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ABSTRACT
A general expression for the average distance for meshes of
any dimension and radix, including unequal radices in differ-
ent dimensions, valid for any traffic pattern under zero-load
condition is formulated rigorously to allow its calculation
without network-level simulations. The average distance ex-
pression is solved analytically for uniform random traffic and
for a set of local random traffic patterns. Hot spot traffic
patterns are also considered and the formula is empirically
validated by cycle true simulations for uniform random, lo-
cal, and hot spot traffic. Moreover, a methodology to attain
closed-form solutions for other traffic patterns is detailed.
Furthermore, the model is applied to guide design decisions.
Specifically, we show that the model can predict the opti-
mal 3-D topology for uniform and local traffic patterns. It
can also predict the optimal placement of hot spots in the
network. The fidelity of the approach in suggesting the cor-
rect design choices even for loaded and congested networks
is surprising. For those cases we studied empirically it is
100%.

Categories and Subject Descriptors
C.4 [Performance of Systems]: 3-D IC, Network-on-Chip,
modeling techniques, design studies; C.2.1 [Network Ar-
chitecture and Design]: Metrics—average distance, hotspot,
3-D optimization

1. INTRODUCTION
Two important metrics of performance for NoCs are la-

tency and throughput, generally functions of network char-
acteristics such as topology, interconnect characteristics, rout-
ing scheme and switch architecture, as well as application
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characteristics primarily defined by traffic pattern. The av-
erage distance is a NoC performance metric that depends
on the topology and the traffic pattern only, under the as-
sumption that the network operates well below its satura-
tion point. We express it as a closed formula comprising a
sum over all source-destination node pairs for arbitrary n-
dimensional radix-k mesh networks and for arbitrary spatial
traffic patterns. A traffic pattern is defined as the packet
exchange probability for each source-destination pair. Av-
erage distance is an upper bound on the performance for all
possible routing, switching, and flow control algorithms. For
instance, a routing algorithm is optimal for a given traffic
pattern if packets on average do not travel more than the
average distance through the network.

We define the distance of communication as the minimum
number of switch-points or nodes that a packet has to tra-
verse from a source node to a destination node. It is mea-
sured in hops, where a hop is defined as the traversal of a
node. The average distance H̄ is the average distance of all
packets in the network under a given traffic pattern, and a
function of the dimension and radix in a mesh topology. It is
a useful basic metric providing insight into the performance
of the overall network.

The starting point in our analysis is the rigorous formu-
lation of an expression for the average distance in k−ary
n−dimensional meshes, including unequal radices in the dif-
ferent dimensions, that is valid for any traffic pattern. We
proceed to evaluate this expression for Uniform Random
Traffic (URT), Local Random Traffic (LRT), and Hot Spot
Traffic (HST) and verify through network simulations that
the resulting formula accurately predicts the average latency
for unloaded1 networks. The upshot of this is that the up-
per bound on performance given by the average latency of a
k−ary n−mesh unsaturated network for any traffic pattern
can be estimated from the general model we propose, with-
out running network simulations, which saves both model
development time and computation time.

In the case of URT, the general expression can be solved to
yield a closed-form expression for the delay, which is proven

1We use the terms unloaded, uncongested and unsaturated
interchangeably to essentially mean the same thing: the in-
jection rate of packets into the network is low enough to
ensure the network is stable.



to be more exact and more general than other expressions
available in the literature. We also propose empirical closed-
form solutions for three specific LRT patterns based on the
Response Surface Method (RSM) and illustrate the general
methodology to obtain closed-form solutions for an arbitrary
traffic pattern.
Due to the simplicity of the model, it is particularly useful

in finding optimal network architectures to minimize aver-
age communication delay under any traffic pattern, includ-
ing empirically validated traffic models for irregularly sized
networks with multiple constraints. For relatively simple
traffic patterns such as URT, LRT or empirically-validated
models where a closed-form expression can be obtained for
the delay, the optimization problem takes a few seconds of
computation time. In our results we show solutions for opti-
mal architectures under different traffic patterns and bound-
ary conditions that can be obtained from a few iterations
at most with minimal computation time using any general
purpose programming language such as Matlab or C, rather
than computationally expensive cycle-accurate packet-level
simulations. However even for those cases where the traffic
model does not allow such a formulation, the general model
for average distance we propose has a computational com-
plexity O(N2) in the worst-case where N is the number of
nodes in the network, meaning that a brute-force search to
find the optimal network configuration for network sizes up
to say a thousand nodes is feasible on a desktop. Notably
our model exhibits 100% fidelity for all simulations carried
out for three types of traffic (namely URT, LRT, and HST),
where the optimum architecture to minimize latency for un-
loaded networks remains optimal even under congestion up
to the point of saturation.
The main contribution of this paper is in providing a gen-

erally valid model for the average distance and accompa-
nying analysis that provides insight into network behavior
under common traffic loads and constraints.

