas Pütz, Aymeric Trzmiel, and Karim Zeghal. 2007. Airborne spacing:

Flight deck view of compatibility with continuous descent approach (CDA). Interface (September) (2007),
1–12.

H. Hoffmann. 2014. CoAdapt: Predictable behavior for accuracy-aware applications running on power-aware
systems. In Proceedings of the 26th Euromicro Conference on Real-Time Systems (ECRTS 2014). 223–
232. DOI:http://dx.doi.org/10.1109/ECRTS.2014.32

Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio, Jason E. Miller, and Anant Agarwal. 2010a.
Application heartbeats: A generic interface for specifying program performance and goals in autonomous

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.1177/154193128803200221
http://dx.doi.org/10.1177/154193128803200221
http://dx.doi.org/10.1109/TIM.2005.858557
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://dx.doi.org/10.1016/j.dss.2006.06.011
http://www.linaro.org/blog/hardware-update/big-little-software-update/
http://www.linaro.org/blog/hardware-update/big-little-software-update/
http://dx.doi.org/10.1145/1698772.1698783
http://dx.doi.org/10.1109/IPSN.2007.4379696
http://dx.doi.org/10.1109/ASPDAC.2012.6164944
http://dx.doi.org/10.1109/ASPDAC.2012.6164944
http://dx.doi.org/10.1109/ECRTS.2014.32

Smart Embedded Systems 22:23

computing environments. In Proceedings of the 7th International Conference on Autonomic Computing.
ACM, 79–88.

H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agarwal. 2013. A generalized soft-
ware framework for accurate and efficient management of performance goals. In Proceedings of the
2013 International Conference on Embedded Software (EMSOFT). 1–10. DOI:http://dx.doi.org/10.1109/
EMSOFT.2013.6658597

Henry Hoffmann, Martina Maggio, Marco D. Santambrogio, Alberto Leva, and Anant Agarwal. 2010b. Seec:
A framework for self-aware computing. (2010).

Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and Martin Rinard.
2011. Dynamic knobs for responsive power-aware computing. In ACM SIGPLAN Notices, Vol. 46. ACM,
199–212.

Kirak Hong, David Lillethun, Umakishore Ramachandran, Beate Ottenwälder, and Boris Koldehofe. 2013.
Mobile fog: A programming model for large-scale applications on the internet of things. In Proceedings of
the 2nd ACM SIGCOMM Workshop on Mobile Cloud Computing (MCC’13). ACM, New York, NY, 15–20.
DOI:http://dx.doi.org/10.1145/2491266.2491270

Toshiyuki INAGAKI. 2005. Design of human interactions with smart machines: Lessons learned from aircraft
accidents. In The 4th IARP/IEEE RAS/EURON, Keynote Lecture, June 17, 2005, Nagoya (2005).

Canturk Isci, Gilberto Contreras, and Margaret Martonosi. 2006. Live, runtime phase monitoring and pre-
diction on real systems with application to dynamic power management. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE Computer Society, 359–370.

Syed M. A. H. Jafri, Liang Guang, Axel Jantsch, Kolin Paul, Ahmed Hemani, and Hannu Tenhunen.
2012. Self-adaptive NoC power management with dual-level agents: Architecture and implementa-
tion. In Proceedings of the Conference on Self-adaptive Networked Embedded Systems. Rome, Italy.
http://web.it.kth.se/∼axel/papers/2012/SANES-SyedJafri.pdf.

Axel Jantsch and Kalle Tammemäe. 2014. A framework of awareness for artificial subjects. In Proceedings of
the 2014 International Conference on Hardware/Software Codesign and System Synthesis (CODES’14).
ACM, New York, NY, Article 20, 3 pages. DOI:http://dx.doi.org/10.1145/2656075.2661644

Brendan Jennings and Rolf Stadler. 2014. Resource management in clouds: Survey and research chal-
lenges. Journal of Network and Systems Management (2014), 1–53. DOI:http://dx.doi.org/10.1007/s10922-
014-9307-7

Hermann Kaindl, Mathieu Vallée, and Edin Arnautovic. 2013. Self-representation for self-configuration
and monitoring in agent-based flexible automation systems. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 43, 1 (January 2013), 164–175.

