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ABSTRACT 
In this paper, we present a system-level Congestion-Aware Routing 
(CAR) framework for designing minimal deterministic routing 
algorithms. CAR exploits the peculiarities of the application 
workload to spread the load evenly across the network. To this end, 
we first formulate an optimization problem of minimizing the level 
of congestion in the network and then use the simulated annealing 
heuristic to solve this problem. The proposed framework assures 
deadlock-free routing, even in the networks without virtual 
channels. Experiments with both synthetic and realistic 
workloads show the effectiveness of the CAR framework. Results 
show that maximum sustainable throughput of the network is 
improved by up to 205% for different applications and 
architectures. 

Categories and Subject Descriptors 
C.2.1 [Network Architecture and Design]: Network 
communications 

General Terms 
Algorithms, Design, Performance 

1. INTRODUCTION 

Thanks to high performance and low power budget of ASICs 
(application specific integrated circuits), they have been common 
components in the design of embedded systems-on-chip. Advances 
of semiconductor technology facilitate the integration of 
reconfigurable logic with ASIC modules in embedded systems-on-
chip. Reconfigurable architectures are used as new alternatives for 
implementing a wide range of computationally intensive 
applications, such as DSP, multimedia and computer vision 
applications [1]. In the beginning of the current millennium, 
network-on-chip (NoC) emerged as a standard solution in the on-
chip architectures [7][8]. In network-based systems, the 
performance of the communication infrastructure is critical, as it 
can represent the overall system performance bottleneck. The 
performance of networks depends heavily on the routing algorithm 
effectiveness, since it impacts all network metrics such as latency, 
throughput, and power dissipation.  

 Routing algorithms are generally categorized into deterministic 
and adaptive. A deterministic routing algorithm is oblivious of the 
dynamic network conditions and always provides the same path 
between a given source and destination pair. In contrast, in adaptive  
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routing algorithms, besides source and destination addresses, 
network traffic variation plays an important role for selecting 
channels to forward packets. However, adaptive routing may cause 
packets to arrive out-of-order since they may be routed along 
different paths. The re-order buffers needed at the destination for 
ordering the packets impose large area and power on system [13]. 
Deterministic routers not only are more compact and faster than 
adaptive routers [4], but also guarantee in-order packet delivery. 
Therefore, it is not surprising that designers would like to use 
deterministic routing algorithms in the NoCs which suffer from 
limited silicon resources. However, in deterministic routing a 
packet cannot use alternative paths to avoid congested channels 
along its route; this leads to degraded performance of the 
communication architecture at high levels of network throughput.  

A well-designed routing algorithm utilizes the network 
resources uniformly as much as possible and avoids the congested 
channels, even in the presence of non-uniform traffic patterns, 
which are usual in the embedded systems. In this paper, we 
propose a system-level Congestion-Aware Routing (CAR) 
framework for designing minimal deterministic routing algorithms 
for network-based platforms. Especially, CAR is appropriate for 
reconfigurable embedded systems-on-chip which host several 
applications with high computational requirements and static 
workloads. Before the execution of a new application, the routing 
tables are configured with pre-computed routes, as well as other 
components in the system. After selecting the route and adding it to 
the packet, no further time is needed on routing at the intermediate 
nodes along the path. Due to advantages of table-based routing, it 
is one of the most widely used routing methods for implementing 
deterministic routing algorithm, e.g., IBM SP1 and SP2 [4]. 

To calculate the expected load on various channels in the 
network, CAR uses off-line analysis based on the global 
knowledge of application traffic. The results obtained from 
simulation experiments confirm that the proposed routing 
framework can find efficient routes for various networks and 
workloads.  

The rest of the paper is organized as follows. We start by 
reviewing previous studies in Section 2. The CAR framework is 
proposed in Section 3. Experimental results in Section 4 show that 
our proposed approach can improve the system performance. 
Finally, concluding remarks are given in Section 5. 

