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ABSTRACT 

Reliability has become a key issue of Networks-

on-Chip (NoC) as the CMOS technology scales 

down to the nanoscale domain. This paper proposes 

a Fault-on-Neighbor (FoN) aware deflection routing 

algorithm for NoC which makes routing decision 

based on the link status of neighbor switches within 

2 hops to avoid fault links and switches. Simulation 

results demonstrate that in the presence of faults, 

the saturated throughput of the FoN switch is 13% 

higher on average than a cost-based deflection 

switch for 8x8 mesh. The average hop counts can be 

up to 1.7x less than the cost-based switch. The FoN 

switch is also synthesized using 65nm TSMC 

technology and it can work at 500MHz with small 

area overhead. 
 

I. INTRODUCTION 

Networks-on-Chip (NoC) design paradigm which 

utilizes packet-switch communication has been 

proposed as a promising solution for Multiprocessors 

System-on-Chip (MPSoC) [1]. However, as the 

CMOS technology scales down to the nanoscale 

domain, some physical effects such as crosstalks, 

electro-magnetic interferences, alpha and neutron 

particle strikes and power supply disturbances may 

seriously affect the reliability of NoC. A possible 

solution to design a reliable NoC is to make the 

routing algorithm fault-tolerant. 

Deflection routing is a non-minimal adaptive 

routing algorithm which can be implemented easily in 

hardware, since it does not need buffers for packets 

in transit [2]. A main motivation for the use of non-

minimal routing is fault-tolerance, so it can be easily 

modified to achieve fault-tolerance at the cost of 

small hardware overhead. This paper proposes a 

Fault-on-Neighbor (FoN) aware deflection routing 

algorithm which makes efficient routing decision 

based on the fault information transmission within 2 

hops to avoid fault links and switches. Simulation 

results demonstrate that the saturated throughput of 

the FoN switch is 13% higher on average than a 

cost-based deflection switch [3] for 8x8 mesh with 

faults. The average hop counts can be at most 1.7x 

less than the cost-based switch in the presence of 

link failures. We also synthesize the FoN switch 

using TSMC 65nm standard-cell library, which can 

achieve 500MHz with area less than half of the cost-

based switch and only 18% increase compared to 

the non fault-tolerant deflection switch.  

The rest of paper is organized as follows: 

Related work is reviewed in Section II. Section III 

describes the NoC architecture, fault model and 

introduces the 2-hop fault information transmission 

mechanism. The detailed FoN aware routing 

algorithm and implementation are proposed in 

section IV. In section V, simulation experiment 

results are analyzed, followed by the conclusion and 

future work in section VI. 
 

II. RELATED WORK 

Fault-tolerant routing can be divided into two 

categories: stochastic and deterministic. Stochastic 

communication transfers redundant packets through 

different paths to avoid faults. A probabilistic flooding 

algorithm derived from the randomized gossip 

protocol has been proposed in [4]. In this switch, a 

packet is sent to a randomly chosen subset of its 

neighbors such that the packet is broadcasted from 

one switch to the entire NoC. In order to limit the 

number of packet copies, redundant random walk [5] 

only replicates packets at the source node. The 

flood-based scheme can be highly fault-tolerant such 

that if a path exists between source and destination, 

a packet can be always routed to the destination. But 

it wastes much bandwidth to transfer redundant 

packets and limits the performance of the network. 

Deterministic algorithm utilizes the structure 

redundancy of NoC to route packets to the 

destination through different paths to achieve fault-

tolerance. Force-Directed Wormhole Routing (FDWR) 

