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Abstract—We analyze the scalability of six memory consistency
models in network-on-chip (NoC)-based distributed shared mem-
ory multicore systems: 1) protected release consistency (PRC);
2) release consistency (RC); 3) weak consistency (WC);
4) partial store ordering (PSO); 5) total store ordering (TSO); and
6) sequential consistency (SC). Their realizations are based on a
transaction counter and an address-stack-based approach. The
scalability analysis is based on different workloads mapped on
various sizes of networks using different problem sizes. For the
experiments, we use Nostrum NoC-based configurable multicore
platform with a 2-D mesh topology and a deflection routing
algorithm. Under the synthetic workloads, the average execution
time for the PRC, RC, WC, PSO, and TSO models in the 8 × 8
network (64-cores) is reduced by 32.3%, 28.3%, 20.1%, 13.8%,
and 9.9% over the SC model, respectively. For the application
workloads, as the network size grows, the average execution time
under these relaxed memory models decreases with respect to
the SC model depending on the application and its match to
the architecture. The performance improvement of the PRC and
RC models over the SC model tends to be higher than 50% as
observed in the experiments, when the system is further scaled
up. The area cost in the network interface for the relaxed memory
models is increased by less than 4% over the SC model.

Index Terms—Distributed shared memory, memory consis-
tency, network-on-chip, performance, scalability.

I. Introduction

ADVANCED systems-on-chip (SoCs) tend to support par-
allelization at the computation (multicore), communica-

tion (network-on-chip, NoC), and memory architecture lev-
els [1]. The distributed shared memory (DSM) on-chip is
preferred to exploit the distributed nature of the NoC-based
systems. Since shared memory operations can be reordered due
to the system optimizations both in the hardware (e.g., write
buffer, cache, interconnection network) and in the software
(e.g., compiler optimization, register allocation), which may
lead to the unexpected behavior of DSM systems [2]. Mem-
ory consistency determines the execution order of memory
operations for the correct behavior of DSM systems. Different
memory consistency models (often called memory models)
enforce different ordering constraints on the memory opera-
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tions [2]. The sequential consistency (SC) model [3] enforces
strict ordering constraints and does not take advantage of the
system optimizations. As a result, several relaxed consistency
models [2], [4], [9], [10] are proposed by relaxing the ordering
constraints on the memory operations to exploit the system
optimizations.

The cache coherence and memory consistency are two prob-
lems of a similar nature in the DSM systems. The coherence
problem is due to the different cached copies of the same
shared data in the system (either using a write through or
write back policy). The coherence protocols resolve this issue.
The snooping-based coherence protocol relies on broadcasting
and bus snooping by the cache controllers. But it is unscal-
able for the network-based multicore systems. Alternatively,
the directory-based coherence protocol is used to maintain
the state information of cache blocks and sends messages
to invalidate or update the cached copies of the requested
block. However, it has some confronting issues like extra
coherence traffic, directory overhead, additional latencies, and
complexities. In contrast, memory consistency is related to
the ordering constraints on memory operations for the parallel
program correctness, i.e., a read operation must always return
the correct value of a memory location in the multiprocessor
systems. In situations like hard real time applications and some
other applications where caches are not used or when these
problems have different requirements on the size of consis-
tency and cache object, independent implementation schemes
for these two problems are preferred [1], [28]–[30], [34].

Moreover, heterogeneous and customized DSM systems
have different requirements and design constraints compared
to the general multiprocessor systems. The former have tighter
power constraints, require heterogeneous memory, make less
or no use of caches, and have often soft or hard real-
time constraints. In the context of customized NoC-based
multicore (McNoC) systems, we study six memory models:
protected release consistency (PRC), release consistency (RC),
weak consistency (WC), partial store ordering (PSO), total
store ordering (TSO), and SC models. These models are
realized independent of the coherence protocols [1], [28]–
[30], [34] by means of transaction counters and address stacks
(Section V).

Our experiments use a configurable McNoC platform. The
platform uses DSM, distributed locks and on-chip 2-D mesh
Nostrum network [5] with a deflection routing policy. We
analyze the scalability of six memory models in the McNoC
systems. The experimental results show the performance gain
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of the relaxed memory models due to reordering in the mem-
ory operations compared to the SC model. Going beyond the
previous works, this paper makes the following contributions.

1) A comprehensive analysis of the ordering constraints un-
der six different memory models is presented compared
to the previous works [1], [28]–[30], [34].

2) The previous works [1], [28]–[30], [34] focus on the
architecture support of memory models in the McNoC
systems. In [36], the scalability of two memory models
is analyzed. This paper analyzes the scalability of six
memory models in the McNoC systems up to 64-cores.
Workloads are mapped on the increasing size of the
network. On average, the execution time under PRC,
RC and WC models relative to the SC model decreases
by 2.5 percentage points for each doubling of the core
count up to 64-cores, the maximum number of cores
considered in our study, while for the TSO and PSO
models the performance improvement is approximately
0.5 percentage points.

3) The performance of these memory models is stud-
ied under a variety of scenarios with both data and
synchronization intensive workloads to highlight some
more aspects. For instance, the performance of the
PRC and RC models over the stricter models im-
proves with the network size up to the point where
the application matches to the available parallelism.
Beyond this point, the improvements flatten or drop. The
studies show the dependence of performance gain on
the computation-to-communication ratio, traffic patterns,
data-to-synchronization ratio and problem size.

4) In contrast to [1], [28]–[30], [34], the realization
schemes of the WC and PRC models are improved
to avoid reordering of accesses to the same memory
location.

5) In contrast to [29], the performance gain of 5% to
10% under PRC over RC model is observed under the
synchronization intensive wavefront computations.

The rest of the paper is structured as follows. Related work
is overviewed in the next section. In Section III, the memory
models are described. In Section IV, the DSM-based McNoC
platform is introduced. Section V presents the realization
schemes of these memory models. In Section VI, the impact
of system optimizations on the memory models is discussed.
In Section VII, simulation results and scalability analysis of
six memory models are described in the McNoC systems and
finally Section VIII summarizes our contributions.

II. Related Work

A. Memory Consistency in Multiprocessors DSM Systems

Several memory consistency models are described in the
literature [2], [4], [9], [10]. Adve et al. [2] discussed the
memory consistency models from the system optimizations
point of view. The SC model [3] enforces a total order on
the memory operations. The TSO model [6], [7] relaxes the
ordering constraints in the case of a write followed by a read
operation. The PSO model [6] further provides the relaxation
among the write operations. The ordering constraints on the

memory operations under both the TSO and PSO models
are enforced using different kind of fence instructions (non-
memory references). For instance, (MEMBARs, SBAR) are
used in the SPARC architectures [6] and (MFENCE, SFENCE,
LFENCE) are used in the x86 architectures [7]. The WC
model [8] classifies the shared memory operations as data
and synchronization operations. The data operations issued be-
tween two consecutive synchronization points can be reordered
with each other. The RC model [9] further classifies the
synchronization operations as acquire and release operations.

