
MLComp: A Methodology for Machine Learning-based
Performance Estimation and Adaptive Selection of
Pareto-Optimal Compiler Optimization Sequences

Alessio Colucci1,∗, Dávid Juhász2,∗, Martin Mosbeck2, Alberto Marchisio1, Semeen Rehman2,
Manfred Kreutzer3, Günther Nadbath3, Axel Jantsch2, Muhammad Shafique1

1Institute of Computer Engineering, Technische Universität Wien (TUWien), Vienna, Austria
2TU Wien, Christian Doppler Laboratory for Embedded Machine Learning, Vienna, Austria

3ABIX GmbH, Vienna, Austria
Email: {alessio.colucci,david.juhasz,martin.mosbeck,alberto.marchisio,semeen.rehman,axel.jantsch,

muhammad.shafique}@tuwien.ac.at,{mkreutzer,gnadbath}@a-bix.com

Abstract—Embedded systems have proliferated in various consumer
and industrial applications with the evolution of Cyber-Physical Systems
and the Internet of Things. These systems are subjected to stringent
constraints so that embedded software must be optimized for multiple
objectives simultaneously, namely reduced energy consumption, execution
time, and code size. Compilers offer optimization phases to improve
these metrics. However, proper selection and ordering of them depends
on multiple factors and typically requires expert knowledge. State-of-
the-art optimizers facilitate different platforms and applications case by
case, and they are limited by optimizing one metric at a time, as well
as requiring a time-consuming adaptation for different targets through
dynamic profiling.

To address these problems, we propose the novel MLComp
methodology, in which optimization phases are sequenced by a
Reinforcement Learning-based policy. Training of the policy is
supported by Machine Learning-based analytical models for quick
performance estimation, thereby drastically reducing the time spent
for dynamic profiling. In our framework, different Machine Learning
models are automatically tested to choose the best-fitting one. The
trained Performance Estimator model is leveraged to efficiently devise
Reinforcement Learning-based multi-objective policies for creating quasi-
optimal phase sequences.

Compared to state-of-the-art estimation models, our Performance
Estimator model achieves lower relative error (< 2%) with up to 50×
faster training time over multiple platforms and application domains. Our
Phase Selection Policy improves execution time and energy consumption
of a given code by up to 12% and 6%, respectively. The Performance
Estimator and the Phase Selection Policy can be trained efficiently for
any target platform and application domain.

I. INTRODUCTION
The number and complexity of embedded systems are

constantly growing [1, 2]. Recent years saw an advent of the
Internet of Things (IoT) and Cyber-Physical Systems (CPSs),
and their subsequent applications [3, 4, 5]. These systems are
tightly resource-constrained, requiring latency-limited real-time
operation with a very low power budget. Software running on
them must be optimized and tailored to the specific hardware.

Major optimizing compilers, like LLVM [6] and GCC [7],
provide an ever-increasing number of optimization phases to
improve operational characteristics of embedded software. The
phases are applied during compilation in sequence. Their optimal
selection and ordering depend on the program to be compiled
and on the target platform, as well as on the final optimization
objective. The value of the objective function must be estimated
at compile-time to tune phase sequencing.

Standard phase selection and ordering policies in optimizing
compilers [6, 7] are fixed algorithms that have been tuned for the

∗These authors contributed equally

TABLE I: Comparison of ML-based state-of-the-art phase selection policies.
Metrics

Solution Technique Execution
Time

Energy
Consumption

Code
Size

Phase
Ordering

Dynamic
Features

COBAYN [14, 22] SL X No Profiling
Milepost GCC [9] SL X X No Profiling

MiCOMP [8] SL X Static Profiling
[10] RL X Dynamic Profiling
[23] SL X Dynamic Profiling

MLComp (PSS) RL X X X Dynamic Prediction
TABLE II: Comparison of state-of-the-art performance estimators.

Metrics
Solution Automation Machine

Learning Execution
Time

Energy
Consumption

Executed
Instructions

Average
Power

Data
Gathering Accuracy

[16] Limited Basic X Profiling ∼5%
[17] Limited Basic X X Profiling ∼5%
[18] Limited Basic X Simulation ∼3%
[19] No No X Simulation ∼2%
[20] Limited No X X Profiling ∼7%
[21] No No X Simulation <5%

MLComp
(PE) Full Advanced X X X X Profiling <2%

average case and do not exactly fit to actual use-cases. State-of-
the-art approaches for choosing the optimization phases are based
on Machine Learning (ML), e.g. Supervised Learning (SL) and
Reinforcement Learning (RL) [8, 9, 10, 11], and other adaptive
mechanisms [12, 13]. Some approaches ignore phase ordering and
deal with phase selection only [9, 14], while the order is important
for the quality of the generated code [15]. Most of the works
optimize programs for one specific metric only, like execution
time [8, 10, 12, 14] or energy consumption [13]. The state-of-
the-art solutions are typically not generic, i.e., they provide good
results only in a limited environment and for one specific metric
at a time. Moreover, these methods gather the required metrics by
profiling execution, which is super-expensive in time, and should
be replaced by a fast-yet-accurate estimation method to reduce
the total adaptation time.