[6] makes routing decision based on the routing table 

and the buffer status of neighbor switches. It uses 

the first flit of a packet as a look-ahead flit to 

investigate the buffer and fault status of neighbor 

switches. However, it needs an additional flit to 

check neighbor state and with the increase of the 

network size, more buffers are needed to store the 

routing table. In [7], a reconfigurable routing 



algorithm for fault-tolerant 2D mesh NoC has been 

presented to route packets through a cycle free 

contour surrounding a faulty switch. But it can only 

be used in one faulty switch topology. A resilient 

routing algorithm for fault-tolerant NoC based on turn 

model is described in [8]. The switch can be 

reconfigured around faulty components while 

maintaining correct operation without using virtual 

channels. A fault adaptive deflection routing 

algorithm which makes routing decision based on a 

cost function has been proposed in [3]. The switch 

implements an on-line fault diagnosis mechanism 

and makes routing decision based on a cost function 

which considers the route length and local fault 

status. It can not only handle link and switch faults, 

but also crossbar faults. Because it makes routing 

decision only based on the fault information of the 

current switch, the hop count field of the packet can 

easily overflow in some fault patterns. 
 

III. NOC ARCHITECTURE AND FAULT MODEL 
 

A. NoC Architecture Overview 

The NoC architecture is based on Nostrum NoC 

[9,10], which is a 2D mesh topology. The difference 

from the ordinary 2D mesh is that the boundary 

output is connected to the input of the same switch 

so that the packet sent in that direction returns to the 

same switch. This can be used as a packet buffer. 

Deflection routing is used to make routing decision 

based on the packet priority and stress value which 

is the traffic load of neighbor switches in last 4 cycles. 

All incoming packets are prioritized based on its hop 

counts which record the number of hops the packet 

has been routed. The packet with the largest hop 

counts has the highest priority. The switch makes 

routing decision for each packet from the highest 

priority to the lowest. If a desired output port has 

already been occupied by a higher priority packet, a 

free port with the smallest stress value will be 

chosen, which means the packet has to be deflected. 
 

B. Fault Model 

In our work, faults are considered as completely 

broken links and switches. Link failures are assumed 

to be bidirectional. In each switch, a 4-bits fault 

vector is used to represent the fault status of its four 

links. A switch fault is modeled by making all four 

links attached on it faulty. Packets are only destined 

to fault-free switches. It is difficult to handle arbitrary 

fault patterns without the shape constraint. Without 

loss of generality, the fault regions handled by the 

FoN aware routing algorithm can be constrained to 

be convex and concave shapes [11], as shown in Fig. 

1(a) (I-shape,□-shape, U-chain, +-shape, L-shape 

and T-shape), which do not contain two sequential 

concave points such as U-block and H-shape, shown 

in Fig. 1(b). A concave point is a corner on the 

boundary of the faulty region which has an interior 

angle of 270 degrees, as the gray nodes shown in 

Fig. 1(b). In addition, it is assumed that fault regions 

do not disconnect the network. 
 

 
Figure 1: Fault patterns 
 

C. Fault Information Transmission Mechanism 

The key issue of designing a fault-tolerant 

routing algorithm is that each switch gets fault 

information such that it can make routing decision 

efficiently. However, it will cost a large amount of 

resources to store and transmit fault information and 

also take much time to search for an available path. 

Due to the limited on-chip resources, it is important 

to decide to which extent of the fault information 

should be available at a switch. In this paper, to 

make a compromise between purely local and purely 

global fault information we propose a 2-hop fault 

information transmission mechanism which means 

each switch can get the link status within 2 hops. 

In the 2-hop fault information transmission 

mechanism, each switch not only transmits its link 

status to its four neighbors but also collects the link 

status from its three neighbors and transmits to the 

fourth neighbor, as shown in Fig. 2, for example, 

switch A can get the status of 16 links. The signal 

FoN_to[d] (Fault-on-Neighbor to direction d) 

collected by the current switch is a 3-bits vector to 

denote link status along the other three directions 

except d and is transmitted to the neighbor along d. 

For example, FoN_to[W] denotes the link status of 

the North, East and South links and is transmitted to 

the West neighbor. Due to the limited fault 

information, packets can be routed in a circle on H-

shape and U-block fault regions. So this mechanism 

can also be easily extended to n-hop fault 

information transmission to handle these more 

complicated fault patterns. 