Some memory models provide additional relaxations com-
pared to the RC model. For example, in the eager RC model
[11] the propagation of all the modifications are delayed at
the release points and the number of messages are reduced
compared to the RC model. The lazy RC [12], further delays
the propagations of modifications till the acquisition of a lock
by another processor. The Entry RC [13] categorizes the lock
acquire into exclusive and non-exclusive modes. A lock can
be acquired by only one processor in the exclusive mode.
However, in the non-exclusive mode, a lock can be acquired by
more than one processor, if they perform only read operations
in their critical sections. The scope consistency [14] enforces
the global orders within a scope, which is defined by all the
critical sections protected under a lock. It reduces the false
sharing compared to the lazy RC model and uses the page as
the coherence atom compared to the entry RC model.

The DASH project [15] implements the RC model using
several counters-based mechanism which depends on the co-
herence protocol. The directory-based coherence protocol is
used to maintain the state information of the cache blocks.
Recent works [16] and [17] on the directory-based protocols
focus on the reduction of the directory overheads, energy
and power consumption. Token coherence [18] decouples the
performance and correctness of the coherence protocols by
associating tokens with each memory block to track the correct
transfer and accesses to that block. Since the performance
protocol (TokenB) is based on broadcasting transient requests,
it is not a scalable approach. The location consistency [19]
relies on the memory coherence for the scalable architectures
by eliminating the limitations of coherence protocols in the
form of directories and snooping.

Recently, address translation aware memory consistency
models at physical and virtual address levels (PAMC, VAMC)
have been proposed in [20]. The address translation and
translation coherence are proposed to enforce a total order on
all the operations. They emphasized on the detection of design
and runtime faults due to the address translation. In [21], a
memory model is defined in terms of instruction reordering
and store atomicity. The main focus of the work is on the
store atomicity and serializability issues.

Transactional memories target to scale the programmer
productivity by moving the synchronization burden to the
hardware or/and software platform support. The hardware
approach [22] relies on the additional transactional caches and
coherence protocols. The transaction size is bounded by the
set size of the transactional caches. The software approach has
no such restriction and relies on the runtime data structures,
but is less efficient. A hybrid approach [23] combines the
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benefits of both. Memory models are also explored at the
high-level programming languages. The Java memory model
[24] specifies legal transformations and optimizations for the
compiler and virtual machine or hardware.

B. Memory Consistency in NoC-Based Multicore Systems

In NoC-based systems, the proposed mechanism in [25] is
very restrictive and allows only one outstanding transaction
of an initiator at a time in the network. A protocol stack
for on-chip interconnects is proposed at different levels of
the SoC design [26]. They briefly outlined the mechanism
to implement the RC model at the memory-mapped stack.
However, they do not discuss its implementation detail. The
streaming consistency [27] is based on the software cache
coherence protocol. However, polling the circular buffer at
each request level may not be feasible in the larger systems.

The transaction counter (TC)-based hardware approaches
are adopted in [1], [28]–[30], and [34] to realize the memory
models independent of the coherence protocols in the McNoC
systems. In [28], the SC model is realized by stalling the
processor on the issuance of an operation. The WC model
is realized using a TC in each node of the network to keep
track of outstanding data operations issued by a processor in
the system. In [34], the RC model is realized by using two
TCs-based approach. TC1 and TC2 are used to keep track
of the outstanding shared data operations issued in the non-
critical and critical sections, respectively. However, TC2 is
unnecessarily checked at the acquire points to be zero, which is
already checked at the previous release points. In [29], a single
TC-based approach is adopted to realize the RC and PRC
models in the McNoC systems. The PRC model is proposed
as an extension of the RC model. In [30], the realization of
RC model is further enhanced to ensure the parallel program
correctness by using a hardware structure address stack (A-
Stack) in each node of the network. Also, the TSO and PSO
models are realized by using the write transaction counter
(WTC) and write address stack (WA-Stack)-based approaches.

The AXI [31] and OCP [32] protocols enforce the ordering
models by using transactions IDs and thread IDs, respectively.
In [31], transactions of the same master with different IDs
can be reordered, but transactions with the same ID are not
allowed to be reordered. In [32], tagged transactions of the
same master using thread IDs are allowed to be reordered,
but non-tagged transactions are strictly ordered. Likewise, the
A-Stack and WA-Stack are used in the realization schemes of
the memory models to constrain the memory operations issued
by a processor with the same address, but memory operations
with different addresses are allowed to be reordered.

The coherence protocols deal with the consistency at cache
block level, while the memory consistency models address it
for the entire shared memory. The memory consistency issue
can be observed both in the systems which may or may not
use the data caches. As discussed earlier, some applications
require independent solutions for these two problems [30].

To summarize, our implementation of memory models in
the McNoC systems have lower hardware overhead and uses
simple programming model without too many fences. The
ordering constraints are mostly enforced on the memory

Fig. 1. Comparison of SC, TSO, and PSO models.

operations by using the hardware structures like transaction
counter and address stack in the processor interface. More
specifically, this paper compares six memory models and
comprehensively analyzes their scalability in the systems up to
64-cores. For a number of applications mapped on the various
sized networks, the average execution time under the relaxed
memory models relative to the SC model is analyzed and some
key performance affecting factors are highlighted.

III. Memory Consistency Models

Different memory consistency models enforce different
ordering constraints on the memory operations. We discuss
the ordering constraints under six different memory con-
sistency models as shown in Figs. 1 and 2. The variables
(U, V, W, X, Y, Z) are ordinary global (shared) variables and
the variable S is a special synchronization (lock) variable.
The variables to the left side of the assignment operators are
updated (written) and those on the right side are read. An arrow
between two variables indicates an ordering constraint between
the operations on these variables. For instance, U → V

indicates that an operation on variable U is followed by an
operation on variable V in the program, and an operation on
U is completed before the issuance of an operation on V .
These operations are not allowed to be reordered with each
other.

A. SC Model

The SC model [3] enforces the program order among the
operations of an individual processor and the sequential order
among the multiple processors on the critical resource/shared
memory. As illustrated in Fig. 1(a), according to the SC
model, the memory operations are completed in the order
specified by the program (program order). The sequential order
is maintained by interleaving operations on lock S among the
processors in the system.

B. TSO Model

The TSO model [Fig. 1(b)] allows the write operation on W

to be reordered and overlapped with respect to the following
read operation on X. In contrast to the SC model, TSO model
allows reordering and relaxation in the case of a write followed
by a read operation. The ordering constraints are enforced in
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Fig. 2. Comparison of WC, RC, and PRC models.

the cases of a read followed by a write (U → V ), a write
followed by a write (Y → Z), and a read followed by a read
operation.

