
FON: FAULT-ON-NEIGHBOR AWARE ROUTING ALGORITHM FOR

NETWORKS-ON-CHIP

Chaochao Feng1,2, Zhonghai Lu1, Axel Jantsch1, Jinwen Li2, Minxuan Zhang2

1
Royal Institute of Technology, Stockholm, Sweden

2
School of Computer, National University of Defense Technology, Changsha, P.R. China

1
{cfeng, zhonghai, axel}@kth.se

2
{fengchaochao, lijinwen, mxzhang}@nudt.edu.cn

ABSTRACT

Reliability has become a key issue of Networks-

on-Chip (NoC) as the CMOS technology scales

down to the nanoscale domain. This paper proposes

a Fault-on-Neighbor (FoN) aware deflection routing

algorithm for NoC which makes routing decision

based on the link status of neighbor switches within

2 hops to avoid fault links and switches. Simulation

results demonstrate that in the presence of faults,

the saturated throughput of the FoN switch is 13%

higher on average than a cost-based deflection

switch for 8x8 mesh. The average hop counts can be

up to 1.7x less than the cost-based switch. The FoN

switch is also synthesized using 65nm TSMC

technology and it can work at 500MHz with small

area overhead.

I. INTRODUCTION

Networks-on-Chip (NoC) design paradigm which

utilizes packet-switch communication has been

proposed as a promising solution for Multiprocessors

System-on-Chip (MPSoC) [1]. However, as the

CMOS technology scales down to the nanoscale

domain, some physical effects such as crosstalks,

electro-magnetic interferences, alpha and neutron

particle strikes and power supply disturbances may

seriously affect the reliability of NoC. A possible

solution to design a reliable NoC is to make the

routing algorithm fault-tolerant.

Deflection routing is a non-minimal adaptive

routing algorithm which can be implemented easily in

hardware, since it does not need buffers for packets

in transit [2]. A main motivation for the use of non-

minimal routing is fault-tolerance, so it can be easily

modified to achieve fault-tolerance at the cost of

small hardware overhead. This paper proposes a

Fault-on-Neighbor (FoN) aware deflection routing

algorithm which makes efficient routing decision

based on the fault information transmission within 2

hops to avoid fault links and switches. Simulation

results demonstrate that the saturated throughput of

the FoN switch is 13% higher on average than a

cost-based deflection switch [3] for 8x8 mesh with

faults. The average hop counts can be at most 1.7x

less than the cost-based switch in the presence of

link failures. We also synthesize the FoN switch

using TSMC 65nm standard-cell library, which can

achieve 500MHz with area less than half of the cost-

based switch and only 18% increase compared to

the non fault-tolerant deflection switch.

The rest of paper is organized as follows:

Related work is reviewed in Section II. Section III

describes the NoC architecture, fault model and

introduces the 2-hop fault information transmission

mechanism. The detailed FoN aware routing

algorithm and implementation are proposed in

section IV. In section V, simulation experiment

results are analyzed, followed by the conclusion and

future work in section VI.

II. RELATED WORK

Fault-tolerant routing can be divided into two

categories: stochastic and deterministic. Stochastic

communication transfers redundant packets through

different paths to avoid faults. A probabilistic flooding

algorithm derived from the randomized gossip

protocol has been proposed in [4]. In this switch, a

packet is sent to a randomly chosen subset of its

neighbors such that the packet is broadcasted from

one switch to the entire NoC. In order to limit the

number of packet copies, redundant random walk [5]

only replicates packets at the source node. The

flood-based scheme can be highly fault-tolerant such

that if a path exists between source and destination,

a packet can be always routed to the destination. But

it wastes much bandwidth to transfer redundant

packets and limits the performance of the network.