2. RELATED WORK 

Turn model for designing partially adaptive routing algorithms 
for mesh and hypercube networks was proposed in [6]. Prohibiting 
minimum number of turns breaks all of the cycles and produces a 
deadlock-free routing algorithm. Turn model was used to develop 
the Odd-Even adaptive routing algorithm for meshes [3]. This 
model restricts the locations where some turns can be taken so that 
deadlock is avoided. In comparison with turn model, the degree of 
routing adaptivity provided by the Odd-Even routing is more even 
for different source-destination pairs. 



DyAD routing scheme, which combines deterministic and 
adaptive routing, is proposed in [9] for NoCs, where the router 
works in deterministic mode when the network is not congested, 
and switches to adaptive mode when the network becomes 
congested. In [17] the authors extend routers of a network to 
measure their load and to send appropriate load information to their 
direct neighbours. The load information is used to decide in which 
direction a packet should be routed to avoid hot-spots. Recently, 
the authors in [14] present APSRA, a methodology to develop 
adaptive routing algorithms for NoCs that are specialized for an 
application or a set of concurrent applications. APSRA exploits the 
application-specific information regarding pairs of cores that 
communicate and other pairs that never communicate in the NoC 
platform to maximize communication adaptivity and performance. 

Since all of these approaches are based on adaptive routing, they 
suffer from out-of-order packet delivery. Our proposed routing 
framework overcomes this problem while it spreads the load more 
evenly across the network. 

Also, an application-aware oblivious routing is proposed in [11] 
that statically determines deadlock-free routes. The authors 
presented a mixed integer-linear programming approach and a 
heuristic approach for producing routes that minimize maximum 
channel load. However, in case of realistic workload, they did not 
study the effect of task mapping on their approach.  

3. CAR FRAMEWORK 

The CAR framework consists of 5 steps as its flowchart is 
shown in Figure 1. At first, we represent the architecture and 
application using topology graph (TG) and communication graph 

(CG), respectively. Then we construct the channel dependency 

graph (CDG) based on TG and CG. In the third step, an acyclic 
CDG is extracted by deleting some edges from CDG to guarantee 
the deadlock freedom. After that, we find all possible shortest paths 
for each flow to create the routing space. Finally, we formulate an 
optimization problem over the routing space and solve it. In the 
following subsections, each step is described in detail. 

 

  

Figure 1. The flowchart of CAR framework 

 
3.1   Model Architecture and Application 

In order to characterize the network performance, a network 
model is essential. As shown in Figure 2, a directed graph, which is 
called topology graph (TG), can represent the topology of network 
architecture. Vertices and edges of TG show nodes and links of the 
network, respectively. Every node in TG contains a core and a 
router. Such a core is a local computing or a storage region. 

An application can be modelled by a graph called 
communication graph (CG). CG is a directed graph, where each 
vertex represents one selected task, and each directed arc represents 
the communication volume from source task to destination task.  

 

3.2   Construct Channel Dependency Graph 
Dally and Seitz simplified designing deadlock-free routing 

algorithms with a proof that an acyclic channel dependency graph 

 

Figure 2. TG of a 4x4 mesh network 

 
(CDG) guarantees deadlock freedom [5]. Each vertex of the CDG 
is a channel in TG. For instance, vertex 01 in Figure 3 corresponds 
to the channel from node 0 to node 1 in Figure 2. There is a 
directed edge from one vertex in CDG to another if a packet is 
permitted to use the second channel in TG immediately after the 
first one. To find the edges of a CDG, we use the Dijkstra’s 

algorithm to find all shortest paths between source and destination 
of any flows in corresponding TG. CDG of a 4x4 mesh network 
(Figure 2) under minimal fully adaptive routing is shown in Figure 
3.a, when any two nodes have the need to communicate such as in 
the uniform traffic pattern.  