C. PSO Model

The PSO model [6], [7] is a refinement of the TSO model.
As given in Fig. 1(c), the PSO model further eliminates
the ordering constraint in the case of a write operation on
Y followed by a write operation on Z. It allows additional
reordering among the write operations compared to the TSO
model.

D. WC Model

The WC model [8], [28] classifies the shared memory opera-
tions as synchronization (Sync) and data operations. The Sync
operations are related to the special Sync variables (locks,
semaphores) in the shared address space. The data operations
are the (read, write) operations related to the ordinary shared
variables. As illustrated in Fig. 2(a), the independent data
operations issued between the two consecutive Sync points can
be reordered with respect to each other. The data operations
are not allowed to be reordered with respect to the Sync
operations and vice versa. For instance, the data operations on
(U, V ) are allowed to be reordered with each other, but they
are not permitted to be reordered with the data operations on
(W, X) or (Y, Z), because they are not issued in between the
two consecutive synchronization points.

E. RC Model

The RC model [9], [15], and [29] provides additional
reordering and relaxation compared to the WC model [8].
It further classifies the synchronization operations as acquire
and release operations. An acquire operation delays the future
data operations until the lock is obtained. It does not wait
for the completion of previously issued data operations. A
release operation notifies the completion of previously issued
data operations. It does not delay the future data operations.
As demonstrated in Fig. 2(b), according to the RC model,
the independent data operations on (U, V ) are allowed to be
reordered with each other, with the acquire operation on lock
S, and with the data operations on (W, X) in the critical

section. They are not permitted to be reordered with respect
to the release operation on lock S. The data operations (W, X)
can be reordered and overlapped with respect to each other,
but they are not allowed to be reordered with the acquire and
release operations on lock S. The data operations on (Y, Z)
are allowed to be reordered with respect to each other, with
the prior outstanding release operation on lock S, and with the
prior outstanding data operations on (W, X). However, they are
not permitted to be reordered with respect to the prior acquire
operation on lock S. The data operations on (U, V, Y, Z)
outside the acquire-release operations can be reordered with
the data operations in the critical section, while this is not
permitted under the WC model. The data operations on (W, X)
cannot be moved outside the critical section.

F. PRC Model

The PRC model is proposed as an extension of the RC
model which provides additional reordering and relaxations
in the memory operations [29]. It further categorizes the data
operations as unprotected and protected operations. As given
in Fig. 2(c), the data operations on (U, V, Y, Z) are unprotected
data operations. They are not protected under acquire-release
operations on lock S or any other lock. The data operations
on (W, X) are protected data operations under acquire-release
operations on lock S. The unprotected data operations on
(U, V ) can be reordered and overlapped with each other, with
the following acquire, protected data, release, and unprotected
data operations. The PRC model allows the reordering of
the unprotected data operations on (U, V ) with the follow-
ing release operation on lock S and with the unprotected
data operations on (Y, Z), because they are independent of
each other. However, it is not allowed under the RC model.
The issuance of a release operation is only delayed till the
completion of previously issued protected data operations and
it is not delayed for the completion of previously issued
unprotected data operations. While in the case of RC model,
the release operation unnecessarily notifies the completion of
previously issued unprotected data operations (U, V ) which
are independent of each other. This additional categorization
of the data operations under the PRC model distinguishes the
ordering requirements for the different types of data operations
compared to the RC model.

G. Global Orders Under Memory Consistency Models

The global orders (ordering constraints) to be enforced
under the SC model are shown in Fig. 3(a), program order
and sequential order. The global orders under the TSO and
PSO models are given in Fig. 3(b) and 3(c). The TSO model
enforces the order among the write operations compared to
the PSO model. Both the TSO and PSO models also enforce
the ordering constraints with respect to the synchronization
(Sync) operations for the parallel program correctness.

As shown in Fig. 4(a), the WC model does not allow
reordering among data and synchronization operations. The
synchronization operations must be completed in the program
order. Under the RC model, as given in Fig. 4(b), an acquire
operation must be completed before the issuance of a data
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Fig. 3. Global orders under: (a) SC model; (b) TSO model; (c) PSO model.

Fig. 4. Global orders: (a) WC; (b) RC; (c) PRC, Pr. data: protected data.

Fig. 5. Non-overlapped protected section, protected data: B, D, and unpro-
tected data: A, C, E.

and release operations. Similarly, before the issuance of a
release operation the prior acquire and data operations must
be accomplished. Unprotected data operations under the PRC
model are not constrained at the acquire and release points and
they can cross these barriers [Fig. 4(c)]. These global orders
are discussed later in Section V with more details.

H. Further Analysis of the WC, RC, and PRC Models

For comprehensive analysis and deeper understanding of
the ordering constraints under the WC, RC, and PRC models,
we consider further cases with non-overlapped, nested, and
partially overlapped protected sections.

Fig. 5 illustrates the ordering requirements under the WC,
RC, and PRC models for the code segments using non-
overlapped protected sections. The critical sections under the
locks S1 and S2 are the two protected sections (PS1, PS2),
which do not overlap with each other. A curly bracket repre-
sents a protected section. The WC model does not permit the
unprotected data operations on (A, C, E) to be reordered with
respect to the protected data operations. The RC model allows
the unprotected data operations on (A, E) to be reordered and
overlapped with the protected data operations in PS1 and PS2,

Fig. 6. Nested protected sections, protected data: B, C, D and unprotected
data: A, E.

Fig. 7. Partially overlapped protected sections, protected data: B, C, D and
unprotected data: A, E.

respectively, while the unprotected data operations on C can
be reordered with the data operations of both the protected
sections. The RC model does not allow the unprotected data
operations on (A, C) to be reordered with the subsequent
release and unprotected data operations, which is allowed
under the PRC model.

Fig. 6 considers the code segments using nested protected
sections. The PS2 is nested inside the PS1. The data operation
on C is now a protected data operation compared to the non-
overlapped protected case (Fig. 5). The ordering requirements
under the WC model remain the same as those under the non-
overlapped protected case, because the acquire and release op-
erations are treated as one type of (Sync) operation. According
to the RC model, the unprotected data operations on (A, E)
now can be reordered with the data operations in both the
protected sections under certain conditions. The unprotected
data operation on A is not allowed to be reordered with the
operations issued in that part of the code which comes after
the PS2. Also, the unprotected data operation on E is not
permitted to be reordered with the operations issued in that
part of the code which comes before the PS2. The PRC model
further relaxes the ordering constraints on the unprotected data
operations on A to be reordered with the subsequent release
and unprotected data operations.

Fig. 7 demonstrates the ordering requirements under the
code segments using partially overlapped protected sections.
A portion of the PS1 and PS2 overlaps with each other. The
ordering constraints under the WC model still remain the same
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Fig. 8. (a) Homogeneous McNoC. (b) PM node.

as that in Fig. 5. The protected data operation on D is now
part of the PS2 compared to the nested protected case (Fig. 6).
Therefore, both under the RC and PRC models, the protected
data operation on D is now restricted and cannot be reordered
with the operations issued before the acquire S2.