State-of-the-art estimation models can be distinguished as ML-
based [16, 17, 18] and formal [19, 20, 21] ones. ML-based models
tend to use accurate sensors and interfaces to estimate the power,
and hence require external modifications. However, these methods
focus only on a single metric and employ only a small selection
of models with at most 5% relative error. Formal models estimate
the power using formulas and accurate simulation of switching
activity that guarantees high accuracy. However, they require deep
knowledge of the internal details of the target platform.

Our work aims at overcoming specific limitations of state-of-
the-art solutions in compiler phase sequencing and performance
estimation. Tables I and II highlight the shortcomings of major

Source
Code Compilation Flow

Frontend OptimizationIR Backend

Executable

Optim. IR

Fig. 1: A compiler converts source code into an executable by passing it
through optimizations in Intermediate Representation.

state-of-the-art with respect to different properties/features, and
show comprehensive and superior coverage of our MLComp
methodology. Our phase sequence selector possesses the
following key attributes:
• It utilizes RL, which has been given little attention in the

literature for obtaining optimal phase sequences.
• It optimizes programs for multiple objectives in contrast to

typical single-objective optimizations.
• It supports fast adaptation for different application domains.
The latter is enabled by fast performance estimation in the
adaptation phase, which requires proper performance modeling
of target platforms. To adapt to the different target platforms
efficiently, potential models need to be evaluated and the best-
fitting one selected. This process, which is usually done by manual
analysis and design [21], is automated in our solution.

Our efforts are focused on the following scientific challenges,
which, to the best of our knowledge, have not been addressed in
the literature before:
• automatic evaluation of different ML-based performance

models to support adaptation to different platforms;
• efficient training of adaptive phase sequence selection policies

for multi-objective optimization of programs.
Novel Contributions: To address the above challenges, we

propose a novel methodology MLComp that employs:
• adaptive analytical models for estimating energy consumption

and execution time, which are trained on features of target
applications executing on a given target platform; and

• adaptive phase sequence selection policies, which can be
trained for quasi-Pareto-optimal code size, energy consumption,
and execution time of target applications running on a target
platform.
The paper makes the following additional novel contributions:

• testing environment to collect static and dynamic features of
target applications on a target platform;

• framework to adapt performance models by analyzing and
modeling energy consumption and execution time based on the
collected code features; and

• training framework for RL-based adaptation of phase
selection policies with respect to estimated dynamic features,
and utilizing trained policies in LLVM.
After presenting a brief overview of the required background

knowledge in Section II, we explain our novel MLComp
methodology in Section III. Experimental setup is explained in
Section IV and followed by our results in Section V. Conclusion
is drawn in Section VI.

II. BACKGROUND

A compiler converts a given software code implemented in a
high-level programming language into machine executable code.
The compilation flow is divided into 3 main parts:
1) the front end transforms source code into the compiler’s

Intermediate Representation (IR);

2) the middle end performs analyses and transformations in IR
to ensure quality and prepares for code generation;

3) the back end generates a target-specific executable from IR.
Optimizing transformations are performed in each stage.
Optimizations in the front end are specific to the programming
language, while those in the back end tune hardware-specific
low-level details. We work with IR-level optimizations in the
middle end as depicted in Fig. 1. Those optimizations are general
and applied independently to the source language and target
platform. However, they can affect the performance in different
ways depending on the target, which calls for their adaptive
selection and ordering.

Standard ML methods are available to solve different kinds of
algorithmic and modeling problems. SL [24] is used to learn a
model representation that can fit input data to output predictions.
The model is trained in iterative passes. In each pass, the model
predicts output for the given input data, and the results are used
to update the model weights to return predictions closer to the
correct ones. RL [25], on the other hand, uses a reward-based
system to learn the operations which should be done from the
current state of the system itself. The reward reflects how an
operation contributes to reaching the objective.