 

   

                   (a)                                                (b) 

Figure 3. CDG of 4x4 mesh network for minimal fully adaptive 

routing under (a) uniform and (b) transpose traffic patterns 

 
3.3   Remove Cycles from CDG 

Traditional routing algorithms, such as dimension-order routing 
(DOR) and turn model, extract an acyclic CDG by systematically 
removing some edges from CDG regardless of the traffic pattern. 
This may result in poor performance of routing algorithm due to 
prohibition of unnecessary turns. For instance, as shown in Figure 
3.b, there is no cycle in CDG of 4x4 mesh network under transpose 
traffic pattern, which the node in row i and column j sends packets 
to the node in row j and column i. However, traditional routing 
algorithms conservatively remove some edges from CDG.  

We modify the depth-first-search (dfs) algorithm to find cycles 
in a given CDG. Since we want to remove minimum number of 
edges, we delete an edge from CDG which is shared among more 
cycles. Note that, this edge is removed if the reachability of all 
flows is guaranteed. For example, in a CDG of 4x4 mesh network, 
shown in Figure 3.a, there are 6,982,870 cycles and the edge from 
vertex 40 to vertex 01 is shared among 5,041,173 cycles. Thus by 
removing this edge from CDG, the number of cycles is 
considerably reduced to 1,941,697. These steps are repeated again 
while there is a cycle in CDG. Table 1 shows the numbers of cycles 
found by CAR in CDG of different mesh networks. As it can be 
vividly seen, number of cycles is exponentially grown with the size 
of TG and it takes a long time to find all cycles in the CDG. Hence, 
we find cycles in CDG till certain number of cycles, and then 
remove an edge from CDG which is shared among more cycles.  
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Table1. Number of cycles in CDG of mesh networks 

TG 
Number of cycles in 
corresponding CDG 

Mesh (2x2) 2 

Mesh (2x3) 8 

Mesh (3x3) 292 

Mesh (3x4) 14,232 

Mesh (4x4) 6,982,870 

Mesh (4x5) 3,656,892,444 

 

3.4   Create Routing Space (RS) 
In this step, we apply Dijkstra’s algorithm to the acyclic CDG to 

find all shortest paths between source and destination of flows in 

corresponding TG and create a set of f flows �� � ���,��,… ,���  
where f is the number of all flows in the system. �� � 	
� ,�� ,�� �, 
where  
� and �� are the packet generation rate and the number of 
available shortest paths for flow i, respectively. Also, �� is itself a 
set and includes all �� routes for flow i.  

Usually more than one shortest path is available between two 
nodes 	�� � 1�  in the routing space RS, so it is reasonable to 
choose a path such that the load is evenly spread across the 
network. In the next subsection, we formulate an optimization 
problem over RS to find a suitable route for each flow and then use 
the simulated annealing heuristic to solve this problem. 

 

3.5   Routing Space Exploration 
In this subsection, we define an optimization problem to explore 

the routing space of RS. It is essential to define decision variables 
and objective functions in formulating the optimization problem. 
As previously mentioned, our goal is to select a path for flow i 	1 � � � ��  among ��  available paths. Therefore, we define � � ���, ��,… , ��� as decision variables in the space of RS where ��  refers to a path number for flow i 	1 � �� � ��� . A routing 
algorithm prevents congestion in the network by balancing the load 
over network channels, so the standard deviation of channels 
throughput can be used as a criterion for load balance in the 
network. The more balanced the channel load, the smaller the 
standard deviation of channels throughput. Hence, we consider 
standard deviation of channels throughput as an objective function. 

Assuming the network is not overloaded, the throughput of 
channel c in TG, Tc , can be calculated using the general equation 

 �� � ∑ 
� � �	�, ������                                                               (1) 

where the �	�, �� is a Boolean function and equals 1 if the flow i 
passes through channel c and equals 0 otherwise. Note that we 
assume a deterministic routing algorithm, thus the function of �	�, �� can be predetermined, regardless of topology and routing 
algorithm. After computing ��  for all channels in the TG, the 
standard deviation of channels throughput can be calculated using 
the following equation � � ���∑ 	�� � ��������                                                                    (2) 

where L is the number of channels in the network and ��  is the 
average throughput of all channels. If the load is completely 
balanced over the channels, then � � 0. CAR framework uses the 
simulated annealing heuristic to minimize the objective function 	�� as described briefly in the following.  