I. Operations to the Same Memory Location

The weaker or relaxed consistency models permit outstand-
ing memory operations which are reordered and overlapped
with each other and the system performance is enhanced.
However, to ensure the parallel program correctness, the
operations to the same memory location must not be allowed
to be reordered with respect to each other. For the correct
behavior of the DSM systems, the operations issued by a
processor to the same memory location must be constrained
efficiently to accomplish as per program order.

IV. DSM Based McNoC Platform

A homogenous McNoC system is shown in Fig. 8(a). All
nodes are interconnected via a packet-switched network. As
demonstrated in Fig. 8(b), each processor-memory (PM) node
consists of a processor, transaction controller (TCTRL), syn-
chronization handler, network interface, and a local memory.
Each local memory is partitioned into private and shared
parts. All the physically distributed shared parts in the local
memories form the DSM in a single address space. For a
shared memory access two addressing schemes are used and
a virtual-to-physical (VTP) address translation is required.

The platform uses 2-D mesh packet-switched Nostrum NoC
[5] with an adaptive routing algorithm. It is a buffer-less
network and only buffers in the network interfaces (NIs)
are used to store packets before injection into and after
ejection from the network. The NI connects a PM node to the
network. It deals with the transactions from the processor via
TCTRL and performs packetization, queuing, arbitration, and
communication over the network. It also receives the packet
from the network, de-packetizes it and hands it over to the
processor or memory system.

The packet format is given in Fig. 9. The packet has a total
width of 97 bits including 37 bits header and 60 bits payload.
It has total seven fields (source relative address, destination
relative address, valid packet, hopcount, packet type, address,
and data). The first two fields are used for the routing purposes.

Fig. 9. Packet format.

The valid bit (V) indicates a valid or invalid packet. The hop
count (HC) field is incremented at every hop in the network
and is used to avoid the livelock. Packet Type differentiates
among various types of packets in the system. The last two
fields indicate the address/data of a memory transaction.

The platform also uses distributed locks in the synchro-
nization handlers (SHs). The SH controls k locks maintained
in the global address space. Every lock is accessed in a
sequential order by multiple processors in the system. A lock
can either be in locked or unlocked status. The synchronization
(acquire, release) requests to the SH either come from the
local processor or from a remote processor via the network.
If the requested lock’s state is unlocked, then the acquire
request changes its state to locked and an acknowledgement
is sent back to the acquiring node. If the requested lock
state is locked, a negative acknowledgement is sent back to
the originating node. The source node sends again the same
request until the lock is gained. If the acquire and release
requests arrive simultaneously, the lock remains in the locked
status and the lock ownership is transferred from the releasing
node to the acquiring node. A release request changes the
lock’s status to unlocked.

The platform uses a LEON3 processor [33] in each node
of the network. The data cache system is disabled from the
base processor for the independent implementation of memory
models. The transaction controller (TCTRL) is a customized
interface to integrate the processor with the rest of the system.
It implements the key functions which may be required under
any standard interface such as AXI [31] and OCP [32]. The
TCTRL deals with the transactions from the processor and
classifies them on the basis of address translation and memory
mapping. It also communicates with the processor to control
the flow of transactions. It transmits the transactions between
the processor and memory system. One of the important
functions of the interface is to implement the memory consis-
tency protocols. It uses the hardware structures like (TC, AC,
A-Stack) to realize the memory models. The TCTRL receives
different types of transactions (read, write, memory barriers)
with word granularity from the processor.

V. Realization of the Memory Consistency

Models

A. SC Model

The SC model is realized [28] in the McNoC system by
enforcing the required global orders as given in Fig. 3(a).

Program Order: is enforced by stalling the processor on
the issuance of a memory operation till its completion. On the
completion of a previously issued memory operation the next
operation is issued in the program.

Sequential Order: is enforced by sequentially accessing the
critical/shared memory locations among the multiprocessors
by using the common lock [28].
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B. TSO Model

The TSO model is realized [30] in the McNoC system by
enforcing the required global orders as shown in Fig. 3(b).

Write → Write: A write transaction counter (WTC) is
used in each node of the network to keep track of the
outstanding write operations issued by a processor. The WTC
is incremented by the issuance of a write operation. It is
decremented by the completion of a write operation. The WTC
is not affected by the Sync and read operations. The issuance
of a write operation is delayed by stalling the processor till the
completion of previously issued outstanding write operation
(e.g., WTC = 0). The processor is stalled by issuing an active
low keep-transaction-going signal by the TCTRL in Fig. 8.

Read → Read/Write: These global orders are enforced
by stalling the processor on the issuance of a memory read
operation till its completion by returned data. The issuances
of the subsequent read and write operations are delayed till
the completion of previously issued read operation.

Ordering constraints with respect to the Sync operations

are also enforced. The memory operations are completed
before the issuance of a Sync operation and vice versa. Upon
the issuance of a Sync operation, there is no outstanding read
operation, because the processor is stalled on the issuance of
a read operation till its completion. However, to ensure the
completion of outstanding write operation, the issuance of a
Sync operation is delayed till the completion of previously
issued outstanding write operations (e.g., WTC = 0). Also,
on the issuance of a Sync operation, the subsequent memory
operations are delayed by stalling the processor till the
successful completion of Sync operation.

C. PSO Model

The PSO model is realized [30] by enforcing the required
global orders as given in Fig. 3(c). The ordering requirements
under the PSO and TSO models are mostly similar except
the PSO model further relaxes the ordering constraint on the
memory operations in the case of a write followed by a write
operation. According to the realization scheme of the PSO
model, the issuance of a memory write operation is not delayed
till WTC = 0. It allows multiple outstanding memory write
operations in the network, which is not allowed under the
TSO model. The independent memory write operations can be
reordered with respect to each other. The rest of the realization
scheme is similar to that described under the TSO model.

D. WC Model

The WC model is realized [28] in the McNoC platform by
enforcing the required global orders as described in Fig. 4(a).

Data → Sync: A transaction counter (TC) is used in
each node of the network to keep track of the outstanding
data (read, write) operations issued by a processor before a
Sync operation. The TC is incremented by the issuance of a
data operation. It is decremented by the completion of a data
operation. The TC is not affected by the Sync operations. It is
checked at the issuance of a Sync operation and the issuance
of a Sync operation is delayed by stalling the processor till the
completion of previously issued outstanding data operations.

Sync → Data: To enforce this global order the processor
is stalled upon the issuance of a Sync operation till its
completion. The subsequent data operations are delayed for
the completion of previously issued Sync operation.

Sync → Sync: This global order is enforced by the
sequential order on a lock in the multiprocessor system as
discussed in the previous section. A Sync operation must be
completed by a processor before the issuance of a next Sync
operation.

E. RC Model

The RC model is realized [29] by enforcing the required
global orders as illustrated in Fig. 4(b).