2. RELATED WORK
The analytic formulæ for average distance provided in the

literature either cover only a special case, or the assumptions
made are not fully explained leading to misunderstanding.
Agarwal [1] gives

H̄ =
n

3

(
k − 1

k

)
(1)

as the average distance in an n-dimensional mesh with radix k.
The formula assumes that k is the same in all dimensions
and no derivation or further motivation is provided.
Liu et al. [12] provide a formula for a k1 × k2 2-D mesh:

H̄ =
1

3
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k1 −

1

k1

)
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)
(2)

Here the case with different radices is covered but only for
two dimensions. The derivation of the formula is somewhat
unclear because it contains an approximation step, that re-
places k1k2 − 1 by k1k2 without motivation or explanation.
It seems that the authors intended this formula only to be
an approximation. They exclude the self-traffic case (when
a node is allowed to send packets to itself) which is in con-
tradiction to Agarwal’s assumptions.
Dally and Towles [3] offer

H̄ =

{
nk
3

k even

n(k
3
− 1

3k
) k odd

(3)

for k+1 nodes in each dimension. This expression is in con-
tradiction to both Liu’s and Agarwal’s formulæ. However,
closer inspection shows that, under the corrected assump-
tion of radix k (rather than k + 1), the odd case formula is
identical to Agarwal’s formula and the even case is an upper
bound of H̄, approaching the true value asymptotically for
large k.

Holsmark [7] devotes appendix I of his Licentiate thesis to
the clarification of the average distance. He concludes with

H̄ =
k1 + k2

3
(4)

for a k1 × k2 mesh assuming no self-traffic. Agarwal and
Dally et al. include the self-traffic case. Taking this into
account, it turns out that Holsmark’s formula is consistent
with Agarwal’s expressions, but he covers only 1-D and 2-D
meshes.

We provide a derivation for the average distance in n-
dimensional meshes with the general case of unequal radices
along the different dimensions. This is important as many
practical on-chip networks serving a few tens or hundreds of
cores in multiprocessor systems are often irregular, and the
number of nodes along the x, y, and z dimensions in a 3-D
system for example, are seldom equal. We show how this
formula is exactly correct, and is a generalization of all the
models mentioned above.

Koohi et al. [11] present abstract performance models in a
spirit similar to our’s. They propose power and throughput
models for uniform, local, hotspot, and first matrix trans-
pose traffic models. Their approach is more empirical since
they use simulation results as starting point and analyze
the effect of combinations of different traffic models to de-
rive comprehensive throughput and power models for mixed
traffic patterns. In contrast, our approach focuses on dis-
tance and latency, deriving an analytical formula which is
further validated through simulation. Primarily we focus on
the unloaded case but we show that design decisions based
on minimum latency provided by our model also hold true
in loaded networks. While Koohi et al. consider only 2-D
networks, we have special interest in 3-D topologies.

In a seminal paper from 1990 Dally [4] studied the commu-
nication performance of k-ary n-dimensional tori, a similar
class of topologies that we cover (meshes rather than tori).
The paper analyzes average latency in networks with differ-
ent dimensions (mostly between 2-20) under different cost
constraints for routers and wires, ranging from “wires are
free and infinitely fast” to “limited wires per router” and a
linear delay wire model. The paper identifies the optimal
dimension constrained by the cost and wire model assumed.
It almost exclusively deals with uniform random traffic, ex-
cept a short section where hot spot traffic is briefly dis-
cussed. Our work makes more specific assumptions on wire
cost and wire delays based on realistic implementations for
on-chip planar interconnects and in a 3-D stack. But we
cover general traffic patterns and show how the model facil-
itates topological exploration and hot spot placement.