The name and inspiration of simulated annealing algorithm 
come from physical annealing technique in metallurgy. To simulate 

the physical annealing process, simulated annealing algorithm will 
randomly choose a neighbour solution to replace the current 

solution. As we mentioned before, � � ���, ��,… , ��� is the set of 

decision variables where �� is the path number for flow i 	1 � �� ����. To choose a neighbour of X, we generate a random number r 
where 1 � ! � �  to choose a flow, and then generate another 
random number ��	
�  where 1 � ��	
� � ��  and ��	
� " ��  to 
choose another path for flow r. The new solution is accepted based 
on an equation that depends on the difference of the objective 
function values between the two states. We follow the Metropolis 
algorithm [2] as the acceptance criterion which accepts all downhill 
moves (from higher value to lower value) and probabilistically 
accepts uphill moves (from lower value to higher value). The 
acceptance of uphill moves allows saving the method from 
becoming stuck at a local minimum. Detailed information about 
simulated annealing approach can be found in [12]. 

4. Experimental Results 

To evaluate the capability of CAR framework, we developed a 
discrete-event simulator that mimics the behaviour of routing 
algorithm in the networks at the flit level. Due to the popularity of 
the mesh network in NoC domain, our analysis focuses on this 
topology but CAR framework can be equally applied for other 
topologies without any change. We compare the performance of 
CAR with DOR which becomes XY routing algorithm in 2D mesh 
networks.  

To achieve a high accuracy in the simulation results, we use the 
batch means method [15] for simulation output analysis. There are 
10 batches and each batch includes 1000 up to 1,000,000 packets 
depending on the workload type, packet injection rate, and network 
size. Statistics gathering was inhibited for the first batch to avoid 
distortions due to the startup transient. The standard deviation of 
latency measurements is less than 1.8% of the mean value. As a 
result, the confidence level and confidence interval of simulation 
results are 0.99 and 0.02, respectively. 

For the sake of comprehensive study, numerous validation 
experiments have been performed for several combinations of 
workload types and network size. In what follows, the capability of 
CAR will be assessed for both synthetic and realistic traffic 
patterns. Since their applications differ starkly in purpose, these 
classes of NoC have substantially different traffic patterns. 

 

4.1   Synthetic Traffic 
Synthetic traffic patterns used in this research include uniform, 

transpose, shuffle, bit-complement, and bit-reversal [4]. After 
developing models describing spatial traffic distributions, we 
should use an appropriate model to model the temporal traffic 
distribution. In the case of synthetic traffics, we use the Poisson 
process for modelling the temporal variation of traffic. It means 
that the time between two successive packet generations in a core 
is distributed exponentially. The Poisson model widely used in 
many performance analysis studies, and there are a large number of 
papers in many application domains that are based on this 
stochastic assumption. 

The average packet latencies in the 4x4 and 8x8 mesh networks 
are plotted against offered load in the network in Figure 4 and 
Figure 5, respectively. We observe that under uniform and bit-
complement traffic patterns CAR converges to DOR, because in 
such traffic patterns the standard deviation of channels throughput 
is minimum for DOR. This result is consistent with other results 
reported in [3][6][9][14]. The main reason is that the DOR 

distributes packets evenly in the long term [6]. Previous works,  
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(c)                                         (d) 

Figure 4. Average packet latency under (a) uniform and bit-

complement, (b) transpose, (c) bit-reversal, and (d) shuffle 
traffic patterns in 4x4 mesh network 

 
 
Odd-Even [3], turn model [6], DyAD [9], and APSRA [14] 
indicate that in the case of uniform traffic, their proposed 
approaches underperform DOR. However, as can be seen in Figure 
4.a and 5.a, our proposed framework has the same performance as 
DOR for different traffic loads. 