Data → Release: A TC is used in each node of the
network to keep track of outstanding data operations issued
before a release operation. The TC is affected by the issuance
and completion of the data operations. It is not affected
by the acquire and release operations. The issuance of a
release operation is delayed by stalling the processor till the
completion of previously issued outstanding data operations
(e.g., TC = 0). Note that, the TC under the RC model keeps
track of the outstanding data operations issued between the two
consecutive release points, while under the WC model; the TC
keeps track of outstanding data operations issued between the
two consecutive Sync points.

Acquire → Data/Release: These global orders are en-
forced by stalling the processor on the issuance of an acquire
operation till its successful completion. The subsequent data
and release operations are delayed for the lock acquisition.
The lock must be gained by a processor before entering to the
critical section and also before releasing it.

Release → Acquire: This global order is enforced by the
sequential order on a lock in the multiprocessor system as
discussed in the previous section. A lock must be released by
a processor before the next acquire on it.

F. PRC Model

The PRC model is realized [29] in the McNoC platform
by enforcing the required global orders as given in Fig. 4(c).
The ordering requirements under the PRC and RC models are
similar except the release operation in the PRC model notifies
only the preceding protected data operations.

Protected Data → Release: A transaction counter (TCPD)
is used in each node to keep track of the outstanding protected
data operations. The TCPD is incremented on the issuance of a
protected data operation. It is decremented by the completion
of a protected data operation. The outstanding unprotected data
operations are not tracked, and do not affect the TCPD. The
TCPD is also not affected by the acquire and release operations.
The issuance of a release operation checks the TCPD and it
is delayed till the completion of previously issued outstanding
protected data operations.

Acquire → Protected Data: The processor is stalled
on the issuance of an acquire operation and the subsequent
protected data operations are delayed for the lock acquisition.
The rest of realization scheme is similar to that of the RC
model.
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Classification of memory operations under the PRC

model: The shared memory operations are categorized into
local and remote operations using VTP address translation.
Both the local and remote memory operations are further
differentiated as data and synchronization operations on the
basis of memory mapping. The synchronization operations
are further distinguished as acquire and release operations
by different commands/APIs. The classification of memory
operations at this point is similar to that under the RC
model. The PRC model further classifies the data operations
as unprotected and protected data operations. An Acquire
Counter (AC) is used in each node to this end. Initially, the
AC is zero. The AC is incremented by the acquisition of a
lock and decremented by releasing it. On the issuance of
a data operation, the AC is checked. If it is zero, the data
operation is unprotected, because either no lock is acquired
yet or all prior acquired locks have been released. If it is
non-zero, the data operation is protected, because either one
or more lock(s) acquire exist already. Packet type field in the
network protocol differentiates among the different types of
memory operations (Fig. 9).

G. Operations to the Same Memory Location

In order to ensure the parallel program correctness, the
operations to the same memory location are constrained to
accomplish as per program order (refer to Section III-I).
The TSO and PSO models use a hardware structure (write
address stack) WA-Stack in each node of the network for
this purpose. The WA-Stack keeps track of the addresses to
be accessed by the previously issued outstanding memory
write operations. Upon the issuance of a write operation, the
address to be accessed by the write operation is pushed on
the WA-Stack. Upon the completion of a write operation, the
address is popped from the WA-Stack. The issuance of an
operation checks the WA-Stack. If the address is on the WA-
Stack, then there is an outstanding write operation issued to
the same memory location. The issuance of the operation is
then delayed until the same address is popped from the WA-
Stack on the completion of previously issued write operations.
Similarly, the WC, RC, and PRC models use Address Stack
(A-Stack) in each node of the network to keep track of the
addresses to be accessed by the previously issued outstanding
data (read, write) operations. The A-Stack also tracks the
addresses of outstanding read operations (in addition to the
write operations) which are not tracked by the WA-Stack under
the TSO and PSO models [30].

VI. Memory Models and system optimizations

A. Influence of the Compiler Optimizations

The compiler can reorder the memory operations to avoid
the data dependencies. This could violate the sequentially
consistent execution of a parallel program. The high level
programming languages like Java, C, C#, and C++ use the
volatile keyword in the declaration of variables which restricts
the compiler optimizations on them. The WC, RC, and PRC
models provide more space for the compiler to optimize the
program. The WC model allows the compiler to statically

reorder the data operations in between the two consecutive
synchronization points. The RC model permits the compiler to
optimize the program segment in between the two consecutive
release points. The PRC model provides even more freedom to
the compiler for the program optimization. The compiler can
allocate the variables to the CPU registers. It can also eliminate
the common sub-expressions by evaluating them to a single
value which reduces the number of memory references. The
compiler can also perform some operations on the loops. In
brief, the PRC and RC models can exploit the most common
compiler optimizations compared to the other memory models.

B. NoC Features and Performance of Memory Models
Different traffic patterns allow different overlapping and

pipelining among the memory operations under relaxed mem-
ory models. The execution time of a program is dependent
on the physical distance between the source and destination
nodes in the network [30].

Different routing policies also affect the performance of
memory models. For instance, the X–Y deterministic routing
schemes do not allow reordering among the transactions of the
same source to the same destination compared to the adaptive
routing schemes. By using adaptive routing in our platform,
we incorporate worst reordering situations. Thus, if an imple-
mentation of a memory model works well under an adaptive
routing, it also works well under the deterministic routing.
But note that, the benefits of relaxed memory models can
be higher under adaptive routing, because more optimization
potential can be exploited by the increasing reordering among
the memory operations in the network.

The traffic is closed-loop under the implemented memory
models; therefore, the injection rate cannot be arbitrary. It is
under the control of the responses. Under the SC model, the
injection rate will not have any impact on the performance
improvement, because the issuance of an operation is con-
trolled by the completion of a previously issued operation.
Even with the outstanding transactions under the WC, RC and
PRC models, there are synchronization points which will slow
down the overall injection. However, increasing the injection
rate will increase the outstanding transactions under a relaxed
memory model and its performance could be further increased.

The network congestion can also affect the performance
of different memory models. The memory operations could
take longer time to complete in the congested network. Since
we use the adaptive routing on-chip network, therefore, the
memory operations might take alternative paths to reach their
destinations. While increasing the system size, the network
communication latency could also increase in general. This
will somewhat produce similar effects as in more congested
networks. The execution time under the SC model could be
significantly increased under the congested network as it al-
lows one outstanding operation issued by a processor at a time
in the network. In contrast, the pipelining among the memory
operations under PRC and RC models could be increased and
the average memory access latency could be decreased.

C. Caches, Prefetching, and Transactional Memories
In order to get the benefits of data caches, the coherence pro-

tocols could be accommodated along with these independent
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memory models. As a future work, the directory-based coher-
ence protocols can be implemented on top of these memory
models. This approach will allow for the independent optimal
selection of the cache block size to reduce the coherence
traffic, energy/power consumption and the directory overheads.
However, the completion of memory transactions must be
tracked via TC and A-Stack in the processor interface.