Programs are represented by their characterising features for
ML approaches. The main types of program features are:
• source code features that characterize application code in a

programming language and IR during compilation;
• graph-based features that provide information about data and

control dependencies during compilation;
• dynamic features that describe operational aspects in

architecture-dependent or architecture-independent ways.
Architecture-dependent dynamic features such as execution

time and energy consumption are objectives for compiler
optimization, while static features describe programs during
compilation [26, 27, 28]. Dynamic features are time-expensive
to determine because they require direct execution of compiled
programs. This problem can be circumvented through model-
based prediction. The performance of ML models is improved
by scaling and filtering the input features [11, 29], an example of
which is Principal Component Analysis (PCA) [30, 31].

III. THE MLCOMP METHODOLOGY

The flow of our methodology is depicted in Fig. 2 and discussed
hereafter. The concept is based on two models:
1) Performance Estimator (PE) is a fast and efficient way of

estimating dynamic features for a given application domain,
which is represented by a set of target applications, and for a
given target platform. It allows for accurate prediction adapted
to the given domain faster than standard estimation methods.

2) Phase Sequence Selector (PSS) is based on a policy for
selection and ordering of optimization phases, and supports
RL-based adaptation for different target applications and
target platforms. Deploying PSS reduces development cost
and realizes faster time-to-market by relieving performance
engineering from the details of phase selection and ordering.

A. Data Extraction

Data Extraction is the first step of the methodology. We collect
a training dataset for the PE model using the flow depicted in

Permutations of
Optimization Phases

Compiler

Profiler

Feature
Extractor

Execution Time
Energy Consumption

Code Size

IR Features

Preprocessing
ML

Model

Heuristic search

Trained
Performance Estimator Model

Phase Selection Policy
RL Model Optimizer

Performance
Estimator

Model

Reward

Optimized
Code

Application

Phase Selection Policy
Model

Code
Generator

Optimized
Executable

Optimizer

Done?

YES

NO

Optimal?
NO

YES

Trained
Phase Selection Policy

Model

Target
Platform

Target
Applications

Feature
Extractor

IR Features

Phase Selection Policy Training

Feature
Extractor

1 2

3

4

Training
Dataset Phase

IR Features

Phase

Data Extraction Performance Estimator Model
Training

Deployment

Fig. 2: The MLComp methodology trains and utilizes Performance Estimator and Phase Sequence Selector in four steps.

box 1 in Fig. 2. Data is extracted for a target platform from a
set of target applications by exploring different permutations of
optimization phases. Permutations increase the number of data
points as differently optimized variants of programs. For each
combination of permutations and applications, the corresponding
optimized code is compiled and its features are collected. We
extract IR features that are similar to those of Milepost GCC
[9], such as IR instruction counts, data and control dependencies,
loop hierarchies, and call chains. Our tool also extracts platform-
specific instruction counts from generated code for PE training.
Dynamic features such as execution time, energy consumption,
and code size are obtained via profiling the compiled code. All
features are collected in a dataset that is used for training the
PE model. The size of the dataset depends on the specific set of
optimizations and the target applications.

B. Performance Estimator (PE)

Algorithm 1 Model search for fitting the Performance Estimator model
1: procedure MODELSEARCH(input, accuracythr , listmodels)
2: . We initialize accuracybest to the worst case value, which is −∞
3: . Higher accuracy is better
4: . modelbest is initialized to a dummy one, returning a random value
5: init accuracybest, modelbest
6: . split input into training and testing data
7: training, testing ← split(input)
8: . We cycle through all the models
9: for model in listmodels do

10: . After training the model, we test it and check its accuracy
11: train(model, training)
12: accuracy ← test(model, testing)
13: if accuracy > accuracybest then
14: accuracybest ← accuracy
15: modelbest ← model
16: end if
17: if accuracybest > accuracythr then
18: break for loop
19: end if
20: end for
21: return modelbest, accuracybest
22: end procedure

The next step is the Performance Estimator Model Training in
box 2 in Fig. 2. We search for the preprocessing method and
ML model that fits the best to the profiling data based on the
code features. The list of methods and models to search is given
as input. The search process is detailed in Algorithm 1. Tables III

and IV present the preprocessing methods and ML models used
by our PE modeling in this paper. The set of output metrics
is completely customizable. As a training dataset is collected
for one target platform, the PE model is to be trained for each
target platform separately to achieve high accuracy. The trained
PE model is used in later steps to predict a program’s dynamic
features from its IR features.