Figure 4.b and 4.c compare the latency of DOR and CAR in 4x4 
mesh network under transpose and bit-reversal workloads, 
respectively. It can be vividly seen that CAR considerably 
outperforms DOR. In these cases, CAR can find routes for flows 
such that the standard deviation of channels throughput equals 
zero. This means that the load is completely balanced across the 
network channels. Also, in the case of 8x8 mesh network, CAR has 
better performance than DOR as shown in Figure 5.b and 5.c. 

Figure 4.d and 5.d reveal that under shuffle traffic pattern CAR 
slightly outperforms DOR.  

Table 2 shows the maximum sustainable throughput of the 
network for each workload and for each routing algorithm in 4x4 
and 8x8 mesh networks. It also shows the percentage improvement 
of CAR over DOR and reveals that on average CAR outperforms 
DOR. The maximum load that the network is capable of handling 
using CAR is improved by up to 205%.  

Also, the performance of CAR framework is compared against 
DyAD routing scheme [9] which combines deterministic and 
adaptive routing algorithms. We simulate the uniform and 
transpose workloads on the similar architecture (6x6 mesh 
network) and compare their improvement over DOR. Table 3 
shows the percentage improvement of DyAD and CAR over DOR. 
In case of uniform workload, DyAD underperforms DOR while 
CAR has the same performance as DOR. In case of transpose  
 
Table 2. Improvement in maximum sustainable throughput of 

CAR as compared to DOR for different synthetic workloads 

Workload 
4x4 mesh network 8x8 mesh network 

DOR CAR Impr. DOR CAR Impr. 

Uniform 7.4 7.4 0 15.9 15.9 0 

Transpose 3.8 11.6 205% 7.7 10.3 34% 

Bit-comp. 5.6 5.6 0 8.8 8.8 0 

Bit-rev. 3.8 11.6 205% 7.6 9.0 18% 

Shuffle 6.6 6.9 5% 12.2 13.1 7% 
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(c)                          (d) 

Figure 5. Average packet latency under (a) uniform and bit-

complement, (b) transpose, (c) bit-reversal, and (d) shuffle 
traffic patterns in 8x8 mesh network 

 
traffic pattern, DyAD and CAR give about 62% and 56% 
improvement over DOR, respectively. This means that our 
deterministic routing policy can compete with adaptive routing 
policies (DyAD switches to adaptive mode under high traffic load) 
and meanwhile guarantees in-order packet delivery.  

 
Table 3. Improvement in maximum sustainable throughput of 

DyAD and CAR over DOR 

Workload 
Improvement over DOR 

DyAD CAR 

Uniform  -26% 0 

Transpose  62% 56% 

 
4.2   Realistic Traffic 

In case of realistic traffic, we consider two virtual channels for 
links to show the consistency of proposed framework with multiple 
virtual channel routing. As realistic communication scenarios, we 
consider a generic multimedia system (MMS) and the video object 
plane decoder (VOPD) application. MMS includes an H.263 video 
encoder, an H.263 video decoder, an mp3 audio encoder, and an 
mp3 audio decoder [10]. The communication volume requirements 
of this application are summarized in [10]. VOPD is an application 
used for MPEG-4 video decoding and its communication graph is 
available in [18].  Several studies reported the existence of bursty 
packet injection in the on-chip interconnection networks for 
multimedia traffic [16][19]. Poisson process is not the appropriate 
model in case of bursty traffic; consequently, we used two-state 
Markov modulated process as stochastic traffic generators to model 
the bursty nature of the application traffic [4]. The two states 
represent an “on” and ”off” mode for injection process with 
average communication bandwidth matching the applications’ 
average communication bandwidth. 