A significant body of research comprises the develop of
network performance models for packet latency in congested
networks. Even in the narrower scope of Networks-on-Chip



the published literature on this topic is substantial. Most of
the work (e.g. [13, 5, 14, 10, 9, 6, 16, 15]) make very specific
assumptions about routing (mostly deterministic, dimension
order routing) and switching (mostly wormhole switching).
The majority focuses on average delay [5, 14, 10, 9, 6] while
some work targets worst-case delay [16, 15]. Sometimes even
more specific assumptions are made such as single flit buffers
[6] or one dedicated virtual channel for each flow [8].
In contrast with all this and similar work, we do not of-

fer a delay model under congestion or for a specific switch
architecture, but we start with an analytical formula for
average distance which is valid for all k-ary n-dimensional
meshes and for any traffic pattern, but abstracts entirely
from routing and switching techniques. We then derive av-
erage distance formulas for specific traffic patterns and we
illustrate the usefulness of this abstract, ideal formulae. In
particular, we use the expression for average distance to in-
vestigate optimal architectures for minimizing delay when
the link delays are not necessarily equal.

3. CALCULATING AVERAGE DISTANCE
First, we derive a general average distance formula for

k-ary n-dimensional networks and for arbitrary traffic pat-
terns. Then, in section 3.1, we derive a closed form solution
for Uniform Random Traffic. This is straight forward and
the result is consistent with earlier published formulas. In
section 3.2 we derive a closed form formula for a specific
type of Local Random Traffic, which is a more complicated
derivation. In section 3.3 we introduce HotSpot Traffic but
do not provide a closed formula due to the intractable de-
pendency on the precise location of the hotspots. But later
on in section 4 we show how an optimal placement of hotspot
nodes can be found by minimizing the average distance.
The average distance of a network is the ratio between the

total distance that the packets emitted by all switches travel
and the total number of packets emitted. In a network with
N nodes, the total distance traveled by the packets emitted
by all switches is:

Dt =
∑
A∈N

∑
B∈N

pA,B × dA,B , (5)

where A and B are any given nodes, dA,B is the Manhat-
tan distance between the node A and node B, and pA,B is
the probability that a packet is sent from node A to node
B. pA,B defines the traffic pattern and can be an arbitrary
function. E.g. for local random traffic pA,B is a function of
the distance dA,B . This equation is a general formulation
for any k-ary n-dimensional network.
The total number of paths Np traversed by the emitted

packets considered here is:

Np =
∑
A∈N

∑
B∈N

pA,B (6)

Hence the Average Distance Davg is given by:

Davg =
Dt

Np
=

∑
A∈N

∑
B∈N

pA,B × dA,B∑
A∈N

∑
B∈N

pA,B

(7)

In order to demonstrate the formula (7), we calculate the
average distance over a single dimension by considering a
1-D array shown in Fig. 1. Each node connects to every

0 S1 S2 S3 S4 Sk
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Figure 1: A 1× k Mesh Network (dimension=1 and
radix=k). The distances from switch S1 to all other
switches including itself is shown.

other node, and each such path has an associated distance.
Shown in the figure are the distances hi,j from the first node
(S1) to the other nodes in the array. The average distance
for a k-ary 1-D array is:

H̄1×k =

k∑
i=1

k∑
j=1

pi,j × |i− j|

k∑
i=1

k∑
j=1

pi,j

. (8)

3.1 Uniform Random Traffic
For Uniform Random Traffic, each node generates the

same number of packets uniformly distributed over time,
and all destination nodes are equally likely. Hence the prob-
abilities are the same for all source-destination pairs, leading
to pi,j = purt where purt is a constant. Therefore, (8) can
be simplified thus:

H̄urt1×k =

purt

k∑
i=1

k∑
j=1

|i− j|

purt

k∑
i=1

k∑
i=1

1

=
k3

3
− k

3

k2
(9)

leading to

H̄urt1×k =
k

3
− 1

3k
. (10)

In the case of URT, since the probability is not a function
of distance that the packets travel, the average dimension
for an n-D network can be calculated by adding the average
distance for each dimension. Therefore for an n-D array,
the average distance for URT can be expressed using the
following closed-form equation:

H̄urt =

n∑
i=1

H̄urt1×ki

=
k1
3

− 1

3k1
+

k2
3

− 1

3k2
+ · · ·+ kn

3
− 1

3kn
(11)

When the radix along each dimension is identical, it is
true that k1 = k2 = k3 · · · = k, and (11) reverts to (1) and
the odd case of (3).