Deterministic algorithm utilizes the structure

redundancy of NoC to route packets to the

destination through different paths to achieve fault-

tolerance. Force-Directed Wormhole Routing (FDWR)

[6] makes routing decision based on the routing table

and the buffer status of neighbor switches. It uses

the first flit of a packet as a look-ahead flit to

investigate the buffer and fault status of neighbor

switches. However, it needs an additional flit to

check neighbor state and with the increase of the

network size, more buffers are needed to store the

routing table. In [7], a reconfigurable routing

algorithm for fault-tolerant 2D mesh NoC has been

presented to route packets through a cycle free

contour surrounding a faulty switch. But it can only

be used in one faulty switch topology. A resilient

routing algorithm for fault-tolerant NoC based on turn

model is described in [8]. The switch can be

reconfigured around faulty components while

maintaining correct operation without using virtual

channels. A fault adaptive deflection routing

algorithm which makes routing decision based on a

cost function has been proposed in [3]. The switch

implements an on-line fault diagnosis mechanism

and makes routing decision based on a cost function

which considers the route length and local fault

status. It can not only handle link and switch faults,

but also crossbar faults. Because it makes routing

decision only based on the fault information of the

current switch, the hop count field of the packet can

easily overflow in some fault patterns.

III. NOC ARCHITECTURE AND FAULT MODEL

A. NoC Architecture Overview

The NoC architecture is based on Nostrum NoC

[9,10], which is a 2D mesh topology. The difference

from the ordinary 2D mesh is that the boundary

output is connected to the input of the same switch

so that the packet sent in that direction returns to the

same switch. This can be used as a packet buffer.

Deflection routing is used to make routing decision

based on the packet priority and stress value which

is the traffic load of neighbor switches in last 4 cycles.

All incoming packets are prioritized based on its hop

counts which record the number of hops the packet

has been routed. The packet with the largest hop

counts has the highest priority. The switch makes

routing decision for each packet from the highest

priority to the lowest. If a desired output port has

already been occupied by a higher priority packet, a

free port with the smallest stress value will be

chosen, which means the packet has to be deflected.

B. Fault Model

In our work, faults are considered as completely

broken links and switches. Link failures are assumed

to be bidirectional. In each switch, a 4-bits fault

vector is used to represent the fault status of its four

links. A switch fault is modeled by making all four

links attached on it faulty. Packets are only destined

to fault-free switches. It is difficult to handle arbitrary

fault patterns without the shape constraint. Without

loss of generality, the fault regions handled by the

FoN aware routing algorithm can be constrained to

be convex and concave shapes [11], as shown in Fig.

1(a) (I-shape,□-shape, U-chain, +-shape, L-shape

and T-shape), which do not contain two sequential

concave points such as U-block and H-shape, shown

in Fig. 1(b). A concave point is a corner on the

boundary of the faulty region which has an interior

angle of 270 degrees, as the gray nodes shown in

Fig. 1(b). In addition, it is assumed that fault regions

do not disconnect the network.

Figure 1: Fault patterns

C. Fault Information Transmission Mechanism

The key issue of designing a fault-tolerant

routing algorithm is that each switch gets fault

information such that it can make routing decision

efficiently. However, it will cost a large amount of

resources to store and transmit fault information and

also take much time to search for an available path.

Due to the limited on-chip resources, it is important

to decide to which extent of the fault information

should be available at a switch. In this paper, to

make a compromise between purely local and purely

global fault information we propose a 2-hop fault

information transmission mechanism which means

each switch can get the link status within 2 hops.

In the 2-hop fault information transmission

mechanism, each switch not only transmits its link

status to its four neighbors but also collects the link

status from its three neighbors and transmits to the

fourth neighbor, as shown in Fig. 2, for example,

switch A can get the status of 16 links. The signal

FoN_to[d] (Fault-on-Neighbor to direction d)

collected by the current switch is a 3-bits vector to

denote link status along the other three directions

except d and is transmitted to the neighbor along d.

For example, FoN_to[W] denotes the link status of

the North, East and South links and is transmitted to

the West neighbor. Due to the limited fault

information, packets can be routed in a circle on H-

shape and U-block fault regions. So this mechanism

can also be easily extended to n-hop fault

information transmission to handle these more

complicated fault patterns.