Since in such systems, there are various types of cores with 
different bandwidth requirements, placement of tasks on a chip has 
strong effect on the system performance. To find a suitable 
mapping of these applications, we formulate another optimization 
problem to prune the large design space in a short time and then 
again use the simulated annealing heuristic to find a suitable 
mapping vector. 
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Figure 6. Average packet latency of VOPD application for 

three different mapping configurations vs. offered load  
 

An efficient mapping tries to balance load over channels 
(minimizes the standard deviation of channels throughput) and also 
keeps the average hop count as small as possible. However, 
minimizing the standard deviation and minimizing the average hop 
are not always in the same direction. Therefore, to improve load 
balance, we have to increase the average path length [4]. To show 
how these parameters, average hop and standard deviation of 
channels throughput, affect the communication latency, we 
consider three different task mappings of VOPD application to the 
tiles of a 4x4 mesh on-chip network. Then, the system is simulated 
for these mapping configurations and the corresponding average 
packet latency values are plotted against offered load in Figure 6. 
Although the average hop in mapping A (1.76) is about half of the 
average hop in mapping B (3.48), mapping A underperforms 
mapping B. This is due to more balanced load in mapping B (the 
standard deviation of channels throughput in mapping B (0.027) is 
less than the standard deviation in mapping A (0.068)). On the 
other hand, the load in mapping B is more balanced in comparison 
to mapping C. However, due to smaller average hop in mapping C, 
it outperforms mapping B for all levels of network throughput. 
Thus, we define a new criterion named AxD (Average hop x 
standard Deviation) and use it as the objective function in the 
optimization problem of congestion-aware mapping (similar to 
congestion-aware routing).  

Initially, we map task i to node i and then try to minimize the 
AxD through the simulated annealing approach. Figure 7.a shows 
that in the case of MMS application and DOR, for the initial 
mapping M1, AxD equals 0.57 and after a certain number of tries, 
the mapping vector converges to the mapping M4 with AxD = 
0.04. Furthermore, AxD values for mappings M2 and M3, which 
are two local minimum points in simulated annealing process, are 
shown in the figure.  

After the mapping phase, we apply the CAR framework to these 
four mapping vectors. Figure 7.a reveals that in case of mapping 
M1, CAR can significantly reduce the AxD from 0.57 to 0.24. This 
great difference is due to the unbalanced load of DOR. However, 
for more efficient mapping vectors (M2, M3, and M4), we achieve 
less improvement. Specially, in the case of best mapping (M4), 
AxD is reduced insignificantly from 0.0397 to 0.0395. It is 
reasonable that DOR is congestion-aware for the best mapping, 
because during the mapping problem solving process, we fix the 
routing policy to DOR and strive to minimize AxD for this routing 
policy. Figure 7.b shows that the simulation results confirm this 
conclusion. In the case of mapping M1, CAR significantly 
outperforms DOR, but in the case of M4, the latency is the same 
for both DOR and CAR. Likewise, as shown in Figure 7.c and 7.d, 
for the VOPD application, the analysis result is the same as MMS 
application.   

Figure 7.b and 7.d reveals that in case of application-specific 

traffic patterns, the improvement in the performance of routing  

 

              
                (a)                                                        (b) 

 

  
                  (c)                                                     (d) 

Figure 7. (a) The effect of mapping and routing on the 

performance of MMS application, (b) average packet latency 

for different mapping and routing schemes in the case of MMS 

workload, (c) the effect of mapping and routing on the 

performance of VOPD application, (d) average packet latency 

for different mapping and routing schemes in the case of 

VOPD workload  
 
 
schemes highly depends on how the application tasks are mapped 
to the topology. This fact was not considered in the related works 
such as [11]. Also, Table 4 reports the maximum acceptable traffic 
for different mapping vectors under MMS and VOPD workloads. 
The better mapping vector results in smaller improvement in the 
saturation point. 