For n = 2 equation (11) simplifies to (2). Although Liu
et al. [12] intended an approximation, they ended up pro-
viding an exact formula for the case that includes a node
sending traffic to itself. Even though in their setup they ex-
cluded the self-traffic case, the approximation they included



as a corrective measure resulted in exactly the right formula
including self-traffic.
Finally it can be seen that taking the different assump-

tions into account (i.e. with and without self-traffic) equa-
tion (11) reverts to equation (4) for n = 2 as follows. Since
the average distance is computed by dividing the sum of all
distances by the number of paths, we correct for these differ-
ent assumptions by multiplying with the number of paths in
the self-traffic case ((k1k2)

2) and dividing by the number of
paths in the case with no self-traffic ((k1k2)

2 − k1k2). Since
the distance for self-traffic is 0, the sum of all distances does
not differ in the two cases. Setting n = 2 and applying this
correction to (11) results in:

1

3

(
k1 −

1

k1
+ k2 −

1

k2

)(
(k1k2)

2

(k1k2)2 − k1k2

)
=

1

3
(k1 + k2)

which turns out to be identical to Holsmark’s equation (4).

Table 1: Comparison of Average Distance Calcu-
lated by the formula (7) and Simulations
Netw. Prob. Avg. Distance %Error
Size Model Formula Simulation
5x5x5 URT 4.8300 4.813 0.35
6x6x6 URT 5.8600 5.888 0.47
7x7x7 URT 6.8772 6.971 1.36
8x8x8 URT 7.8900 7.931 0.52
9x9x9 URT 8.9000 8.976 0.85
10x10x10 URT 9.9090 9.894 0.15
4x8x16 URT 9.9090 10.008 0.99

5x5x5 LRT:α=1.0 3.7900 3.81 0.53
6x6x6 LRT:α=1.0 4.5900 4.555 0.94
7x7x7 LRT:α=1.0 5.3900 5.418 0.52
8x8x8 LRT:α=1.0 6.1900 6.146 0.71
9x9x9 LRT:α=1.0 7.0000 6.969 0.44
10x10x10 LRT:α=1.0 7.8060 7.855 0.62
5x5x5 LRT:α=1.5 3.1800 3.163 0.53
7x7x7 LRT:α=1.5 4.4781 4.498 0.44
4x8x16 LRT:α=1.5 5.3757 5.301 1.38

3.2 Local Random Traffic
For local traffic, a variety of probabilistic models can be

considered, with the probability that a given node being the
destination is some inverse function of the distance from the
source: pA,B = 1

λAf(dA,B)
where λA is the normalization

constant defined by
∑
B∈N

pA,B = 1, and dA,B is the distance

between nodes A and B.
For f(dA,B) = dαA,B Table 1 compares the average dis-

tance estimated by (7) and RTL network simulations, for dif-
ferent traffic models and network sizes. The RTL simulator
employs bufferless 5-port (2-D) and 7-port (3-D) switches,
where one port serves the independent packet generating
resources. The switches are bufferless and the routing deci-
sions are based on an address minimizing“hot potato”deflec-
tion algorithm. The simulation invokes a configurable mesh
to instantiate any size network in 2 or 3 dimensions. In or-
der to comply with the RTL cycle-accurate simulations, we
excluded self-traffic from formula (7) by considering A 6= B.
To validate the model, simulations are performed at low
packet injection rates to ensure an unloaded network. The

results show a good agreement between the formula and the
simulation results, where the discrepancy between the model
and simulation is a result of stochastic deviation in the gen-
eration of packet destinations and rounding errors. Further,
for URT the closed-form solution as given in (11) for 3-D
and the general expression (7) show exactly the same result.

Closed-Form Formula for LRT: To provide a closed
form solution for non-URT traffic, we propose an empirical
equation for average distance of a 3-D NoC, using the Re-
sponse Surface Method (RSM) [2], which is a collection of
mathematical and statistical techniques useful for the mod-
eling and analysis of problems in which a response of interest
is influenced by several variables. This same methodology
we demonstrate for our local traffic pattern can be applied
to any custom traffic pattern. The second-order approxi-
mation function with three variables using RSM is defined
as:

y = b0 +

m∑
i=1

bix
2
i +

m∑
i=1

biix
2
i +

m∑
i=1,i<j

m∑
j=1

bijxixj + ε, (12)

where xi and xj are the design variables, b0, bi, bij are called
regression coefficients, ε is the error, and m is the number of
variables. For various values of xi, i = 1, . . . ,m the depen-
dent variable y is found from experiment. The relationship
between a set of independent variables and the response y
defined by the regression coefficients is determined using the
method of least squares. In general, (12) can be written in
matrix form:

Y = bX+E, (13)

where Y is defined to be a matrix of measured values (of
size p× 1), X to be a matrix of independent variables, b to
be the regression coefficient matrix (of size p× 1), and E to
be the error matrix ( of size p × 1). Then, the solution of
(13) is:

b = (XTX)−1XTY, (14)

which are the regression coefficients for (12).
Using the RSM model, for a 3D NoC with size kx×ky×kz,

the average distance can be expressed as follows:

Hfit = b0 + bxkx + byky + bzkz + bxxk
2
x + byyk

2
y + bzzk

2
z

+ bxykxky + bxzkxkz + byzkykz (15)

For example, regression coefficients for local traffic model
LRT:α = 0.5, 1.0, 1.5 are shown in Table 2. In some cases
when either of Kx, Ky or kz is 2 the maximum error in the
functional form can be as high 13%, however the error for
all cases on average is shown to be lower than 1%.

3.3 Hotspot Traffic (HST)
To represent less than ideal networks, we also consider

that some nodes in the network will attract more traffic than
others. In this case the probability of sending packets orig-
inating from a particular node to hotspots is higher than
that for non-hotspot nodes.If the fraction of packets gener-
ated at any given node that have a hotspot destination is
phst, the fraction of packets addressed to non-hotspots will
be (1−phst). Packets for hotspots and non-hotspot can also
be assigned using URT and LRT. In this analysis we assumed
that 80% of packets from one node is uniformly distributed
among two hotspots while the rest is uniformly distributed
among all the non-hotspots. We consider different strate-
gies for hotspot placements within the network and use our



Table 2: Coefficients for the closed-form equation for average distance for a network of size kx×ky ×kz, where
kx, ky ∈ 2, . . . 10 and kz ∈ 2, . . . 30.

b LRT:α = 0.5 LRT:α = 1.0 LRT:α = 1.5
γ=1 γ=0.5 γ=0.25 γ=1 γ=0.5 γ=0.25 γ=1 γ=0.5 γ=0.25

b0 -0.4915 -0.4455 -0.4224 -0.4272 -0.3841 -0.3626 -0.1569 -0.1716 -0.1789
bx 0.3556 0.3472 0.3430 0.3281 0.3087 0.2990 0.2680 0.2497 0.2406
by 0.3556 0.3472 0.3430 0.3281 0.3087 0.2990 0.2680 0.2497 0.2406
bz 0.2804 0.1423 0.0732 0.2136 0.1123 0.0617 0.1493 0.0801 0.0455
bxx -0.0061 -0.0054 -0.0051 -0.0101 -0.0084 -0.0076 -0.0122 -0.0101 -0.0091
byy -0.0061 -0.0054 -0.0051 -0.0101 -0.0084 -0.0076 -0.0122 -0.0101 -0.0091
bzz -0.0013 -0.0008 -0.0005 -0.0022 -0.0014 -0.0010 -0.0027 -0.0016 -0.0011
bxy 0.0022 0.0027 0.0029 0.0055 0.0061 0.0064 0.0099 0.0096 0.0095
bxz 0.0030 0.0019 0.0014 0.0055 0.0036 0.0026 0.0066 0.0044 0.0032
byz 0.0030 0.0019 0.0014 0.0055 0.0036 0.0026 0.0066 0.0044 0.0032
%Avg. Error 0.49 0.44 0.44 0.91 0.82 0.81 1.35 1.21 1.19

Table 3: Optimum Network Sizes for different traffic models under planar link clock speeds, γ, of 0.5 and
0.25 times the 3-D link clock. Uniform vertical and horizontal clock speeds through a network intuitively
perform at their optimum latency in symmetrical configurations of N×N×N. δ is the ratio between the average
distance for optimum network size and the average distance for cubic solution.