Eric Karl, David Blaauw, Dennis Sylvester, and Trevor Mudge. 2006. Reliability modeling and manage-
ment in dynamic microprocessor-based systems. In Proceedings of the 43rd Annual Design Automation
Conference. ACM, 1057–1060.

J. O. Kephart and others. 2003. The vision of autonomic computing. Computer 36, 1 (jan 2003), 41–50.
DOI:http://dx.doi.org/10.1109/MC.2003.1160055

Jeffrey O. Kephart and David M. Chess. 2003. The vision of autonomic computing. Computer 36, 1 (2003),
41–50.

V. B. Kleeberger, C. Gimmler-Dumont, C. Weis, A. Herkersdorf, D. Mueller-Gritschneder, S. R. Nassif, U.
Schlichtmann, and N. Wehn. 2013. A cross-layer technology-based study of how memory errors impact
system resilience. IEEE Micro 33, 4 (July 2013), 46–55. DOI:http://dx.doi.org/10.1109/MM.2013.67

Joonho Kong, Sung Woo Chung, and Kevin Skadron. 2012. Recent thermal management techniques for
microprocessors. ACM Computer Surveys 44, 3, Article 13 (June 2012), 42 pages. DOI:http://dx.doi.org/
10.1145/2187671.2187675

Georgios Kornaros and Dionisios Pnevmatikatos. 2013a. A survey and taxonomy of on-chip monitoring
of multicore systems-on-chip. ACM Transactions on Design Automation of Electronic Systems 18, 2,
Article 17 (April 2013), 38 pages. DOI:http://dx.doi.org/10.1145/2442087.2442088

Georgios Kornaros and Dionisios Pnevmatikatos. 2013b. A survey and taxonomy of on-chip monitoring
of multicore systems-on-chip. ACM Transactions on Design Automation of Electronic Systems 18, 2,
Article 17 (April 2013), 38 pages. DOI:http://dx.doi.org/10.1145/2442087.2442088

Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy Ranganathan, and Dean M. Tullsen.
2003. Single-ISA heterogeneous multi-core architectures: The potential for processor power reduction.
In Proceedings of the 36th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO-
36 2003). IEEE, 81–92.

Robert Laddaga. 2001. Active software. In Self-Adaptive Software. Lecture Notes in Computer Science,
Vol. 1936. Springer, 11–26.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.1109/EMSOFT.2013.6658597
http://dx.doi.org/10.1109/EMSOFT.2013.6658597
http://dx.doi.org/10.1145/2491266.2491270
http://web.it.kth.se/protect $elax sim $axel/papers/2012/SANES-SyedJafri.pdf
http://dx.doi.org/10.1145/2656075.2661644
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1007/s10922-014-9307-7
http://dx.doi.org/10.1109/MC.2003.1160055
http://dx.doi.org/10.1109/MM.2013.67
http://dx.doi.org/10.1145/2187671.2187675
http://dx.doi.org/10.1145/2187671.2187675
http://dx.doi.org/10.1145/2442087.2442088
http://dx.doi.org/10.1145/2442087.2442088

22:24 N. Dutt et al.

E. A. Lee. 2008. Cyber physical systems: Design challenges. In ISORC, 2008. 363–369. DOI:http://dx.doi.
org/10.1109/ISORC.2008.25

Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and Subhasish Mitra. 2010. ERSA: Error
resilient system architecture for probabilistic applications. In Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2010. IEEE, 1560–1565.

Charles R. Lefurgy, Alan J. Drake, Michael S. Floyd, Malcolm S. Allen-Ware, Bishop Brock, Jose A. Tierno,
John B. Carter, and Robert W. Berry. 2013. Active guardband management in Power7+ to save energy
and maintain reliability. IEEE Micro 33, 4 (2013), 35–45.