Only four additional signals are required to

transmit fault information between a switch and its

four neighbors. They are totally 8 bits for each

direction. For each direction d∈ {North, East, South,

West}, these signals are represented as:

� fault_from[d] (1 bit): the input link status along

the direction d;

� fault_to[d] (1 bit): the output link status along

the direction d;

� FoN_from[d] (3 bits): the link status from the

neighbor along the direction d;

� FoN_to[d] (3 bits): the link status collected by

the current switch based on link status of three

directions except the direction d and

transmitted to the neighbor along d.

Figure 2: Fault information transmission mechanism

IV. FON AWARE ROUTING ALGORITHM AND

IMPLEMENTATION

A. FoN Aware Routing Algorithm

The basic idea of the FoN aware routing

algorithm is that each switch makes routing decision

based on the link status within 2 hops. Fig. 3 shows

an example of routing decision on a 4x4 mesh.

Suppose switch (2,2) sends a packet to switch (4,4).

First it will check two productive links (East and

South) faulty or not. If both are not faulty, then it will

check status of the productive links to switch (4,4)

from its neighbors (switch (2,3) and (3,2)). In this

case, both of productive links to switch (4,4) from

switch (2,3) are faulty, so switch (2,2) will choose the

south link finally.

S

D

(2,2)

(4,4)

Fault link status

(2,3)

(3,2)

(2,4)

(3,3)

(4,2)

Figure 3: Example of fault information transmission

The pseudo code of the FoN aware deflection

routing algorithm executed at node nc is shown in Fig.

4. There are at most four packets arriving at a switch

at the same time. The switch makes routing decision

from the highest priority packet to the lowest. The

switch first checks if the packet has reached the

destination nd. If not, then it calculates the productive

direction(s) based on the relative address to nd,

which is provided by the function get_prefer_Dir(nc,

nd). A packet may have at most two productive

directions to the destination. The remaining algorithm

can be divided into two parts: 1) nd is in the same

row or column as nc; 2) nd is not in the same row or

column as nc.

1) nc and nd are in the same row or column

In this case, there is only one productive

direction to nd. When the productive link is faulty and

the input direction is not one of orthogonal links, the

switch will check the FoN_from vectors along the two

orthogonal directions by the function Check_FoN,

which checks the productive link of the neighbor

along the orthogonal direction (step 10). If both of

orthogonal links are available, it will choose one of

them with a smaller stress value. If the input direction

is one of orthogonal links, it will check the FoN_from

vector along the other orthogonal link (step 13). If

only one orthogonal link is not fault, then it will check

the FoN_from vector along this direction (step 20). If

both orthogonal links are not available, it will choose

the remaining link (step 15, 22, 26). If all other links

are not available, the packet will be routed back

(step 18, 25, 29).

2) nc and nd are not in the same row or column

In this case, the packet can be routed to nd

through two productive directions. If both of them are

not faulty and the input direction is not one of them,

for each productive direction the switch first gets the

productive direction(s) from the neighbor to nd (step

35, 36) and then checks FoN_from vectors along this

path (step 39) and chooses one of them base on the

FoN_from vectors and stress values. If the input

direction is one of productive directions, it will check

FoN_from vector along the other productive direction

(step 42). If only one productive link is not faulty, it
will check the FoN_from vector along this direction

(step 47). If both of productive links are faulty, it will

choose a remaining link with a smaller stress value

(step 54).

In order to avoid the packet oscillation between

two switches, the algorithm tries to avoid routing the

packet back to the input direction. Only if all the

other links are not available, the packet will be

routed back.

B. Deadlock and Livelock Avoidance

Deflection routing is deadlock free since packets

never have to wait in a switch. Livelock is a key

problem that deflection routing must avoid. Packet

priority mechanism can be used in a fault-free

network to avoid livelock. However, because each

switch only has the limited fault information of the

network, it is difficult to avoid livelock under arbitrary

fault patterns. The simplest way to avoid livelock is

by limiting misrouting. Constraining the shape of the

fault regions to be convex and concave without

sequential concave points can be helpful to avoid

unlimited misrouting which is shown in the following

livelock-free proof.