C. Phase Selection Policy

Algorithm 2 Training the Phase Selection Policy
1: procedure TRAINPOLICY(programs, num episodes, batch size,

learning rate)
2: . Initialize policy to a random one
3: init policy
4: . Perform training episodes in batches
5: episode count ← 0
6: while episode count < num episodes do
7: . Run episodes and then update policy
8: listepisodes ← init(batch size, programs)
9: listresults ← run(listepisodes, policy)

10: policy ← optimize(policy, learning rate, listresults)
11: episode count ← episode count+ batch size
12: end while
13: return policy
14: end procedure

The trained PE model is used for the Phase Selection Policy
Training in box 3 in Fig. 2. We use RL to train the policy
that selects the best optimization phase to apply to a program
characterized by its IR features, and thereby enables an efficient
phase sequence to be created iteratively. The training is done
in batches of episodes as listed in Algorithm 2. The policy is
optimized using the REINFORCE policy gradient method [32,
33]. The training algorithm creates a phase sequence for a
randomly selected target application in each episode with the
current policy as depicted in box 3 in Fig. 2. The reward in each
iteration of an episode reflects how well the last phase changed
the dynamic features. Furthermore, the reward guides the training
to Pareto-optimal outcomes by penalizing any degradation of the
dynamic features. Accumulating rewards over an episode gives
a discounted reward, which indicates the overall fitness of the
policy for creating a Pareto-optimal phase sequence with respect
to final dynamic features. At the end of each batch, the policy
is updated according to the episodes’ discounted rewards and
corresponding phase sequences. The policy is trained with a given

RAPL Driver

Dataset

Heuristic Search
Optuna

Search Space for Preprocessing
and ML Model
scikit-learn

RL Training
PyTorch

Compiler
LLVM

Training

PE Model

PSS Model
Deployment
LibTorch

x86
RISC-V

PARSEC
BEEBS

Set of Features
Compiling

Dynamic Features

HIPERSIM
McPAT

Fig. 3: Detailed toolflow for MLComp experimental setup. The process is
repeated for each pair of target platform and applications, and it can be adapted
for other pairs with minimal code changes.

TABLE III: Preprocessing algorithms evaluated during PE training. The list
can easily be expanded, as our framework is customizable with different
libraries.

Preprocessing Algorithms
PCA Kernel PCA NCA

Mean-Std Scaling Min-Max Scaling Max-Abs Scaling
Robust Scaling Power Transformer Quantile Transformer

PE and a set of programs that represent a target platform and
an application domain, respectively. The training time is reduced
compared to other methods by using PE for fast estimation of
dynamic features. Phase Selection Policy is the model used in
the PSS.

D. Phase Sequence Selection (PSS)

The last step of MLComp is Deployment in box 4 in Fig. 2,
which is the PSS utilizing a trained Phase Selection Policy. We
apply the PSS model to drive a compiler’s optimizer by selecting
phases one after the other. The policy predicts how probable it
is that a phase improves dynamic features of the program and
accordingly the phase with the highest probability is applied.
In case the selected phase did not change the program, which
might happen because of the uncertainty of the selection, the
best predicted phase remains the same for the next iteration.
PSS overcomes that situation by applying the second best, the
third best, and so on until a predefined limit, which is “Max.
inactive subsequence length” in Table V. Phase selection ends
when that limit is reached or when the total number of applied
phases reaches a threshold.

Note, PSS does not require a PE model because the policy
learns the platform-specific knowledge. Decoupling the PE and
PSS models allows their separate training so that a platform
vendor might provide a trained PE model for application
developers, who can train a custom PSS model with a set of
representative applications.

Although the PSS model is trained to reach the Pareto-front by
selecting locally optimal phases, we observe that both the PE and
PSS models have approximation uncertainties and true Pareto-
optimality can not be guaranteed. The accuracy of PSS might
be quantified by applying probabilistic dominance [34], which
requires an in-depth empirical evaluation and statistical analysis
beyond the scope of this paper. Our evaluation in Section V still
shows quasi-Pareto-optimality of the results.

IV. EXPERIMENTAL SETUP

A detailed toolflow for our experimental setup is shown in Fig.
3. We worked with two different target platforms: profiling for an

TABLE IV: ML models evaluated during PE training. The list can easily be
expanded, as our framework is customizable with different libraries.

Machine Learning Regression Models
Ridge Kernel Ridge Bayesian Ridge
Linear SGD Passive-Aggressive
ARD Huber Theil-Sen
LARS Lasso Lasso-LARS

Support Vector Nu-Support Vector Linear Support Vector
ElasticNet Orthogonal Matching Pursuit Multi-Layer Perceptron

Decision Tree Extra Tree Random Forest

TABLE V: Parameters of PSS training.

