
A Framework for Designing Congestion-Aware
Deterministic Routing

Abbas Eslami Kiasari, Axel Jantsch, and Zhonghai Lu

Royal Institute of Technology (KTH), Sweden
{kiasari, axel, zhonghai}@kth.se

ABSTRACT
In this paper, we present a system-level Congestion-Aware Routing
(CAR) framework for designing minimal deterministic routing
algorithms. CAR exploits the peculiarities of the application
workload to spread the load evenly across the network. To this end,
we first formulate an optimization problem of minimizing the level
of congestion in the network and then use the simulated annealing
heuristic to solve this problem. The proposed framework assures
deadlock-free routing, even in the networks without virtual
channels. Experiments with both synthetic and realistic
workloads show the effectiveness of the CAR framework. Results
show that maximum sustainable throughput of the network is
improved by up to 205% for different applications and
architectures.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
communications

General Terms
Algorithms, Design, Performance

1. INTRODUCTION

Thanks to high performance and low power budget of ASICs
(application specific integrated circuits), they have been common
components in the design of embedded systems-on-chip. Advances
of semiconductor technology facilitate the integration of
reconfigurable logic with ASIC modules in embedded systems-on-
chip. Reconfigurable architectures are used as new alternatives for
implementing a wide range of computationally intensive
applications, such as DSP, multimedia and computer vision
applications [1]. In the beginning of the current millennium,
network-on-chip (NoC) emerged as a standard solution in the on-
chip architectures [7][8]. In network-based systems, the
performance of the communication infrastructure is critical, as it
can represent the overall system performance bottleneck. The
performance of networks depends heavily on the routing algorithm
effectiveness, since it impacts all network metrics such as latency,
throughput, and power dissipation.

 Routing algorithms are generally categorized into deterministic
and adaptive. A deterministic routing algorithm is oblivious of the
dynamic network conditions and always provides the same path
between a given source and destination pair. In contrast, in adaptive

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NoCArc '10, December 4, 2010, Atlanta, Georgia, USA
Copyright © 2010 ACM 978-1-4503-0397-2... $10.00

routing algorithms, besides source and destination addresses,
network traffic variation plays an important role for selecting
channels to forward packets. However, adaptive routing may cause
packets to arrive out-of-order since they may be routed along
different paths. The re-order buffers needed at the destination for
ordering the packets impose large area and power on system [13].
Deterministic routers not only are more compact and faster than
adaptive routers [4], but also guarantee in-order packet delivery.
Therefore, it is not surprising that designers would like to use
deterministic routing algorithms in the NoCs which suffer from
limited silicon resources. However, in deterministic routing a
packet cannot use alternative paths to avoid congested channels
along its route; this leads to degraded performance of the
communication architecture at high levels of network throughput.

A well-designed routing algorithm utilizes the network
resources uniformly as much as possible and avoids the congested
channels, even in the presence of non-uniform traffic patterns,
which are usual in the embedded systems. In this paper, we
propose a system-level Congestion-Aware Routing (CAR)
framework for designing minimal deterministic routing algorithms
for network-based platforms. Especially, CAR is appropriate for
reconfigurable embedded systems-on-chip which host several
applications with high computational requirements and static
workloads. Before the execution of a new application, the routing
tables are configured with pre-computed routes, as well as other
components in the system. After selecting the route and adding it to
the packet, no further time is needed on routing at the intermediate
nodes along the path. Due to advantages of table-based routing, it
is one of the most widely used routing methods for implementing
deterministic routing algorithm, e.g., IBM SP1 and SP2 [4].

To calculate the expected load on various channels in the
network, CAR uses off-line analysis based on the global
knowledge of application traffic. The results obtained from
simulation experiments confirm that the proposed routing
framework can find efficient routes for various networks and
workloads.

The rest of the paper is organized as follows. We start by
reviewing previous studies in Section 2. The CAR framework is
proposed in Section 3. Experimental results in Section 4 show that
our proposed approach can improve the system performance.
Finally, concluding remarks are given in Section 5.

2. RELATED WORK

Turn model for designing partially adaptive routing algorithms
for mesh and hypercube networks was proposed in [6]. Prohibiting
minimum number of turns breaks all of the cycles and produces a
deadlock-free routing algorithm. Turn model was used to develop
the Odd-Even adaptive routing algorithm for meshes [3]. This
model restricts the locations where some turns can be taken so that
deadlock is avoided. In comparison with turn model, the degree of
routing adaptivity provided by the Odd-Even routing is more even
for different source-destination pairs.