∉

∉

Figure 4: FoN aware routing algorithm

Theorem: FoN aware routing algorithm is

livelock-free under convex and concave fault regions

with at most one concave point in sequence which

do not disconnect the network.
Proof: Packets routed on non-faulty region are

livelock-free, because the algorithm gives the highest

priority to the oldest packets, which guarantees a

packet can eventually advance towards its

destination. When a packet reaches the corner of the

fault region which is not a dead end, it can be routed

the same way as routed on the non-faulty region.

Depending on how to route packets to the corner of

the fault region, packets routed around the fault

region can be categorized into three possible cases,

which are described as follow.

1) Packet routed on the edge of the fault region

without contention

When a packet reaches one switch on the edge

of the fault region and the switch chooses a direction

d to route the packet, in order to avoid the packet

oscillation between two switches, the following

switches on the edge will try to route the packet

along d even when the packet is far away from the

destination until the packet reaches the corner of the

fault region or reaches a dead end of the fault region

which can be met on U-chain. In the later case, the

packet will be routed back along the original path

until it reaches another corner of the fault region, as

shown Path 1 in Fig. 5.

2) Packet routed to the concave point of the fault

region without contention

When a packet reaches a concave point of the

concave fault regions (+-shape, L-shape and T-

shape), it will be routed along the orthogonal

direction of the input direction and follow the same

way on another edge as case 1) to the corner, as

shown Path 2 in Fig. 5.

3) Packet deflected away from the fault region

due to the contention

In the case of a packet first routed on the edge

of the fault region and then deflected away from the

fault region temporarily due to the contention, when

the priority of the packet becomes higher, it will be

rerouted on the edge of the fault region again and

there is no contention to hinder the packet routed to

the corner of the fault region as described in case 1)

and 2), as shown Path 3 in Fig. 5. □

S1

Path 1

D1

S3

Path 3

Path 2

D3

S2

D2

Figure 5: Packets routed around fault region

C. FoN Switch Implementation

The structure of the FoN switch is shown in Fig.

6. Because deflection routing does not need buffers

to store packet, the switch can be easily

implemented with hardware. Each switch sends its

link status and stress value to its neighbor switches

and receives link status and stress values from its

neighbors. Routing controller makes routing decision

based on the fault information and stress value.
Data_from/to

North Switch

Stress value

FoN_from/to

fault_from/to

Data_from/to

South Switch

Stress value

FoN_from/to

fault_from/to

D
ata_from

/to

R
esource

Fault Information

Controller

Figure 6: FoN switch implementation

The FoN switch is synthesized using 65nm

TSMC standard-cell library by Synopsys Design

Compiler. In order to make a comparison, the cost-

based deflection switch [3] is also implemented. For

the focus on the routing algorithm, we only

implement the cost-based deflection routing

algorithm and do not implement the on-line fault

diagnosis and CRC check of the switch. Results for

frequency, area and power consumption are shown

in Table 1. For frequency, the FoN switch can

achieve the same frequency (500MHz) as the non

fault-tolerant switch, while the cost-based switch can

only achieve 166MHz. The areas of the non fault-

tolerant and FoN switch are less than half of the

cost-based switch. Compared to the non fault-

tolerant switch, the area of the FoN switch is

increased by 18%. All power consumptions are

measured at the same frequency and voltage

(166MHz, 1.0V). The power consumption of the FoN

switch is 4.7x less than the cost-based switch. The

cost-based switch has high hardware overhead

because it has to find the best permutation among all

4!=24 permutations of input and output ports based

on a cost function.
Table 1: Synthesize results

 Frequency
(MHz)

Area
(µm

2
)

Power
(mW)

Non fault-tolerant 500 28784 1.2

Cost-based 166 76184 6.6

FoN 500 34109 1.4

V. EXPERIMENT RESULTS

The experiment evaluates the FoN switch and

the cost-based switch in terms of throughput and

hop count by simulation. The simulation is

constructed on an 8x8 2D mesh.