Parameter Value Parameter Value
Number of layers 3 Size of inner layer 16
Number of episodes 512 Batch size 6
Max. phase sequence length 128 Learning Rate 0.1
Max. inactive subsequence length 8

x86 target is done on an Intel Core i7 system using the RAPL [35]
interface to measure power consumption, and dynamic features
for a RISC-V target are obtained by accurate simulation with
the industrial-grade simulator HIPERSIM [36] integrated with the
open-source McPAT [37]. Programs are compiled with LLVM [6]
version 9.0.0, which is able to target both platforms. The size of
the collected dataset depends on the target applications and the set
of optimization phases chosen at compile time: in this evaluation,
we used between 200 and 600 data points for both the PARSEC
benchmark [38] on x86 target and the BEEBS benchmark [39]
on RISC-V target.

The training of the PE model is implemented in Python
using Optuna [40], scikit-learn [41], and pandas [42]. It covers
preprocessing methods and ML models listed in Tables III and IV,
respectively. The set of output metrics has been chosen to
analyze different patterns and distributions. Even though power
consumption has a slight correlation with execution time, as in the
number of cycles and the number of instructions [13], increasing
the complexity of the system reduces the correlation of these
metrics. Therefore, each of them is important for learning the
dynamic behaviour of the system.

PSS training is implemented also in Python using PyTorch [43]
for realizing the model. The 63 code features that our static
analysis obtains are preprocessed by PCA with Maximum
Likelihood Estimation (MLE) [31] before being passed to Deep
RL [25]. The PSS model is trained with the parameters listed in
Table V, applying optimization phases shown in Table VI. The

TABLE VI: LLVM optimization phases used for PSS evaluation. The list can
easily be expanded. These phases are from optimization levels -O3 and -Oz.

Optimization Phases
adce aggressive-instcombine alignment-from-assumptions

argpromotion bdce called-value-propagation
callsite-splitting constmerge correlated-propagation

deadargelim div-rem-pairs dse
early-cse early-cse-memssa elim-avail-extern
float2int globaldce globalopt

globals-aa gvn indvars
inline instcombine instsimplify
ipsccp jump-threading licm

loop-deletion loop-distribute loop-idiom
loop-load-elim loop-rotate loop-sink

loop-unroll loop-unswitch loop-vectorize
lower-expect mem2reg memcpyopt
mldst-motion prune-eh reassociate

sccp simplifycfg slp-vectorizer
speculative-execution sroa tailcallelim

1

Fig. 4: Comparison between profiling data and prediction of a trained PE
model for PARSEC benchmark applications on x86 platform shows very
similar distributions, which supports the efficacy and accuracy of our model.

1
2

3

Fig. 5: PSS validation results for PARSEC applications on x86 platform.
Values are relative to those of unoptimized code, the lower is the better.

trained model is stored in TorchScript format, to be loaded into
and utilized by our custom LLVM optimization with LibTorch,
the PyTorch C++ API.

Note that PE and PSS are independent of the target platform
and the used application set. The necessary adaptations when
changing the target platform are limited to adjusting target-
specific compiler flags and utilizing a tool with support for
gathering dynamic features inside the Data Extraction block.
Furthermore, any application can be used with our training
frameworks as long as it supports a build method using LLVM
and allows controlling optimization phases via parameters or
environment variables.

V. EVALUATION

To evaluate our MLComp methodology, we trained and tested
both PE and PSS models on different target platforms with
different benchmarks as target applications.

A. PARSEC Benchmark Evaluation on x86 Platform

Here we focus our analysis on the PARSEC benchmark [38],
running on an x86 platform. First, we gather the required dataset
by profiling the execution of programs from the benchmark
compiled with different optimization phases. Then, we use our
framework to train different ML models and select the best
one; the results are shown in Fig. 4. As we can see, the
exact distributions and the ones generated by our PE model are
almost identical for all the 4 metrics. Note that the blackscholes
benchmark has a very tight distribution, while all the others have
wider distributions. Referring to 1 , we can see that the only
visible difference resides in the facesim benchmark. However,
there is always a high fidelity, as the error between the correct
and the predicted distributions always has the same bias. This
property is important for the training of the PSS model, giving
the correct positive/negative reward to the current choice, even if
a limited prediction error is present.

After validating the PE model, we used it to train the
corresponding PSS model. In Fig. 5, we can see the result of the
validation executed after the training. Specifically, distributions
are pretty similar across standard state-of-the-art optimizations

Fig. 6: Comparison between profiling data and prediction of a trained PE
model for BEEBS benchmark applications on RISC-V platform.