P. R. Lewis, A. Chandra, S. Parsons, E. Robinson, K. Glette, R. Bahsoon, J. Torresen, and Xin Yao. 2011. A sur-
vey of self-awareness and its application in computing systems. In Proceedings of the 5th IEEE Conference
on Self-Adaptive and Self-Organizing Systems Workshops (SASOW 2011). 102–107. DOI:http://dx.doi.
org/10.1109/SASOW.2011.25

Peter R. Lewis, Arjun Chandra, Funmilade Faniyi, Kyrre Glette, Tao Chen, Rami Bahsoon, Jim Torresen,
and Xin Yao. 2015. Architectural aspects of self-aware and self-expressive computing systems. IEEE
Computer (August 2015).

Tuo Li, Muhammad Shafique, Jude Angelo Ambrose, Semeen Rehman, Jörg Henkel, and Sri Parameswaran.
2013. RASTER: Runtime adaptive spatial/temporal error resiliency for embedded processors. In Pro-
ceedings of the 50th Annual Design Automation Conference. ACM, 62.

Lennart Ljung. 1998. System Identification. Springer.
L. Madden, S. Tokmouline, T. Csail, M. Stoianov, and I. Nachman. 2007. PIPENET: A wireless sensor

network for pipeline monitoring. In Proceedings of the 6th International Symposium on Information
Processing in Sensor Networks (IPSN 2007). Imperial College of London, 264–273. DOI:http://dx.doi.org/
10.1109/IPSN.2007.4379686

Martina Maggio, Henry Hoffmann, Marco D. Santambrogio, Anant Agarwal, and Alberto Leva. 2011. Decision
making in autonomic computing systems: Comparison of approaches and techniques. In Proceedings of
the 8th ACM International Conference on Autonomic Computing (ICAC’11). ACM, New York, NY, 201–
204. DOI:http://dx.doi.org/10.1145/1998582.1998629

Poirier Mathieu. 2013. In kernel switcher: A solution to support ARM’s new big.LITTLE technology.
https://events.linuxfoundation.org/images/stories/slides/elc2013_poirier.pdf.

Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and Luca Benini. 2013. Work-
load and user experience-aware dynamic reliability management in multicore processors. In Proceedings
of the 50th Annual Design Automation Conference. ACM, 2.

Pietro Mercati, Andrea Bartolini, Francesco Paterna, Tajana Simunic Rosing, and Luca Benini. 2014a. A
linux-governor based dynamic reliability manager for android mobile devices. In Design, Automation
and Test in Europe Conference and Exhibition (DATE), 2014. IEEE, 1–4.

Pietro Mercati, Francesco Paterna, Andrea Bartolini, Luca Benini, and Tajana Simunic Rosing. 2014b.
Dynamic variability management in mobile multicore processors under lifetime constraints. In Pro-
ceedings of the 32nd IEEE International Conference on Computer Design (ICCD 2014). 448–455.
DOI:http://dx.doi.org/10.1109/ICCD.2014.6974718

Subhasish Mitra, Kevin Brelsford, Young Moon Kim, H.-H. K. Lee, and Yanjing Li. 2011. Robust system
design to overcome CMOS reliability challenges. Emerging and Selected Topics in Circuits and Systems,
IEEE Journal on 1, 1 (2011), 30–41.

Subhasish Mitra, Kevin Brelsford, and Pia N. Sanda. 2010. Cross-layer resilience challenges: Metrics and
optimization. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010. IEEE,
1029–1034.

Sparsh Mittal. 2014. A survey of techniques for improving energy efficiency in embedded computing systems.
International Journal of Computer Aided Engineering and Technology (2014).

Alain Morin. 2006. Levels of consciousness and self-awareness: A comparison and integration of vari-
ous neurocognitive views. Consciousness and Cognition 15, 2 (2006), 358–371. DOI:http://dx.doi.org/
10.1016/j.concog.2005.09.006

Lo. Motus, M. Meriste, and J. Preden. 2009. Towards middleware based situation awareness. In Military
Communications Conference (MILCOM).