A. Simulation Platform

The FoN switch is developed in VHDL and

performed a cycle-accurate RTL-level simulation. Six

common synthetic traffic patterns (uniform random,

transpose, bit complement, bit reverse, shuffle and

tornado) [12] are used in the simulation. A packet

generator is attached to each switch and there is a

FIFO in it to buffer the packets which can not be

injected into the network because of no free output

port. The packet generator delivers packets into the

network with an injection rate which can be set at the

beginning of the simulation. The specified number of

faults is randomly selected before the simulation.

B. Results and Analysis

The experiments first evaluate the throughput of

the network with different number of link failures.

Throughput is measured in packets/cycle/node at the

saturation point of the network which means the

maximum accepted traffic. Fig. 7 shows the

throughput degradation with an increasing number of

link faults under six traffic patterns for the FoN and

cost-based switch. The number of link faults varies

from 10% to 30% of the total. In the situation of no

faults, the throughput of the cost-based switch is

slightly higher than the FoN switch for all traffic

patterns. This is because the cost-based switch can

always find the best permutation for each packet in a

congested network with no faults instead of

unnecessary deflections. As the number of failures

increase, the number of available routing paths also

decreases which results in a throughput degradation

for both switches. In the presence of faults, the cost-

based switch can not always make optimized routing

decision, so the network can be easily saturated.

The throughput of the FoN switch is 13% higher on

average than the cost-based switch in the presence

of link faults. For individual traffic patterns, the

throughput of the FoN switch is higher than the cost-

based switch on average 17% for uniform random

traffic, 14% for transpose traffic, 14% for bit

complement traffic, 8% for bit reverse traffic, 12% for

shuffle traffic and 14% for tornado traffic.

0

0.1

0.2

0.3

0.4

0.5

Uniform Transpose Bit

complement

Bit reverse Shuff le TornadoT
h
ro

u
g
h
p
u
t
(p

a
c
k
e
ts

/c
y
c
le

/n
o
d
e
)

0 10% 20% 30%

Figure 7: Throughput with increasing number of link failures

Fig. 8 (a) ~ (f) reveal a comparison of the two

switches in terms of average hop counts under

various link failure rates from 10% to 30% for the six

traffic patterns respectively. The packet injection rate

is 0.1 packets/cycle/node. The FoN switch can

achieve 1.5x, 1.4x, 1.2x, 1.5x, 1.7x and 1.3x less

hop counts on average than the cost-based switch

for the six traffic patterns respectively. The reason is

that the cost-based switch makes routing decision

only based on local fault status which leads some

packets to be routed in a circle among several

switches or oscillation between two switches.

However, the FoN switch always tries to route packet

advanced to the destination, so the average hop

counts are significantly less.

0

10

20

30

40

50

60

0 10% 20% 30%

Link failure rate

(f) Tornado traff ic

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
ts

FoN Cost-based

0

10

20

30

40

50

0 10% 20% 30%

Link failure rate

(e) Shuff le traffic

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
ts

FoN Cost-based

z

0

10

20

30

40

50

0 10% 20% 30%

Link failure rate

(d) Bit reverse traff ic

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
ts

FoN Cost-based

0

20

40

60

80

0 10% 20% 30%

Link failure rate

(c) Bit complement traffic

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
ts

FoN Cost-based

0

10

20

30

40

50

0 10% 20% 30%

Link failure rate

(b) Transpose traf fic

A
v
e
ra

g
e
 h

o
p
 c

o
u
n
ts

FoN Cost-based

0

10

20

30

40

50

0 10% 20% 30%

Link failure rate

(a) Uniform random traff ic

A
v
e
ra

g
e
 h

o
p
 c

o
u

n
ts

FoN Cost-based

Figure 8: Average hop counts under various link failure rates

The worst case hop counts for the two switches

are also compared in the experiments. Fig. 9

illustrates the packet number distribution based on

hop counts under uniform random traffic with a fault

pattern of 10% link faults. The max hop counts of the

FoN switch are between 40 and 59, while the max

hop counts of the cost-based switch are larger than

120. From the simulation it can be found that 10 bits

of the hop count field are even not enough for the

cost-based switch, in some fault patterns the hop

counts can easily overflow.