2 31

Fig. 7: PSS validation results for BEEBS applications on RISC-V platform.
Values are relative to those of unoptimized code, the lower is the better.

and MLComp. However, in some cases, as shown by 1
and 3 , some standard phase usage can increase both the
energy consumption and the execution time between 8x and
10x, respectively, while MLComp shows slight improvements.
Regarding memory size, as pointed by 2 , there are minimal
gains, which could be related to the benchmarks being synthetic
applications.

B. BEEBS Benchmark Evaluation on RISC-V Platform

We performed a similar evaluation for BEEBS [39] on the
RISC-V platform. In this case, the number of benchmarks is
much higher compared to PARSEC, and since the PE results are
similar to those with PARSEC, we show only an overview of the
distribution points in Fig. 6.

This PE model was then used to train a PSS model, obtaining
the results shown in Fig. 7. Here, at pointer 1 , we can see
that our MLComp performs better on average than standard state-
of-the-art policies: reducing energy while also optimizing other
objectives. Also with BEEBS, we can see that the memory
size does not improve or worsen much, as pointed by 2 . In
addition, MLComp results in similar patterns of execution time
and energy consumption. Focusing on pointer 3 , we can see how
our MLComp obtain more balanced results compared to standard
state-of-the-art policies.

C. Discussion and Key Takeaways

Our PE model has a maximum percentage error smaller than
2% across all four metrics, while that of the comparable state of
the art is in the range of 2%-7% on a single metric [16, 17, 18,
19, 20, 21]. Moreover, the efficient setup for data extraction and
the heuristic search of models help us to reach higher accuracy
with less time spent for acquiring data and training the model.
Profiling the applications and training the models took only 2
days, compared to 15, 30 or 108 days [21, 19].

Drawing a straight comparison is more difficult for our
PSS model, as related techniques optimize a single objective
only. The state-of-the-art results oscillate between 5% and 30%
improvement in execution time [8, 23], which makes our results
fall in their average with up to 12% improvement in that metric.

However, our PSS model considers additional objectives and
reaches up to 6% reduction in energy consumption while not
increasing code size. There is actually a slight 0.1% improvement
in the latter.

We can summarize the following key observations:
• The PE model realizes fast estimation with high accuracy, as

it is capable of reproducing the profiled distributions.
• The PSS model performs better than standard optimizations on

average and also provides quasi-optimal results for multiple
objectives.

• Our MLComp methodology is fully automated and is usable
with different target platforms and applications, enabling for
fast estimation and optimization without manual analysis and
modeling required.

VI. CONCLUSION

We propose the MLComp methodology to overcome limitations
of current solutions in compiler optimization phase sequencing
and performance modeling. State-of-the-art optimizers can be
applied for different target platforms and applications case by
case, but their adaptation is expensive and they typically optimize
one metric only. MLComp supports adaptive selection of Pareto-
optimal phase sequences with respect to execution time, power
consumption, and code size by a Phase Sequence Selector (PSS)
with an RL-based policy. Fast adaptation of the policy for
different target platforms and application domains is enabled by
an ML-based Performance Estimator (PE) model, which provides
fast-yet-accurate prediction of dynamic program features. The
PE model is trained for a target platform by automatically
selecting the most suitable data preprocessing method and ML
model for accurate prediction. This is a novel contribution
in performance modeling as current solutions require manual
analysis and modeling. Experiments with LLVM on the x86
and RISC-V platforms show that our methodology is efficiently
reusable with different target platforms and applications. The
PE model realizes fast estimation with very high accuracy, and
the PSS model performs better than state-of-the-art optimizations
with multiple objectives.

ACKNOWLEDGMENT

The presented work has been conducted in the “Cost Efficient
Smart System Software Synthesis - COGUTS II (Code Generation
for Ultra-Thin Systems)” project, funded and supported by
the Austrian Research Promotion Agency (FFG) under grant
agreement 872663, and affiliated under the umbrella of the EU
Eureka R&D&I ITEA3 “COMPACT” Cluster programme.

REFERENCES
[1] L. Atzori et al. “The Internet of Things: A Survey”. In: Comput. Networks 54.15 (2010),

pp. 2787–2805.
[2] F. Samie et al. “IoT Technologies for Embedded Computing: A Survey”. In: Proc. Elev.

IEEE/ACM/IFIP Int. Conf. Hardware/Software Codesign Syst. Synth. New York, New
York, USA: ACM Press, 2016, 8:1–8:10.