Sani R. Nassif, Nikil Mehta, and Yu Cao. 2010. A resilience roadmap. In Proceedings of the Conference on
Design, Automation and Test in Europe. European Design and Automation Association, 1011–1016.

Ripal Nathuji and Karsten Schwan. 2007. Virtualpower: Coordinated power management in virtualized
enterprise systems. In ACM SIGOPS Operating Systems Review, Vol. 41. ACM, 265–278.

Ulric Neisser. 1997. The roots of self-knowledge: Perceiving self, it, and thou. Annals of the New York Academy
of Sciences 818 (June 1997), 19–33.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/SASOW.2011.25
http://dx.doi.org/10.1109/SASOW.2011.25
http://dx.doi.org/10.1109/IPSN.2007.4379686
http://dx.doi.org/10.1109/IPSN.2007.4379686
http://dx.doi.org/10.1145/1998582.1998629
https://events.linuxfoundation.org/images/stories/slides/elc2013_poirier.pdf
http://dx.doi.org/10.1109/ICCD.2014.6974718
http://dx.doi.org/10.1016/j.concog.2005.09.006
http://dx.doi.org/10.1016/j.concog.2005.09.006

Smart Embedded Systems 22:25

P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimhigner, G. Johnson, N. Medvidovic, A. Quilici, D. S. Rosenblum,
and A. L. Wolf. 1999. An architecture-based approach to self-adaptive software. IEEE Intelligent Systems
and Their Applications 14, 3 (May 1999), 54–62. DOI:http://dx.doi.org/10.1109/5254.769885

Organic Computing. Organic computing initiative. http://www.organic-computing.de/.
R. Culler, D. Polastre, and J. Szewczyk. 2005. Telos: Enabling ultra-low power wireless research. In Pro-

ceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN
2005). Dept. of Computer Sciences, University of California, Berkeley, 364–369. DOI:http://dx.doi.org/
10.1109/IPSN.2005.1440950

Jurgo Preden. 2014. Generating situation awareness in cyber-physical systems: Creation and exchange of
situational information. In Proceedings of the 2014 International Conference on Hardware/Software
Codesign and System Synthesis. ACM, New York, NY.

J. Preden, J. Llinas, G. Rogava, R. Pathma, and L. Motus. 2013. On-line data validation in distributed
data fusion. In Ground/Air Multisensor Interoperability, Integration, and Networking for Persistent
ISR IV: SPIE Defense, Security and Sensing, T. Pham, M. A. Kolodny, and K. L. Priddy (Eds.). SPIE -
International Society for Optics and Photonics.

Jürgo-Sören Preden. 2012. Enhancing Situation-Awareness, Cognition and Reasoning of Ad-Hoc Network
Agents. Ph.D. Dissertation. Tallinn University of Technology. Thesis on informatics and system engi-
neering C56.

Jürgo-Sören Preden and J. Helander. 2006. Auto-adaptation driven by observed context histories. In Pro-
ceedings of ECHISE (Exploiting Context Histories in Smart Environments) Workshop at UbiComp.

Harald Psaier and Schahram Dustdar. 2011. A survey on self-healing systems: Approaches and systems.
Computing 91, 1 (2011), 43–73.

Z. W. Pylyshyn. 1984. Computation and Cognition (2nd ed.). MIT Press.
Heather M. Quinn, Andre De Hon, and Nick Carter. 2011. CCC Visioning Study: System-Level Cross-Layer

Cooperation to Achieve Predictable Systems From Unpredictable Components. Technical Report. Los
Alamos National Laboratory (LANL).

Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou, Kevin P. Pipe, Thomas F. Wenisch,
and Milo M. K. Martin. 2012. Computational sprinting. In Proceedings of the 18th International Sym-
posium on High Performance Computer Architecture (HPCA 2012). IEEE, 1–12.