Only four additional signals are required to 

transmit fault information between a switch and its 

four neighbors. They are totally 8 bits for each 



direction. For each direction d∈ {North, East, South, 

West}, these signals are represented as: 

� fault_from[d] (1 bit): the input link status along 

the direction d; 

� fault_to[d] (1 bit): the output link status along 

the direction d; 

� FoN_from[d] (3 bits): the link status from the 

neighbor along the direction d; 

� FoN_to[d] (3 bits): the link status collected by 

the current switch based on link status of three 

directions except the direction d and 

transmitted to the neighbor along d. 
 

 
Figure 2: Fault information transmission mechanism 
 

IV. FON AWARE ROUTING ALGORITHM AND 

IMPLEMENTATION 
 

A. FoN Aware Routing Algorithm 

The basic idea of the FoN aware routing 

algorithm is that each switch makes routing decision 

based on the link status within 2 hops. Fig. 3 shows 

an example of routing decision on a 4x4 mesh. 

Suppose switch (2,2) sends a packet to switch (4,4). 

First it will check two productive links (East and 

South) faulty or not. If both are not faulty, then it will 

check status of the productive links to switch (4,4) 

from its neighbors (switch (2,3) and (3,2)). In this 

case, both of productive links to switch (4,4) from 

switch (2,3) are faulty, so switch (2,2) will choose the 

south link finally. 
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Figure 3: Example of fault information transmission 
 

The pseudo code of the FoN aware deflection 

routing algorithm executed at node nc is shown in Fig. 

4. There are at most four packets arriving at a switch 

at the same time. The switch makes routing decision 

from the highest priority packet to the lowest. The 

switch first checks if the packet has reached the 

destination nd. If not, then it calculates the productive 

direction(s) based on the relative address to nd, 

which is provided by the function get_prefer_Dir(nc, 

nd). A packet may have at most two productive 

directions to the destination. The remaining algorithm 

can be divided into two parts: 1) nd is in the same 

row or column as nc; 2) nd is not in the same row or 

column as nc. 

1) nc and nd are in the same row or column 

In this case, there is only one productive 

direction to nd. When the productive link is faulty and 

the input direction is not one of orthogonal links, the 

switch will check the FoN_from vectors along the two 

orthogonal directions by the function Check_FoN, 

which checks the productive link of the neighbor 

along the orthogonal direction (step 10). If both of 

orthogonal links are available, it will choose one of 

them with a smaller stress value. If the input direction 

is one of orthogonal links, it will check the FoN_from 

vector along the other orthogonal link (step 13). If 

only one orthogonal link is not fault, then it will check 

the FoN_from vector along this direction (step 20). If 

both orthogonal links are not available, it will choose 

the remaining link (step 15, 22, 26). If all other links 

are not available, the packet will be routed back 

(step 18, 25, 29). 

2) nc and nd are not in the same row or column 

In this case, the packet can be routed to nd 

through two productive directions. If both of them are 

not faulty and the input direction is not one of them, 

for each productive direction the switch first gets the 

productive direction(s) from the neighbor to nd (step 

35, 36) and then checks FoN_from vectors along this 

path (step 39) and chooses one of them base on the 

FoN_from vectors and stress values. If the input 

direction is one of productive directions, it will check 

FoN_from vector along the other productive direction 

(step 42). If only one productive link is not faulty, it 
will check the FoN_from vector along this direction 

(step 47). If both of productive links are faulty, it will 

choose a remaining link with a smaller stress value 

(step 54). 

In order to avoid the packet oscillation between 

two switches, the algorithm tries to avoid routing the 

packet back to the input direction. Only if all the 

other links are not available, the packet will be 

routed back. 
 

B. Deadlock and Livelock Avoidance 

Deflection routing is deadlock free since packets 

never have to wait in a switch. Livelock is a key 

problem that deflection routing must avoid. Packet 

priority mechanism can be used in a fault-free 

network to avoid livelock. However, because each 

switch only has the limited fault information of the 



network, it is difficult to avoid livelock under arbitrary 

fault patterns. The simplest way to avoid livelock is 

by limiting misrouting. Constraining the shape of the 

fault regions to be convex and concave without 

sequential concave points can be helpful to avoid 

unlimited misrouting which is shown in the following 

livelock-free proof. 
 