The modern processor systems prefer non-blocking caches
(which deal with the multiple requests simultaneously) over
the blocking caches (which deal one request at a time) [38].
Non-blocking caches can improve the system performance by
servicing multiple outstanding cache miss requests. The WC,
RC and PRC models allow outstanding operations which can
exploit the architectures with non-blocking caches compared
to the blocking caches. The PRC model could provide more
space compared to the stricter models to utilize the systems
using non-blocking caches.

The system efficiency might be increased by utilizing the
processors in the time slots in which they are stalled due to
the constraints imposed by the memory models. The DASH
multiprocessor system [15] uses the non-binding prefetching,
where the data is brought close to the processor vicinity
somewhere in the data cache in advance which may be used
by the processor later on. The fetched data are ensured to be
coherent by using the directory-based coherence protocols.

Transactional memories simplify the parallel program-
ming by atomic execution of a set of memory operations (e.g.,
transaction). Also, consistency and isolation requirements are
ensured at the transaction level. Transactional memories suffer
from the performance degradation due to the excessive amount
of re-work as a result of frequent abortion of transactions.
Consequently, the communication overhead is increased and
the bandwidth is not utilized properly. This also limits the
system scalability. Furthermore, as a future work, the trans-
actional memories can be implemented along with the inde-
pendent memory models. The ordering constraints on memory
operations could be enforced by using the TC and A-Stack,
while the transactional memories could target to simplify the
parallel programming.

Each memory model maintains both the write atomicity and
causality. Write atomicity over critical references is ensured by
serial execution of the code segments in the protected sections.
The writes are casually related as the read operations return
the recently written values to the memory locations.

VII. Experiments and Results

A. Hardware Cost

The synthesis results of six designs in terms of NAND-
gate equivalent and maximum frequency are given in Table I
(optimized for the area). The difference in the area costs of
the designs is mainly in the transaction controller (TCTRL),
which uses transaction/acquire counter and address stack to
implement the memory models. The TCTRL is synthesized
with the stack depth of 16 up to 128 addresses each with
24 bits. The average result obtained with different configura-
tions of TCTRL is shown in Table I. The transaction/acquire
counter approximately consumes 635 gates each. In order to
reduce the area overhead, size of the stack is kept optimal and

TABLE I

Synthesis Results With 90 nm SMIC Technology

SC Model TSO Model PSO Model
A F A F A F

NI 49.99 1.25 49.99 1.25 49.99 1.25
TCTRL 20.00 0.5 20.37 0.5 20.13 0.5
Total 69.99 70.36 70.12

WC Model RC Model PRC Model
A F A F A F

NI 49.99 1.25 49.99 1.25 50.88 1.25
TCTRL 20.20 0.5 20.13 0.5 20.76 0.5
Total 70.19 70.12 71.64

A: Area (Kilo Nand Gates), F: Frequency (GHz).

TABLE II

Platform Configuration Parameters

Sub-system Descriptions/Parameters
Core processor LEON3, synthesizable VHDL model, 32-bit, compliant

with the SPARC V8 architecture
Network
interface (NI)

Full duplex, packetization, de-packetization, buffering
capacity 64 packets, message passing, network protocol
(97 bits, 7 fields)

Network
(Nostrum)

Buffer-less, on-chip, configurable, packet-switched, 2-D
regular mesh topology, deflection routing policy (adap-
tive routing)

Memory (DSM) DSM organization, 16 MB shared memory in each node,
dual ported

Sync handler Distributed, 256 locks in each node, dual ported
Transaction con-
troller

Distributed, TC/AC each 32 bits, A/WA-Stack capacity
of 64 virtual addresses each 24 bits

is efficiently utilized. The addresses are popped from the stack
continuously on the completion of operations in a pipelined
manner. The area cost for the TSO, PSO WC, RC and PRC
models are increased by 1.85% (373 gates), 0.65% (133 gates)
1.0% (210 gates), 0.65% (131 gates), and 3.8% (764 gates)
over the SC model in the TCTRL. The NI and TCTRL under
the PRC model consume the most area due to the additional
logic needed for further classification of the data operations.
The switch and synchronization handler under all the memory
models consume 13.24 and 3.76 kilo-gates, respectively. In all
the cases, the maximum clock frequency is 500 MHz or above.

B. Experimental Setup

For the experiments, a configurable cycle true simulation
McNoC platform is constructed in VHDL (Fig. 8). The caches
are disabled from the LEON3 processors in the experiments,
as they are neutral for the evaluation of the memory models.
The platform configuration parameters are given in Table II.

For the McNoC systems, communication centric bench-
marks are required to evaluate the communication aspect of the
network. The SPEC, SPLASH-2, and PARSEC benchmarks
suits [39] have computation intensive programs developed for
the high-performance computing systems. These benchmarks
cannot be utilized directly for the scalability analysis of
memory models in the McNoC systems, because they are
compute intensive and the potential parallelism of the network
could not be fully exploited under the relaxed memory models.
Thus, we have developed both the synthetic and application
workloads to analyze the scalability of memory models in
the McNoC systems [35]. The developed applications are
light-weight, specific to NoC/embedded architectures, and
communication centric. The input problem size and memory
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Fig. 10. Trans. Sequences: (a) WL1; (b) WL2; (c) WL3; (d) WL4; (e) WL5.

instruction density can be varied. Different traffic patterns
are generated for the memory operations. The developed
workloads are ranging from a simple to complex workloads
like wavefront computations and are chosen from different
application areas. The synchronization intensive wavefront
computations are widely applied in the scientific computing,
dynamic programming algorithms, and particle physics [37].
We have chosen some representative workloads to derive
meaningful conclusions from the experiments.

In the experiments, we study the scalability of six memory
models in the McNoC systems (Fig. 8). The workloads are
mapped on the networks of different sizes. The performance
metrics like execution time, performance and speedup are
evaluated against the network size. The execution time of a
workload is the time from the start of execution on the first
processor to the end of execution on the last processor. The
performance is the reciprocal of the execution time (measured
in kilo operations per second). The speedup is the ratio of
execution time of the single core and multicore system.

C. Synthetic Workloads

The performance of six memory models is evaluated with
different synthetic workloads (WL1-WL5) as shown in Fig. 10.
These workloads are manually mapped on the LEON3 pro-
cessors in the network. The same sequence of transactions
is generated by the processor in each node; thus, when the
number of cores is doubled, the total amount of work is also
doubled. WL1 contains data and synchronization operations.
It has both the cases of a write followed by a read and a read
followed by a read operation. WL2 contains a write followed
by a write, a write followed by a read and a read followed by
a read sequences. WL3 has, in addition, a read followed by a
write operation and uses two non-overlapped protected/critical
sections. WL4 uses nested protected sections protected under
two different locks. WL5 uses partially overlapped protected
sections, which are protected under two different locks. For the
synchronization and protected-data operations, hotspot traffic
pattern is generated. For the unprotected-data operations, uni-
form random traffic pattern is used.