Krishna K. Rangan, Gu-Yeon Wei, and David Brooks. 2009. Thread motion: Fine-grained power management
for multi-core systems. In ACM SIGARCH Computer Architecture News, Vol. 37. ACM, 302–313.

Vijay Janapa Reddi, Meeta Sharma Gupta, Glenn Holloway, Gu-Yeon Wei, Michael D. Smith, and David
Brooks. 2009. Voltage emergency prediction: Using signatures to reduce operating margins. In Pro-
ceedings of the 15 International Symposium on High Performance Computer Architecture (HPCA 2009).
IEEE, 18–29.

Vijay Janapa Reddi, Svilen Kanev, Wonyoung Kim, Simone Campanoni, Michael D. Smith, Gu-Yeon Wei,
and David Brooks. 2010. Voltage smoothing: Characterizing and mitigating voltage noise in production
processors via software-guided thread scheduling. In MICRO. 77–88.

Vijay Janapa Reddi, David Z. Pan, Sani R. Nassif, and Keith A. Bowman. 2012. Robust and resilient designs
from the bottom-up: Technology, CAD, circuit, and system issues. In ASP-DAC. 7–16.

Semeen Rehman, Florian Kriebel, Duo Sun, Muhammad Shafique, and Jörg Henkel. 2014. dTune: Leverag-
ing reliable code generation for adaptive dependability tuning under process variation and aging-induced
effects. In Proceedings of the the 51st Annual Design Automation Conference on Design Automation Con-
ference. ACM, 1–6.

Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, and Eliezer Weissmann. 2012. Power-
management architecture of the Intel microarchitecture code-named sandy bridge. IEEE Micro 32, 2
(2012), 0020–27.

Michael Rubenstein, Christian Ahler, and Radhika Nagpal. 2012. Kilobot: A low cost scalable robot system
for collective behaviors. In Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA 2012). IEEE, 3293–3298.

Michael Rubenstein, Alejandro Cornejo, and Radhika Nagpal. 2014. Programmable self-assembly in a
thousand-robot swarm. Science 345, 6198 (2014), 795–799.

Mazeiar Salehie and Ladan Tahvildari. 2009. Self-adaptive software: Landscape and research challenges.
ACM Transactions on Autonomous and Adaptive Systems (TAAS) 4, 2 (2009), 14.

M. G. Sánchez-Escribano and Ricardo Sanz. 2014. Emotions and the engineering of adaptiveness. In Pro-
cedia Computer Science: Conference on Systems Engineering Research, Vol. 28. Elsevier, 473–480.
DOI:http://dx.doi.org/10.1016/j.procs.2014.03.058

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.1109/5254.769885
http://www.organic-computing.de/
http://dx.doi.org/10.1109/IPSN.2005.1440950
http://dx.doi.org/10.1109/IPSN.2005.1440950
http://dx.doi.org/10.1016/j.procs.2014.03.058

22:26 N. Dutt et al.

Marco D. Santambrogio, Henry Hoffmann, Jonathan Eastep, and Anant Agarwal. 2010. Enabling technolo-
gies for self-aware adaptive systems. In Proceedings of the 2010 NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). IEEE, 149–156.

Ricardo Sanz, Ignacio López, Manuel Rdorı́guez, and Carlos Hernández. 2007. Principles for consciousness
in integrated cognitive control. Neural Networks 20, 9 (11 2007).

Santanu Sarma and Nikil Dutt. 2014a. FPGA emulation and prototyping of a cyberphysical-system-on-chip
(CPSoC). In Proceedings of the International Symposium on Rapid System Prototyping (RSP).

Santanu Sarma and Nikil Dutt. 2014b. Minimal sparse observability of complex networks: Application to
MPSoC sensor placement and run-time thermal estimation and tracking. In Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2014. 1–6. DOI:http://dx.doi.org/10.7873/DATE2014.342

Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. 2014. On-chip self-awareness
using cyberphysical-systems-on-chip (CPSoC). In Proceedings of the 12th International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS).