 
Table 4. Improvement in Maximum Sustainable Throughput of 

CAR as Compared to DOR for Realistic Applications 

Mapping 
MMS application VOPD application 

DOR CAR Impr. DOR CAR Impr. 

M1 1.8 3.6 100% 2.9 4.9 69% 

M2 2.1 3.9 86% 3.5 5.2 49% 

M3 3.2 4.3 34% 5.1 6.4 25% 

M4 4.7 4.7 0 6.7 6.7 0 

 
Nowadays, in embedded systems-on-chip there are several 

different types of cores including DSPs, embedded DRAMs, 
ASICs, and generic processors which their places are fixed on the 
chip. On the other hand, such a system hosts several applications 
with completely different workload. Furthermore, modern 
embedded devices allow users to install applications at run-time, so 
a complete analysis of such systems is not feasible during design 
phase. As a result, it is not feasible to map all applications such that 
the load is balanced for all of them with specific routing algorithm 
and we should balance the load in routing phase.  

In this section we used the CAR framework to find low 
congestion routes in the mesh network. Due to simplicity, 
regularity, and low cost merits of 2D mesh topology, it is the most 
popular one in the field of NoC. However, for large and 3D NoCs, 
which will be popular in the future, the communication in mesh 
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architecture takes a long time. In the next subsection we use CAR 
to find deadlock-free paths in an arbitrary topology. 

 

4.3   Find Routes in an Arbitrary Topology 
To show the capability of CAR framework to find deadlock-free 

routes in an arbitrary topology, we consider the topology shown in 
Figure 8.a. CAR reports that under uniform traffic pattern there are 
2 cycles in the corresponding CDG and by prohibiting turns 52 to 
21 and 87 to 73 (shown in Figure 8.b) the deadlock-freedom is 
guaranteed.  

 

     
                              (a)                                                 (b) 

Figure 8. (a) A custom topology and (b) prohibited turns 
 
Table 5 shows the routing table for node 0 of the topology in 

Figure 8.a. Each route in the table specifies a path from node 0 to a 
given destination as channels name. SE, SW, and EJ specify South 
East, South West, and ejection channels, respectively. To route a 
packet, the routing table is indexed by destination address to look 
up the pre-computed route by CAR. This route is then added to the 
packet. Since there are 7 channels in this network (E, S, NE, NW, 
SE, SW, and EJ), they can be encoded as 3-bit binary numbers. 
Also, there are techniques to reduce the size of routing tables 
[4][14]. 

 
Table 5. Routing table for node 0 of topology in Figure 8.a. 

dst. route   dst. route 

0   No packet  5   SE, SE, EJ 

1   SW, EJ  6   SW, SW, SW, EJ 

2   SE, EJ  7   SE, SW, SW, EJ 

3   SW, SW, EJ  8   SW, SE, SE, EJ 

4   SW, SE, EJ  9   SE, SE, SE, EJ 

5. Conclusion 

On-chip packet routing is extremely crucial because it heavily 
affects performance and power.  This calls for a great need of 
routing optimization. However, due to the diverse connectivity 
enabled by a network and the interferences in sharing network 
buffers and links, determining good routing paths, which are 
minimal and deadlock free for traffic flows, is nontrivial. In this 
paper, we have addressed the congestion-aware routing problem. 
With the analysis technique, we first estimate the congestion level 
in the network, and then embed this analysis technique into the 
loop of optimizing routing paths so as to quickly find deterministic 
routing paths for all traffic flows while minimizing the congestion 
level. Our experiments with both synthetic and realistic workloads 
show that we can extract high quality solutions with small 
computational time.  

The proposed framework is appropriate for reconfigurable 
embedded systems-on-chip which run several applications with 
regular and repetitive computations on large set of data, e.g., 

multimedia and computer vision applications. CAR can not only 
design minimal and deterministic routing, but also can implement 
non-minimal and deadlock-free fully adaptive routing without 
virtual channels in arbitrary topology. 
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