The synthetic workload execution times (SETs) are com-
pared for the six memory models in Fig. 11. The SC model is
used as the baseline model. The system size is increased from
2 to 64-cores. From the network perspective, 1 × 1 (single

Fig. 11. Average SETs for WL1-WL5.

Fig. 12. Performance under angle conversion application.

core) is meaningless, therefore, we have not considered it.
As the system scales up, the SETs quickly increase under
all the memory models because of the increasing network
traffic, congestion and waiting time to acquire a lock. The
SETs are lower under the relaxed memory models compared
to the strict SC model due to reordering and relaxation in the
memory operations. The average SETs under the PRC, RC,
WC, PSO and TSO models in the 8×8 network are reduced by
32.3%, 28.3%, 20.1%, 13.8%, and 9.9% over the SC model,
respectively. The SETs under the PRC and RC models are
reduced more under the WL2 due to the issuance of more
data operations before the release operation.

D. Application Workloads

1) Angle Conversion: The application converts the input
data vector of degrees into output data vector of radians. The
input data vector of 128 elements is used. The input and output
vectors are stored in the DSM and uniform random traffic
pattern is used.

As illustrated in Fig. 12, the performance of six memory
models under the angle conversion application increases as
the system size is scaled up. This is due to the division of
computation cost in the larger networks. The computation
cost is perfectly divided among the identical processors in the
larger systems. The PRC and RC models further improve the
performance compared to the stricter models by reordering
and overlapping the memory operations in the network. The
performance under the PRC, RC, WC, PSO, TSO, and SC
models in the 64-cores system are 8.3, 8.3, 8.1, 6.8, 6.5, and
6.1 times of that in the single core system, respectively.
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Fig. 13. Performance under bit count application.

2) Bit Count: The application analyzes the input data
vector and calculates the number of set bits in each integer data
item. The input data vector with 512 elements is initialized,
read, analyzed and the resultant output vector is stored in the
DSM. Each node operates on the data items in a randomly
selected node.

For the bit count application, the increase in the performance
(Fig. 13) under the relaxed memory models over the SC
model is higher in contrast to the angle conversion application.
This is because of the lower computation-to-communication
ratio. The computation time per input data item under the bit
count application is less (21 cycles) compared to the angle
conversion application (31 cycles). Due to less computation-to-
communication ratio, the communication becomes significant
under the bit count application. The PRC and RC models effi-
ciently handle the communication overhead by allowing more
outstanding operations in the network which are pipelined and
overlapped with each other. The increase in performance under
the relaxed models over the SC model is 13.2% to 20.3%
higher than the angle conversion application in the 64-cores
systems (Fig. 12).

3) Pattern Search: The application searches data patterns
(P) against the data elements (D), which are initialized in
the DSM. Two different cases are simulated using different
combinations of the patterns and data elements. The system
size is increased from 2 to 64-cores. P32-D32: when 32
patterns and 32 data elements are mapped on the 8×8 network,
only 32 nodes participate in the computations. P64-D64: For
the 64 patterns and 64 data elements, one pattern and one
data element is mapped on the 8 × 8 network and each node
is involved in the computation. The outputs are the number of
times that the patterns appear in the data elements, which are
stored in the local node.

The execution times of relaxed memory models relative to
the SC model under the pattern search application are given
in Fig. 14. As the system scales up, relative execution times
under the PRC and RC models decrease more due to the
additional pipelining among the memory operations. At some
point (e.g., network size) the decrease in the relative time
flattens off. It depends on the problem size and its match to
the architecture, when exactly this leveling off occurs. For
the (P64-D64) problem, the relative execution time constantly
decreases under all the memory models as the network size
increases, because the problem size fits well into the increasing

Fig. 14. Pattern search: Ratio (execution time of relaxed models/SC model).

Fig. 15. Speedup under matrix multiplication applications.

size of the network compared to the (P32-D32) problem. A
better and scalable behavior (e.g., continuous performance
gain) is observed under the (P64-D64) problem, where the
computation is further divided in the 8 × 8 network.

4) Matrix Multiplication: The multiplication of two matri-
ces (A, B) produces a matrix C. All the matrices are initialized
in the DSM. Two different sized matrices are multiplied. The
A[32 × 1] multiplies B[1 × 32] produces C[32 × 32], and
A[64 × 1] cross B[1 × 64] resulting C[64 × 64]. The network
size is increased from 2 to 64-nodes. When A[32 × 1] and
B[1 × 32] matrices are mapped in the 8 × 8 network, only 32
nodes perform the computations. When A[64×1] and B[1×64]
are mapped in the 8 × 8 system, all the nodes are involved in
the computation. Each node operates on that part of matrix-A
which is in the local node, and the entire matrix-B which is
distributed in the network. The output results are written into
the shared memory of the same node.

Fig. 15 illustrates the speedup of memory models under the
matrix multiplication application. The speedup is lower under
case-A due to smaller problem compared to the case-B. For
the case-A, the speedup levels off after 32 nodes up to 64
nodes, because the potential parallelism in the 8 × 8 network
is not exploited by the chosen problem size. On the other hand,
it is utilized under the case-B, where computation is further
divided in the 8 × 8 network and all the nodes are involved in
the computation. The problem size like case-B scales well and
continuously obtain the benefit from the higher parallelism of
the relaxed memory models compared to the SC model.

All these applications are data intensive and do not use
the synchronization operations. Therefore, the performance of
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Fig. 16. Performance under WFCA application.

WC, RC and PRC models are almost the same, but more than
the PSO, TSO, and SC models due to the additional reordering
in the data operations. The next experiments use the wavefront
computation applications which contain both synchronization
and data operations compared to the previous applications.

5) Wavefront Computation-A (WFCA): The WFCA uses
(16 × 64) data computations in 16 different partially over-
lapped protected sections. In two cores system, each node
performs (16×32) data computations. Each computation uses
the data produced in the same and previous protected sections
on the same node, and also the data computed on the previous
node. To ensure the data availability of the previous node,
each node uses 16 additional lock-acquires at the start of each
protected section to the same locks. When WFCA is mapped
on the four cores system, each node performs half of the data
computations (16 × 16). The number of protected sections
remains the same. Likewise, this trend goes up to 64-cores
system, where each core performs the (16 × 1) computations.
The ratio of data/synchronization operations decreases as the
network size is increased.

As given in Fig. 16, the performance gap between the
PRC/RC and WC models is increased under the synchroniza-
tion intensive WFCA application. This is due to the fact that
the PRC and RC models allow the reordering and overlapping
among the data and synchronization operations, which is not
allowed under the WC model. The performance (Fig. 16) un-
der the memory models increase quickly in the small networks
up to 16 nodes due to a high ratio of the data/synchronization
operations, while onward, the performance rises slowly due to
the increasing synchronization overhead among the cores in
the larger networks.