[3] S. Liu et al. “Computer Architectures for Autonomous Driving”. In: Computer (Long.
Beach. Calif). 50.8 (2017), pp. 18–25.

[4] M. Yaqoob et al. “Control of Robotic Arm Manipulator with Haptic Feedback Using
Programmable System on Chip”. In: 2014 Int. Conf. Robot. Emerg. Allied Technol. Eng.
IEEE, 2014, pp. 300–305.

[5] B. Massot et al. “A Wearable, Low-Power, Health-Monitoring Instrumentation Based on
a Programmable System-on-chipTM”. In: 2009 Annu. Int. Conf. IEEE Eng. Med. Biol.
Soc. IEEE, 2009, pp. 4852–4855.

[6] C. Lattner et al. “LLVM: A Compilation Framework for Lifelong Program Analysis
& Transformation”. In: Int. Symp. Code Gener. Optim. 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[7] R. M. Stallman et al. Using the GNU Compiler Collection. 2020, p. 1004.
[8] A. H. Ashouri et al. “MiCOMP: Mitigating the Compiler Phase-Ordering Problem Using

Optimization Sub-Sequences and Machine Learning”. In: ACM Trans. Archit. Code
Optim. 14.3 (2017), pp. 1–28.

[9] G. Fursin et al. “Milepost GCC: Machine Learning Enabled Self-Tuning Compiler”. In:
Int. J. Parallel Program. 39.3 (2011), pp. 296–327.

[10] S. Kulkarni et al. “Mitigating the Compiler Optimization Phase-Ordering Problem Using
Machine Learning”. In: ACM SIGPLAN Not. 47.10 (2012), pp. 147–162.

[11] A. H. Ashouri et al. “A Survey on Compiler Autotuning Using Machine Learning”. In:
ACM Comput. Surv. 51.5 (Sept. 18, 2018), 96:1–96:42.

[12] C. Blackmore et al. “Automatically Tuning the GCC Compiler to Optimize the
Performance of Applications Running on Embedded Systems”. In: CoRR abs/1703.0
(2017), pp. 1–10. arXiv: 1703.08228.

[13] J. Pallister et al. “Identifying Compiler Options to Minimize Energy Consumption for
Embedded Platforms”. In: Comput. J. 58.1 (2015), pp. 95–109. arXiv: 1303.6485.

[14] A. H. Ashouri et al. “COBAYN: Compiler Autotuning Framework Using Bayesian
Networks”. In: ACM Trans. Archit. Code Optim. 13.2 (2016), 21:1–21:25.

[15] L. Almagor et al. “Finding Effective Compilation Sequences”. In: ACM SIGPLAN Not.
39.7 (2004), pp. 231–239.

[16] T. Diop et al. “Power Modeling for Heterogeneous Processors”. In: Proceedings of
Workshop on General Purpose Processing Using GPUs. GPGPU-7. New York, NY, USA:
Association for Computing Machinery, Mar. 1, 2014, pp. 90–98.

[17] P. Balaprakash et al. “AutoMOMML: Automatic Multi-Objective Modeling with Machine
Learning”. In: High Performance Computing. Ed. by J. M. Kunkel et al. Vol. 9697. Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2016, pp. 219–239.

[18] B. Li et al. “Accurate and Efficient Processor Performance Prediction via Regression Tree
Based Modeling”. In: J. Syst. Archit. 55.10-12 (Oct. 1, 2009), pp. 457–467.

[19] A. Bona et al. “Energy Estimation and Optimization of Embedded VLIW Processors
Based on Instruction Clustering”. In: Proceedings of the 39th Annual Design Automation
Conference. DAC ’02. New York, NY, USA: Association for Computing Machinery,
June 10, 2002, pp. 886–891.

[20] S. Van den Steen et al. “Analytical Processor Performance and Power Modeling Using
Micro-Architecture Independent Characteristics”. In: IEEE Trans. Comput. (2016), pp. 1–
1.

[21] J. Laurent et al. “Functional Level Power Analysis: An Efficient Approach for Modeling
the Power Consumption of Complex Processors”. In: Proceedings of the Conference on
Design, Automation and Test in Europe - Volume 1. DATE ’04. USA: IEEE Computer
Society, Feb. 16, 2004, p. 10666.

[22] A. H. Ashouri et al. “A Bayesian Network Approach for Compiler Auto-Tuning for
Embedded Processors”. In: 2014 IEEE 12th Symp. Embed. Syst. Real-Time Multimed.
IEEE, 2014, pp. 90–97.