N URT LRT:α = 0.5 LRT:α = 1.0
γ = 0.5 γ = 0.25 γ = 0.5 γ = 0.25 γ = 0.5 γ = 0.5

Nopt δ Nopt δ Nopt δ Nopt δ Nopt δ Nopt δ
27 2x2x7 0.96 2x2x7 0.78 2x2x7 0.94 2x2x7 0.78 2x2x7 0.92 2x2x7 0.78
64 2x4x8 0.98 2x3x11 0.82 2x4x8 0.97 2x2x16 0.79 2x3x11 0.95 2x2x16 0.74
125 4x4x8 0.95 3x3x14 0.82 4x4x8 0.95 3x3x14 0.80 3x3x14 0.94 3x2x21 0.77
216 4x5x11 0.96 3x4x18 0.83 4x5x11 0.95 3x4x18 0.82 4x5x11 0.94 3x3x24 0.78
343 5x5x14 0.97 4x4x22 0.84 5x5x14 0.96 4x4x22 0.82 5x5x14 0.94 3x4x29 0.79
512 5x7x15 0.97 5x5x21 0.84 5x7x15 0.96 4x5x26 0.83 5x7x15 0.95 4x5x26 0.80
729 7x7x15 0.95 5x6x25 0.84 7x7x15 0.95 5x5x30 0.83 7x7x15 0.95 5x5x30 0.81
1000 7x8x18 0.95 6x6x28 0.84 7x8x18 0.95 6x6x28 0.83 7x8x18 0.94 6x6x28 0.81

model to demonstrate optimum placements, which can be a
significant factor in reducing congestion and communication
bottlenecks and improving overall system performance.

4. APPLICATIONS OF THE MODEL
In design space exploration it is often of interest to find

the topology that minimizes delay under various constraints
imposed by technological, physical and system-level require-
ments. For the unsaturated case, delay is a straightforward
function of the average distance, and such constrained op-
timization problems can be solved accurately with the pro-
posed analytical model by treating it as the objective cost
function. In this section we demonstrate how our model
for average distance can be used to provide performance
comparisons between networks and optimize the topological
configuration of nodes in 2-D and 3-D meshes for any traffic
pattern.
A 3-D mesh is an increasingly common topology with the

advent of 3-D Integrated Circuits (IC). Equal radices in each
dimension, translating to a cube with the same number of
nodes or switches however, is an unrealistic arrangement;
rather, the number of nodes in each dimension are likely to
be different, especially in the vertical direction. For exam-
ple, recent work [17] has shown that the lower physical delay
associated with the vertical interconnects in a 3-D stacked
IC can enable higher data rates in the vertical dimension by
clocking die-to-die links at greater frequencies than the hori-
zontal dimensions. This is largely due to the relatively lower

parasitics of through silicon vias (TSV) used to connect ver-
tical die layers as compared to long planar wires used on a
2-D IC.

4.1 Optimization of Network Topology
The most efficient network topology for minimizing la-

tency under different vertical and horizontal clocking con-
straints can be found by solving the constrained optimiza-
tion problem of minimizing

D3D =

∑
A∈N

∑
B∈N

pA,B × (|xA − xB |+ |yA − yB |+ γ|zA − zB |)∑
A∈N

∑
B∈N

pA,B

(16)
subject to kx × ky × kz = N where N is the total number
of nodes. Here dA,B has been obtained by multiplying the
distance in each dimension by the corresponding clock pe-
riod, under the assumption that the periods in the x and
y dimensions are equal and normalized to 1, and that the
period in the z dimension is 1

γ
shorter, where 0 < γ ≤ 1.

The optimum network size under the given constraint is
found using an extensive brute-force search algorithm, and
the solutions for different N are shown in Table 3. As
described in section 3.2 closed-form equations for different
traffic models were obtained considering three different γ
values. These equations are used for to find the optimal
network sizes which considerably reduces the computational
load when compared to the general expression in equation



(7)
In order to assess the validity of the topological solution

given by our model for the uncongested and congested cases,
we use RTL cycle-accurate simulations to measure average
distance for networks under varying loads. Figure 2(a) plots
the average distance in hops as the packet injection rate
per cycle increases. Intuitively, in a network with uniformly
clocked horizontal and vertical links, the optimum configu-
ration for minimum communication distance under uniform
traffic is always a symmetrical network. The unloaded aver-
age distance for three 64-node network topologies from our
model is shown as a dashed base-line. This is the absolute
minimum unloaded average latency achievable in that par-
ticular architecture. In this case a 64-node 3-D mesh will be
best organized as a 4×4×4 network for minimum average
latency. Our model matches the baseline simulation result
to within a 1% error when the injection rate is sufficiently
low as to negate any contention issues.
As we increase the injection rate, contention becomes more

prevalent and the average latency increases as a result of
non-ideal routing conditions and link bandwidth limitations.
Despite loading the networks to the point of saturation (where
the network bandwidth is exceeded by the packet injection
rate), Figure 2(a) demonstrates that the topology predicted
as optimum by our traffic pattern-based average distance
model is still valid for loaded networks as a network topol-
ogy deemed as optimal in the unloaded case will be sub-
optimal under congestion only if the lines intersect or cross.
Figure 2(b) plots the same result for a local traffic pattern
in a larger 256-node network.