∉

∉

 
Figure 4: FoN aware routing algorithm 
 

Theorem: FoN aware routing algorithm is 

livelock-free under convex and concave fault regions 

with at most one concave point in sequence which 

do not disconnect the network. 
Proof: Packets routed on non-faulty region are 

livelock-free, because the algorithm gives the highest 

priority to the oldest packets, which guarantees a 

packet can eventually advance towards its 

destination. When a packet reaches the corner of the 

fault region which is not a dead end, it can be routed 

the same way as routed on the non-faulty region. 

Depending on how to route packets to the corner of 

the fault region, packets routed around the fault 

region can be categorized into three possible cases, 

which are described as follow. 

1) Packet routed on the edge of the fault region 

without contention 

When a packet reaches one switch on the edge 

of the fault region and the switch chooses a direction 

d to route the packet, in order to avoid the packet 

oscillation between two switches, the following 

switches on the edge will try to route the packet 

along d even when the packet is far away from the 

destination until the packet reaches the corner of the 

fault region or reaches a dead end of the fault region 

which can be met on U-chain. In the later case, the 

packet will be routed back along the original path 

until it reaches another corner of the fault region, as 

shown Path 1 in Fig. 5. 

2) Packet routed to the concave point of the fault 

region without contention 

When a packet reaches a concave point of the 

concave fault regions (+-shape, L-shape and T-

shape), it will be routed along the orthogonal 

direction of the input direction and follow the same 

way on another edge as case 1) to the corner, as 

shown Path 2 in Fig. 5. 

3) Packet deflected away from the fault region 

due to the contention 

In the case of a packet first routed on the edge 

of the fault region and then deflected away from the 

fault region temporarily due to the contention, when 

the priority of the packet becomes higher, it will be 

rerouted on the edge of the fault region again and 

there is no contention to hinder the packet routed to 

the corner of the fault region as described in case 1) 

and 2), as shown Path 3 in Fig. 5.                            □ 
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Figure 5: Packets routed around fault region 
 

C. FoN Switch Implementation 

The structure of the FoN switch is shown in Fig. 

6. Because deflection routing does not need buffers 

to store packet, the switch can be easily 

implemented with hardware. Each switch sends its 

link status and stress value to its neighbor switches 

and receives link status and stress values from its 



neighbors. Routing controller makes routing decision 

based on the fault information and stress value. 
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Figure 6: FoN switch implementation 

 

The FoN switch is synthesized using 65nm 

TSMC standard-cell library by Synopsys Design 

Compiler. In order to make a comparison, the cost-

based deflection switch [3] is also implemented. For 

the focus on the routing algorithm, we only 

implement the cost-based deflection routing 

algorithm and do not implement the on-line fault 

diagnosis and CRC check of the switch. Results for 

frequency, area and power consumption are shown 

in Table 1. For frequency, the FoN switch can 

achieve the same frequency (500MHz) as the non 

fault-tolerant switch, while the cost-based switch can 

only achieve 166MHz. The areas of the non fault-

tolerant and FoN switch are less than half of the 

cost-based switch. Compared to the non fault-

tolerant switch, the area of the FoN switch is 

increased by 18%. All power consumptions are 

measured at the same frequency and voltage 

(166MHz, 1.0V). The power consumption of the FoN 

switch is 4.7x less than the cost-based switch. The 

cost-based switch has high hardware overhead 

because it has to find the best permutation among all 

4!=24 permutations of input and output ports based 

on a cost function. 
Table 1: Synthesize results 

 Frequency 
(MHz) 

Area 
(µm

2
) 

Power 
(mW) 

Non fault-tolerant 500 28784 1.2 

Cost-based 166 76184 6.6 

FoN 500 34109 1.4 
 

V. EXPERIMENT RESULTS 

The experiment evaluates the FoN switch and 

the cost-based switch in terms of throughput and 

hop count by simulation. The simulation is 

constructed on an 8x8 2D mesh. 