[23] A. H. Ashouri et al. “Predictive Modeling Methodology for Compiler Phase-Ordering”.
In: Proc. 7th Work. Parallel Program. Run-Time Manag. Tech. Many-Core Archit. 5th
Work. Des. Tools Archit. Multicore Embed. Comput. Platforms. New York, New York,
USA: ACM Press, 2016, pp. 7–12.

[24] O. Simeone. “A Brief Introduction to Machine Learning for Engineers”. In: Found.
Trends® Signal Process. 12.3-4 (2018), pp. 200–431.

[25] V. François-Lavet et al. “An Introduction to Deep Reinforcement Learning”. In: Found.
Trends® Mach. Learn. 11.3-4 (2018), pp. 219–354.

[26] F. E. Allen. “Control Flow Analysis”. In: ACM SIGPLAN Not. 5.7 (1970), pp. 1–19.
[27] P. B. Schneck. “A Survey of Compiler Optimization Techniques”. In: Proc. ACM Annu.

Conf. New York, New York, USA: ACM Press, 1973, pp. 106–113.
[28] J. Ferrante et al. “The Program Dependence Graph and Its Use in Optimization”. In: ACM

Trans. Program. Lang. Syst. 9.3 (1987), pp. 319–349.
[29] Z. Wang et al. “Machine Learning in Compiler Optimization”. In: Proc. IEEE 106.11

(2018), pp. 1879–1901. arXiv: 1805.03441.
[30] W. K. Härdle et al. “Principal Components Analysis”. In: Applied Multivariate Statistical

Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 319–358.
[31] T. P. Minka. “Automatic Choice of Dimensionality for PCA”. In: Proceedings of the 13th

International Conference on Neural Information Processing Systems. NIPS’00. Denver,
CO: MIT Press, 2000, pp. 577–583.

[32] R. J. Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. In: Mach. Learn. 8.3 (May 1992), pp. 229–256.

[33] R. S. Sutton et al. “Policy Gradient Methods for Reinforcement Learning with Function
Approximation”. In: Proc. 12th Int. Conf. Neural Inf. Process. Syst. MIT Press, 1999,
pp. 1057–1063.

[34] F. Khosravi et al. “Efficient Computation of Probabilistic Dominance in Robust Multi-
Objective Optimization”. In: CoRR abs/1910.0 (2019), pp. 1–30. arXiv: 1910.08413.

[35] H. David et al. “RAPL: Memory Power Estimation and Capping”. In: Proceedings of
the 16th ACM/IEEE International Symposium on Low Power Electronics and Design.
ISLPED ’10. New York, NY, USA: Association for Computing Machinery, Aug. 18, 2010,
pp. 189–194.

[36] ABIX GmbH. HIPERSIM. URL: https://a-bix.com/about.html.
[37] S. Li et al. “McPAT: An Integrated Power, Area, and Timing Modeling Framework for

Multicore and Manycore Architectures”. In: Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO 42. New York, New York:
Association for Computing Machinery, 2009, pp. 469–480.

[38] C. Bienia et al. “The PARSEC benchmark suite: Characterization and architectural
implications”. In: Proc. Int. Conf. Parallel Archit. Compil. Tech. January (2008), pp. 72–
81.

[39] J. Pallister et al. “BEEBS: Open Benchmarks for Energy Measurements on Embedded
Platforms”. In: arXiv abs/1308.5174 (2013), pp. 1–12.

[40] T. Akiba et al. “Optuna: A next-Generation Hyperparameter Optimization Framework”.
In: Proceedings of the 25rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 2019.

[41] F. Pedregosa et al. “Scikit-Learn: Machine Learning in Python”. In: Journal of Machine
Learning Research 12 (2011), pp. 2825–2830.

[42] J. Reback et al. Pandas-Dev/Pandas: Pandas 1.1.2. Version v1.1.2. Zenodo, Sept. 8, 2020.
[43] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning

Library”. In: Advances in Neural Information Processing Systems 32. Ed. by H. Wallach
et al. Curran Associates, Inc., 2019, pp. 8024–8035.

https://arxiv.org/abs/1703.08228
https://arxiv.org/abs/1303.6485
https://arxiv.org/abs/1805.03441
https://arxiv.org/abs/1910.08413
https://a-bix.com/about.html

	Introduction
	Background
	The MLComp Methodology
	Data Extraction
	Performance Estimator (PE)
	Phase Selection Policy
	Phase Sequence Selection (PSS)

	Experimental Setup
	Evaluation
	PARSEC Benchmark Evaluation on x86 Platform
	BEEBS Benchmark Evaluation on RISC-V Platform
	Discussion and Key Takeaways

	Conclusion