4.2 Hotspot Node Placement Optimization
In a 3-D IC with TSVs providing the vertical switch-to-

switch links, it is likely that the off-chip I/O will only be
able to serve the outermost dies. Ball-Grid Array (BGA) or
other area-array packages allow the I/O pads to be dispersed
across the entire die surface, meaning that any outer node
in the network could interface with off-chip devices. In a
high-throughput multi-tier 3-D NoC, it is further likely that
mesh nodes on the bottom layer, which have direct access to
the BGA I/O will face higher traffic due to the on/off-chip
communication. To model this effect we place nodes which
attract high-traffic from the network (called hotspot nodes)
on the bottom layer of a 3-D NoC in several configurations.
The placement of the hotspot network nodes is crucial to
the overall performance of the system (for example, placing
hotspot nodes on the edge of a network will limit the sur-
rounding link bandwidth due to the unused switch links).
The model we developed in section 3 can be used to esti-

mate the average unloaded latency and the optimum place-
ment (giving minimum average distance) of hotspots in a
network. We place two hotspots on the bottom layer in three
configurations as depicted in Figure 3(b): (HS1) hotspots
are placed on the edge of the network in opposing corners,
Figure 3(c) (HS2) hotspots are placed in opposing corners
one node removed from the edge, and Figure 3(d) (HS3) the
hotspots are diagonally adjacent at the center of the net-
work. The probability that any node in the network will
send a packet to either of the hotspots is 80%, where the re-
maining 20% of the generated packets have a uniform prob-
ability to the other non-hotspot network nodes.
Similar to Figure 2, we have used our analyical model to

predict the optimum placement of hotspot nodes, given by
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Figure 2: Average actual distance for increasing in-
jection rates under (a) Uniform Random Traffic for a
64-node network and (b) Local traffic for a 256-node
network. The model prediction for optimal network
configuration (given the minimum average distance)
is consistent under increasing injection rate.

the minimum average latency for several network configu-
rations and found that in the RTL simulations even under
heavily congested networks with hotspot traffic, the opti-
mum node placement to achieve the lowest average packet
latency is consistent with the model prediction at zero load.
Figure 4 plots the growth of latency with injection rate for
the three hotspot placement schemes in a 7×7×7 network.
Despite the minimal difference in unloaded latency provided
by our model between the HS2 and HS3 placement schemes,
the simulation results indicate no crossover points even at
heavy loads. These results demonstrate the model’s use-
fulness in predicting network optimal topologies and node
placement without computationally expensive packet-level
simulations. Further to this, the model can quickly predict
the optimum placement and configuration for hotspot traf-
fic under different vertical and horizontal clocking schemes.
This efficient design space exploration is enabled by the
availability of a closed-form comparison metric.



(a) Hotspots on bottom
layer

(b) HS1

(c) HS2 (d) HS3

Figure 3: Example of hotspot node placements HS1,
HS2 and HS3 for the bottom layer of a 6×6×6 net-
work

To assess the fidelity of our model, we have conducted
RTL simulation sweeps for unloaded and loaded networks for
twelve different mesh configurations of sizes ranging from 8
to 1000 nodes each with the three hotspot placement schemes
shown by Figure 3 and six packet injection rates of between
0.0001 and 0.8 packets-per-node-per-cycle (see Table 4 for a
range of results). We consider the model to correctly pre-
dict the optimal network topology under loading if the la-
tency curve with increasing injection rate corresponding to
the zero-load optimal configuration is always below the la-
tency curve corresponding to any other topology. Formally,
fidelity can be defined as meeting the following condition:
H̄NW1(IR) < H̄NWi(IR) for any injection rate (IR) where
H̄NW1(0) < H̄NWi(0), H̄NWi being the average distance for
the network configuration nwi at zero load. The latter con-
dition essentially defines H̄NW1 as the optimal network un-
der zero load. If the data points cross-over at any point with
a stable network or H̄NW1(IR) > H̄NWi(IR), the model pre-
diction is deemed to have failed.
For the simulations we have conducted under local, uni-

form and hotspot traffic, we found that the optimum place-
ment predicted by the model is valid throughout all the
network configurations when the injection rate is below the
threshold of saturation2 for the network.
These exhaustive findings report that although the model

cannot predict the exact latency of a topology under conges-
tion (which depends on low-level architectural features such
as switch design, buffering and routing algorithms among
others) it can accurately and repeatedly determine the op-
timum network topology and placement of hotspots under