A. Simulation Platform 

The FoN switch is developed in VHDL and 

performed a cycle-accurate RTL-level simulation. Six 

common synthetic traffic patterns (uniform random, 

transpose, bit complement, bit reverse, shuffle and 

tornado) [12] are used in the simulation. A packet 

generator is attached to each switch and there is a 

FIFO in it to buffer the packets which can not be 

injected into the network because of no free output 

port. The packet generator delivers packets into the 

network with an injection rate which can be set at the 

beginning of the simulation. The specified number of 

faults is randomly selected before the simulation. 
 

B. Results and Analysis 

The experiments first evaluate the throughput of 

the network with different number of link failures. 

Throughput is measured in packets/cycle/node at the 

saturation point of the network which means the 

maximum accepted traffic. Fig. 7 shows the 

throughput degradation with an increasing number of 

link faults under six traffic patterns for the FoN and 

cost-based switch. The number of link faults varies 

from 10% to 30% of the total. In the situation of no 

faults, the throughput of the cost-based switch is 

slightly higher than the FoN switch for all traffic 

patterns. This is because the cost-based switch can 

always find the best permutation for each packet in a 

congested network with no faults instead of 

unnecessary deflections. As the number of failures 

increase, the number of available routing paths also 

decreases which results in a throughput degradation 

for both switches. In the presence of faults, the cost-

based switch can not always make optimized routing 

decision, so the network can be easily saturated. 

The throughput of the FoN switch is 13% higher on 

average than the cost-based switch in the presence 

of link faults. For individual traffic patterns, the 

throughput of the FoN switch is higher than the cost-

based switch on average 17% for uniform random 

traffic, 14% for transpose traffic, 14% for bit 

complement traffic, 8% for bit reverse traffic, 12% for 

shuffle traffic and 14% for tornado traffic. 
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Figure 7: Throughput with increasing number of link failures 
 

Fig. 8 (a) ~ (f) reveal a comparison of the two 

switches in terms of average hop counts under 

various link failure rates from 10% to 30% for the six 

traffic patterns respectively. The packet injection rate 

is 0.1 packets/cycle/node. The FoN switch can 



achieve 1.5x, 1.4x, 1.2x, 1.5x, 1.7x and 1.3x less 

hop counts on average than the cost-based switch 

for the six traffic patterns respectively. The reason is 

that the cost-based switch makes routing decision 

only based on local fault status which leads some 

packets to be routed in a circle among several 

switches or oscillation between two switches. 

However, the FoN switch always tries to route packet 

advanced to the destination, so the average hop 

counts are significantly less. 
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Figure 8: Average hop counts under various link failure rates 
 

The worst case hop counts for the two switches 

are also compared in the experiments. Fig. 9 

illustrates the packet number distribution based on 

hop counts under uniform random traffic with a fault 

pattern of 10% link faults. The max hop counts of the 

FoN switch are between 40 and 59, while the max 

hop counts of the cost-based switch are larger than 

120. From the simulation it can be found that 10 bits 

of the hop count field are even not enough for the 

cost-based switch, in some fault patterns the hop 

counts can easily overflow. 
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Figure 9: Packet distribution based on hop counts 

 

VI. CONCLUSION AND FUTURE WORK 

This paper proposes a fault-tolerant deflection 

routing algorithm for Networks-on-Chip. The routing 

algorithm utilizes a 2-hop fault information 

transmission mechanism to make routing decision 

efficiently and can tolerate common convex and 

concave fault regions without deadlock and livelock. 

Simulation and synthesize results show that our 

switch outperforms a cost-based deflection switch in 

terms of throughput, average hop count, area and 

power consumption in the presence of faults. 

In future work, we will focus on on-line fault 

detection mechanism and explore intelligent routing 

strategy to handle more complicated fault patterns. 
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