6) Wavefront Computation-B (WFCB): The WFCB uses
(32 × 64) data computations in (32 × 64) different nested
protected sections. In two cores system, each node performs
(32 × 32) data computations. Each computation uses the data
computed under the previous nested protected section on the
same node and the data computed on the previous node.
The previous node’s data are made available by using nested
acquires operations at the start of each protected section to
the same locks. When WFCB is mapped on the four cores
system, each node performs half of the data computations
(32 × 16) in the nested protected sections. Similarly, this
trend goes up to 64-cores system, where each core performs
the (32 × 1) computations. The ratio of data/synchronization
operations remains the same as the network size is increased.

Fig. 17. Performance under WFCB application.

Fig. 18. Speedup under WFB-UPD application.

For the WFCB application, the increase in the performance
(Fig. 17) under the relaxed models over the SC model is
slightly higher in contrast to the WFCA application. This is
because of more protected sections (computations) per node
which are used under the WFCB application. Note that, the
WFCB uses 32, while WFCA uses 16 protected sections per
node. The considerable amount of computation is parallelized
in the larger network under the WFCB application. Also, the
synchronization overhead does not arise in the larger networks.
Therefore, the performance under the memory models increase
quickly in the larger networks compared to the WFCA appli-
cation. Both the WFCA and WFCB applications do not use
the unprotected data operations. Thus, the performance gap
between the PRC and RC models is insignificant.

In order to observe the performance gain of the PRC model
over RC model, WFCB is supplemented with the unprotected
data operations (WFCB-UPD) in the 8×8 system. The number
of the unprotected data operations is varied in proportion to
the number of protected sections per node from 1 to 64.
For the single protected section per node, there are a total
(1 × 64) unprotected data computations. For the 64 protected
sections per node, there are a total (64 × 64) unprotected data
computations. All these data computations in the unprotected
sections are independent of each other.

As can be seen in Fig. 18, the performance gain of the PRC
model over the RC model is clearly visible. This is due to the
interleaving unprotected data operations among the protected
sections. For the 64 protected sections per node, the execution
time under the WFCB-UPD for the PRC model is reduced
by 7.6% over the RC model and 27.3% over the SC model.
The speedup increases until 16 protected sections per node



772 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 32, NO. 5, MAY 2013

TABLE III

Average Execution Time Relative to SC in Percentage

Applications SC TSO PSO WC RC PRC
Angle Conv. 100 93.68 89.61 75.49 74.34 74.34
Pattern Search 100 99.6 96.65 63.94 61.86 61.86
Bit Count 100 84.24 82.12 73.97 70.78 70.78
Matrix Multp. 100 97.74 95.77 78.23 77.13 77.13
WFCA 100 98.93 90.77 81.41 76.52 76.52
WFCB 100 99.54 95.41 79.92 75.79 75.79
WFCB-UPD 100 98.11 96.8 81.32 78.71 72.73
Average 100 95.98 92.44 76.32 73.59 72.73

and then decreases onward (Fig. 18). This is due to the fact,
when the number of protected sections per node increases, the
amount of computation also increases due to the incorporation
of unprotected data operations.

7) Average of All Applications: The average execution
times under all the applications for the relaxed memory models
relative to the SC model in percentage are given in Table III.
For the 64-cores systems, the average execution times under
the PRC, RC, WC, PSO, and TSO models compared to the
SC model are reduced by 25.9%, 23.2%, 19.9%, 4.9%, and
1.7%, respectively.

E. Summarizing the Scalability Analysis and Trends

To sum up, in all experiments, the execution time of the
PRC and RC models has been between 50% and 100% of the
SC model. The specific numbers are highly sensitive to the
application and depend on how well it matches the platform.
It also depends on the computation-to-communication ratio,
problem size, traffic patterns and synchronization overheads
in the system. However, the observed trends suggest that the
PRC and RC scales inherently better with the network size
than the stricter models. As shown in Fig. 19, the execution
time under the PRC and RC models relative to the SC model
decreases more compared to the other memory models as the
network size grows. As long as the speedup increases, the
benefits of the relaxed memory models over the SC model also
increase, but when the nature of the problem makes it harder
to exploit the additional parallelism, the benefits of the PRC
and RC models over the SC model saturate as well. However,
problems that scale well, like the B-matrix multiplication and
B-pattern search problems continue to gain more benefits from
the higher level of parallelism that the PRC and RC models
offer compared to the rest of the memory models. Thus, we
conclude that the performance increase of the PRC and RC
models over SC model can be significantly higher than 50%
as observed in the results when the system size is further
increased.

From the experiments, it can also be observed that the
reduction in relative execution times under WC, RC and PRC
models over the SC model is expected to be 3.33 percentage
points approximately for each doubling of core count up to
128-cores. These relaxed memory models could exploit the
increasing parallelism of the larger networks beyond the 64-
cores by reordering and pipelining the memory operations.
Similarly, for the TSO and PSO models Fig. 19 suggests that
this can be projected to 1.0 percentage points for each doubling
of core count up to 128-cores. In general, the performance gain

Fig. 19. Average relative execution time under all applications.

of the relaxed memory models can be even higher than the
experimental values when the system size is further increased.

In the presence of caches and cache coherence protocols,
the extra coherence traffic under a relaxed memory model
could be pipelined in the network and the average latency
of memory transactions might be significantly decreased com-
pared to the strict SC model. However, the exact figure is very
hard to calculate as it depends on several factors like cache
write policy, hit/miss ratio, and the exercised cache coherence
protocols. The execution time of different memory models
would be scaled differently. A relaxed memory model will get
more benefits by overlapping the coherence traffic compared to
the strict SC model. Consequently, the same trend is expected
to be observed in the relative execution times of the relaxed
memory models while using both the cache coherence and
consistency protocols.

VIII. Conclusion

We analyzed the scalability of memory models in the DSM-
based McNoC systems up to 64-cores. These memory models
were realized using a transaction counter and an address stack-
based novel approaches. A comprehensive study of six differ-
ent memory models was presented. The influence of system
optimizations on the memory models was also discussed. The
experimental results showed that under a set of synthetic
workloads, the average execution time for the PRC, RC, WC,
PSO, and TSO models in the 8 × 8 network is reduced by
32.3%, 28.3%, 20.1%, 13.8% and 9.9% over the SC model,
respectively. For the application workloads, as long as the
system size scales up, the execution time under the relaxed
memory models decreases relative to the SC model. It depends
on the scaling of the problem size and how efficiently the PRC
and RC models are utilized compared to the SC model. The
performance gains of the PRC and RC models over the SC
model are expected to be higher than 50% as observed in
the results, when the network size is further increased. The
hardware cost for the relaxed memory models is increased by
less than 4% over the SC model at the processor interface.
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