2We consider a network saturated when the packet injection
rate exceeds the available link bandwidth.
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Figure 4: Hotspot simulation with increasing injec-
tion rate. The model prediction for optimal hotspot
placement holds true for loaded and unloaded net-
works even for a relatively minor difference in min-
imum average latency.

any network load. This assumption holds true for the simu-
lations we have conducted with our traffic models, however
we have yet to test it under other traffic scenarios such as
burst mode or worm-hole routing which may reduce the fi-
delity of the model.

5. CONCLUSIONS
The average traveling distance of packets in a NoC is an

abstract performance metric of the network topology for
a given traffic pattern and does not consider routing and
switching schemes. We have rigorously formulated and pre-
sented an analytic expression for the average distance in
k-ary n-dimensional meshes for any traffic pattern as a sum-
mation over the nodes in the network. It is shown to be
a generalization of previously presented models and is over
99% accurate when compared against cycle-accurate RTL
simulations for uniform-random, local and hotspot traffic,
with any errors being traceable to stochastic deviations and
rounding errors.

The formula deals with the unloaded case and does not
constitute a delay model for congested networks. However
it can be used as a metric for choosing between network
topologies for optimal performance, with solutions that are
valid even under loading. To demonstrate its usage we have
applied formulæderived for URT and LRT to guide high level
design decisions. In particular, we demonstrate our models
ability to optimize the configuration of 2-D and 3-D sym-
metric and asymmetric networks given the constraints of
latency, traffic pattern and different clock speeds over the
on-chip and 3-D interconnect. Also, we predict the optimal
placement of hot spot nodes in a network with HST based
on the zero-load average distance formula and show that the
placement remains optimal for loaded networks. The predic-
tive power of our model (its fidelity) is a surprising 100% for
the cases we have studied empirically.

However further studies are necessary to understand the
scope and limitations of this method. In particular we have



Table 4: Simulation sweeps to assess the fidelity of the model. The optimum hotspot placement calculated
by our model is shown to be valid for any traffic congestion in stable networks for over 100 data points.

HSP 4×4×4 6×6×6 7×7×7 8×8×8 10×10×10
HS1 HS1 HS2 HS3 HS1 HS2 HS3 HS1 HS2 HS3 HS1 HS2 HS3

Model 4.396 7.1877 6.1285 5.606 7.4485 6.8289 6.7692 9.987 8.7897 7.598 12.79 11.509 9.5958
0.0003 4.467 7.29 6.23 5.66 7.48 6.85 6.75 9.99 8.82 7.68 12.89 11.64 9.61
0.001 4.49 7.34 6.26 5.98 7.57 7.13 7.06 10.41 9.2 8.06 13.46 12.28 10.42
0.003 4.63 7.61 6.62 6.04 8.27 7.69 7.57 11.70 10.69 9.51 115.5 117.93 120.96
0.005 4.67 8.14 7.17 6.6 9.63 9.25 8.99 38.31 36.09 38.7 301.2 309.3 308.6
0.007 4.72 8.73 8.05 7.53 25.46 20.73 19.29 194.36 202.74 209.6 388.5 391.03 385.2
0.009 4.82 10.29 10.02 9.68 177.42 180.84 178.82 288.55 290.42 299.3 414.2 417.78 409.3

not studied time variant traffic patterns and deterministic
routing. First, the fidelity may be lower for bursty traffic
because bursts may temporarily clog parts of the network
without overloading the network as a whole in the long term.
Such effects are not predicted by our model but may affect
different network topologies very differently. The second
limitation in our empirical evidence is the fact that we use
adaptive routing in our simulations. Deterministic routing
has much less capacity to balance load over the entire net-
work. Individual links can easily become bottlenecks even
though the network is only modestly loaded. Again, such
local, temporary overload may not be predicted well by our
zero-load model. Further experiments are required to study
these effects.
In summary, although further studies are need to under-

stand the full scope of the model, its power in predicting
network performance and its usefulness as a metric in high
level topology exploration is very promising given the sim-
plicity of the basic formula, being simply the average geo-
metric traveling distance of packets.
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