1-19 20-39 40-59 60-79 80-99 100-119 >120
0

2000

4000

6000

8000

10000

Hop counts

N
u
m

b
e
r

o
f

p
a
c
k
e
ts

FoN

Cost-based

Figure 9: Packet distribution based on hop counts

VI. CONCLUSION AND FUTURE WORK

This paper proposes a fault-tolerant deflection

routing algorithm for Networks-on-Chip. The routing

algorithm utilizes a 2-hop fault information

transmission mechanism to make routing decision

efficiently and can tolerate common convex and

concave fault regions without deadlock and livelock.

Simulation and synthesize results show that our

switch outperforms a cost-based deflection switch in

terms of throughput, average hop count, area and

power consumption in the presence of faults.

In future work, we will focus on on-line fault

detection mechanism and explore intelligent routing

strategy to handle more complicated fault patterns.

ACKNOWLEDGEMENT

The research is partially supported by the

National Natural Science Foundation of China (No.

60873212).

REFERENCES

1. S. Kumar, A. Jantsch, J.P. Soininen, M. Forsell, M. Millberg, J.
Oberg, K. Tiensyrja and A. Hemani, “A network on chip
architecture and design methodology”, IEEE Computer
Society Annual Symposium on VLSI, pp. 117-122, April 2002.

2. Z. Lu, M. Zhong, and A. Jantsch, “Evaluation of on-chip
networks using deflection routing”, ACM Great Lakes
symposium on VLSI, pp. 296-301, May 2006.

3. A. Kohler and M. Radetzki, “Fault-tolerant architecture and
deflection routing for degradable NoC switches”, IEEE
International Symposium on Networks-on-Chip, pp. 22-31,
May 2009.

4. T. Dumitras, S. Kerner, and R. Marculescu, “Towards on-chip
fault-tolerant communication”, Asia and South Pacific Design
Automation Conference, pp. 225-232, January 2003.

5. M. Pirretti, G.M. Link, R.R. Brooks, N. Vijaykrishnan, M.
Kandemir and M.J. Irwin, “Fault tolerant algorithms for
Network-on-Chip interconnect”, IEEE Computer Society
Annual Symposium on VLSI, pp. 46-51,February 2004.

6. T. Schonwald, J. Zimmermann, O. Bringmann and W.
Rosenstiel, “Fully adaptive fault-tolerant routing algorithm for
Network-on-Chip architectures”, Euromicro Conference on
Digital System Design Architectures, Methods and Tools, pp.
527-534, August 2007.

7. Z. Zhang, A. Greiner and S. Taktak, "A reconfigurable routing
algorithm for a fault-tolerant 2D-mesh Network-on-Chip",
ACM/IEEE Design Automation Conference, pp. 441-446, June
2008.

8. D. Fick, A. DeOrio, G. Chen, V. Bertacco, D. Sylvester and D.
Blaauw, "A highly resilient routing algorithm for fault-tolerant
NoCs", Design, Automation & Test in Europe Conference &
Exhibition, pp.21-26, April 2009.

9. E. Nilsson, M. Millberg, J. Oberg and A. Jantsch, “Load
distribution with the proximity congestion awareness in a
network on chip”, Design, Automation & Test in Europe
Conference & Exhibition, pp.1126-1127, March 2003.

10. Z. Lu and A. Jantsch, “TDM Virtual-Circuit Configuration for
Network-on-Chip”, IEEE Transaction on VLSI Systems, Vol.
16, No. 8, pp. 1021-1034, August 2008.

11. Y.J. Suh, B.V. Dao, J. Duato and S. Yalamanchili, “Software-
based rerouting for fault-tolerant pipelined communication”,
IEEE Transaction on Parallel and Distributed Systems, Vol. 11,
No. 3, pp. 193-211, March 2000.

12. W.J. Dally and B. Towles, “Principles and practices of
interconnection network”, Morgan Kaufmann publishers, pp.
50-51, 2004.