Santanu Sarma, Nikil Dutt, P. Gupta, A. Nicolau, and N. Venkatasubramanian. 2015. Cyberphysical-system-
on-chip (CPSoC): A self-aware MPSoC paradigm with cross-layer virtual sensing and actuation. In
Design, Automation and Test in Europe Conference and Exhibition (DATE), 2015.

Santanu Sarma, Nikil Dutt, and Nalini Venkatasubramanian. 2012. Cross-layer virtual observers for em-
bedded multiprocessor system-on-chip (MPSoC). In Proceedings of the 11th International Workshop on
Adaptive and Reflective Middleware (ARM’12). ACM, New York, NY, Article 4, 7 pages.

Santanu Sarma, Nikil Dutt, N. Venkatasubramaniana, A. Nicolau, and P. Gupta. 2013. CyberPhysical-
System-On-Chip (CPSoC): Sensor-Actuator Rich Self-Aware Computational Platform. Technical Report
CECS-TR-13-06. Center for Embedded Computer Systems, University of California, Irvine.

Santanu Sarma, T. Muck, L. A. D. Bathen, N. Dutt, and A. Nicolau. 2015. SmartBalance: A sensing-driven
linux load balancer for energy efficiency of heterogeneous MPSoCs. In DAC 2015.

Ichiro Satoh. 2013. A framework for data processing at the edges of networks. In Database and Expert
Systems Applications. 304–318.

Muhammad Shafique, Siddharth Garg, Tulika Mitra, Sri Parameswaran, and Jörg Henkel. 2014. Dark
silicon as a challenge for hardware/software co-design: Invited special session paper. In Proceedings of
the 2014 International Conference on Hardware/Software Codesign and System Synthesis. ACM, 13.

Muhammad Shafique and Jörg Henkel. 2013. Agent-based distributed power management for kilo-core
processors. In Proceedings of the International Conference on Computer-Aided Design. IEEE Press, 153–
160.

Muhammad Shafique, Benjamin Vogel, and Jörg Henkel. 2013. Self-adaptive hybrid dynamic power man-
agement for many-core systems. In Proceedings of the Conference on Design, Automation and Test in
Europe. EDA Consortium, 51–56.

Michael W. Shapiro. 2004. Self-healing in modern operating systems. Queue 2, 9 (Dec 2004), 66–75.
DOI:http://dx.doi.org/10.1145/1039511.1039537

Victor Shnayder, Bor-rong Chen, Konrad Lorincz, Thaddeus R. F. Fulford Jones, and Matt Welsh. 2005.
Sensor networks for medical care. In SenSys, Vol. 5. 314–314.

A. Singhee and R. Rutenbar. 2010. Extreme Statistics in Nanoscale Memory Design. Springer.
Ranjani Sridharan, Nikhil Gupta, and Rabi Mahapatra. 2008. Feedback-controlled reliability-aware power

management for real-time embedded systems. In Proceedings of the 45th ACM/IEEE Conference on
Design Automation (DAC 2008). IEEE, 185–190.

S. Sarma, N. Dutt, and P. Gupta. 2014. Strength of Diversity: Exploiting Cheap Heterogeneous Noisy Sensors
for Accurate Full-Chip Thermal Estimation. Technical Report CECS-TR-14-011. Univeristy of California
Irvine.

Sujesha Sudevalayam and Purushottam Kulkarni. 2011. Energy harvesting sensor nodes: Survey and im-
plications. Communications Surveys & Tutorials, IEEE 13, 3 (2011), 443–461.

Jin Sun, Avinash Kodi, Ahmed Louri, and Janet Meiling Wang. 2009. NBTI aware workload balancing
in multi-core systems. In Proceedings of the 2009 Quality of Electronic Design (ISQED 2009). IEEE,
833–838.

Jin Sun, Rui Zheng, Jyothi Velamala, Yu Cao, Roman Lysecky, Karthik Shankar, and Janet Roveda. 2013.
A self-tuning design methodology for power-efficient multi-core systems. ACM Transactions on De-
sign Automation of Electronic Systems 18, 1, Article 4 (Jan. 2013), 24 pages. DOI:http://dx.doi.org/
10.1145/2390191.2390195

Dennis Sylvester, David Blaauw, and Eric Karl. 2006. Elastic: An adaptive self-healing architecture for
unpredictable silicon. IEEE Design & Test of Computers 23, 6 (2006), 484–490.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.7873/DATE2014.342
http://dx.doi.org/10.1145/1039511.1039537
http://dx.doi.org/10.1145/2390191.2390195
http://dx.doi.org/10.1145/2390191.2390195

Smart Embedded Systems 22:27

E. Thelen and L. B. Smith. 1994. A Dynamic Systems Approach to the Development of Cognition and Action.
MIT Press, Cambridge, Massachusetts.

Akshat Verma, Puneet Ahuja, and Anindya Neogi. 2008. pMapper: Power and migration cost aware appli-
cation placement in virtualized systems. In Middleware 2008. Springer, 243–264.

D. Vernon, G. Metta, and G. Sandini. 2007. A survey of artificial cognitive systems: Implications for the
autonomous development of mental capabilities in computational agents. IEEE Transactions on Evolu-
tionary Computation 11, 2 (April 2007), 151–180. DOI:http://dx.doi.org/10.1109/TEVC.2006.890274

Xiaorui Wang and Yefu Wang. 2011. Coordinating power control and performance management for virtualized
server clusters. IEEE Transactions on Parallel and Distributed Systems 22, 2 (Feb. 2011), 245–259.
DOI:http://dx.doi.org/10.1109/TPDS.2010.91

Yefu Wang, Kai Ma, and Xiaorui Wang. 2009. Temperature-constrained power control for chip multiprocessors
with online model estimation. In ACM SIGARCH Computer Architecture News, Vol. 37. ACM, 314–324.

Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W. Clark. 2004. Formal online methods for volt-
age/frequency control in multiple clock domain microprocessors. ACM SIGARCH Computer Architecture
News 32, 5 (2004), 248–259.

Qiang Wu, Margaret Martonosi, Douglas W. Clark, Vijay Janapa Reddi, Dan Connors, Youfeng Wu, Jin Lee,
and David Brooks. 2005. A dynamic compilation framework for controlling microprocessor energy and
performance. In Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchi-
tecture. IEEE Computer Society, 271–282.

Xiaoxia Wu, Jian Li, Lixin Zhang, Evan Speight, Ram Rajamony, and Yuan Xie. 2009. Hybrid cache archi-
tecture with disparate memory technologies. In ACM SIGARCH Computer Architecture News, Vol. 37.
ACM, 34–45.

X. Yao and T. Higuchi. 1999. Promises and challenges of evolvable hardware. IEEE Transactions on Systems
29, 1 (February 1999), 87–97.

Juan Ye, Simon Dobson, and Susan McKeever. 2012. Situation identification techniques in pervasive com-
puting: A review. Pervasive and Mobile Computing 8, 1 (Feb. 2012), 36–66. DOI:http://dx.doi.org/10.1016/
j.pmcj.2011.01.004

H. Zakaria, E. Yahya, and L. Fesquet. 2011. Self-adaption in SoCs. In Autonomic Networking-on-Chip -
Bio-Inspired Specification, Development, and Verification, Phan Cong-Vinh (Ed.). CRC Press, Chapter 8.

Received June 2015; accepted October 2015

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 22, Publication date: February 2016.

http://dx.doi.org/10.1109/TEVC.2006.890274
http://dx.doi.org/10.1109/TPDS.2010.91
http://dx.doi.org/10.1016/j.pmcj.2011.01.004
http://dx.doi.org/10.1016/j.pmcj.2011.01.004