DyAD routing scheme, which combines deterministic and
adaptive routing, is proposed in [9] for NoCs, where the router
works in deterministic mode when the network is not congested,
and switches to adaptive mode when the network becomes
congested. In [17] the authors extend routers of a network to
measure their load and to send appropriate load information to their
direct neighbours. The load information is used to decide in which
direction a packet should be routed to avoid hot-spots. Recently,
the authors in [14] present APSRA, a methodology to develop
adaptive routing algorithms for NoCs that are specialized for an
application or a set of concurrent applications. APSRA exploits the
application-specific information regarding pairs of cores that
communicate and other pairs that never communicate in the NoC
platform to maximize communication adaptivity and performance.

Since all of these approaches are based on adaptive routing, they
suffer from out-of-order packet delivery. Our proposed routing
framework overcomes this problem while it spreads the load more
evenly across the network.

Also, an application-aware oblivious routing is proposed in [11]
that statically determines deadlock-free routes. The authors
presented a mixed integer-linear programming approach and a
heuristic approach for producing routes that minimize maximum
channel load. However, in case of realistic workload, they did not
study the effect of task mapping on their approach.

3. CAR FRAMEWORK

The CAR framework consists of 5 steps as its flowchart is
shown in Figure 1. At first, we represent the architecture and
application using topology graph (TG) and communication graph

(CG), respectively. Then we construct the channel dependency

graph (CDG) based on TG and CG. In the third step, an acyclic
CDG is extracted by deleting some edges from CDG to guarantee
the deadlock freedom. After that, we find all possible shortest paths
for each flow to create the routing space. Finally, we formulate an
optimization problem over the routing space and solve it. In the
following subsections, each step is described in detail.

Figure 1. The flowchart of CAR framework

3.1 Model Architecture and Application

In order to characterize the network performance, a network
model is essential. As shown in Figure 2, a directed graph, which is
called topology graph (TG), can represent the topology of network
architecture. Vertices and edges of TG show nodes and links of the
network, respectively. Every node in TG contains a core and a
router. Such a core is a local computing or a storage region.

An application can be modelled by a graph called
communication graph (CG). CG is a directed graph, where each
vertex represents one selected task, and each directed arc represents
the communication volume from source task to destination task.

3.2 Construct Channel Dependency Graph
Dally and Seitz simplified designing deadlock-free routing

algorithms with a proof that an acyclic channel dependency graph

Figure 2. TG of a 4x4 mesh network

(CDG) guarantees deadlock freedom [5]. Each vertex of the CDG
is a channel in TG. For instance, vertex 01 in Figure 3 corresponds
to the channel from node 0 to node 1 in Figure 2. There is a
directed edge from one vertex in CDG to another if a packet is
permitted to use the second channel in TG immediately after the
first one. To find the edges of a CDG, we use the Dijkstra’s

algorithm to find all shortest paths between source and destination
of any flows in corresponding TG. CDG of a 4x4 mesh network
(Figure 2) under minimal fully adaptive routing is shown in Figure
3.a, when any two nodes have the need to communicate such as in
the uniform traffic pattern.

 (a) (b)

Figure 3. CDG of 4x4 mesh network for minimal fully adaptive

routing under (a) uniform and (b) transpose traffic patterns

3.3 Remove Cycles from CDG

Traditional routing algorithms, such as dimension-order routing
(DOR) and turn model, extract an acyclic CDG by systematically
removing some edges from CDG regardless of the traffic pattern.
This may result in poor performance of routing algorithm due to
prohibition of unnecessary turns. For instance, as shown in Figure
3.b, there is no cycle in CDG of 4x4 mesh network under transpose
traffic pattern, which the node in row i and column j sends packets
to the node in row j and column i. However, traditional routing
algorithms conservatively remove some edges from CDG.

We modify the depth-first-search (dfs) algorithm to find cycles
in a given CDG. Since we want to remove minimum number of
edges, we delete an edge from CDG which is shared among more
cycles. Note that, this edge is removed if the reachability of all
flows is guaranteed. For example, in a CDG of 4x4 mesh network,
shown in Figure 3.a, there are 6,982,870 cycles and the edge from
vertex 40 to vertex 01 is shared among 5,041,173 cycles. Thus by
removing this edge from CDG, the number of cycles is
considerably reduced to 1,941,697. These steps are repeated again
while there is a cycle in CDG. Table 1 shows the numbers of cycles
found by CAR in CDG of different mesh networks. As it can be
vividly seen, number of cycles is exponentially grown with the size
of TG and it takes a long time to find all cycles in the CDG. Hence,
we find cycles in CDG till certain number of cycles, and then
remove an edge from CDG which is shared among more cycles.

Construct CDG
Model architecture

and application

Remove cycles
from CDG

Create
routing space

Routing tables
construction

Routing space
exploration

1 2

34

5

0 1 2 3

4 5 6 7

8 9 A B

C D E F

45

10

5104

54

01

1540

56

21

62

65

12

26

67

32

73

76

23

37

89

9548

98

5984

9A

A6

A9

6A

AB

B7

BA

7B

CD

D98C

DC

9DC8

DE

EA

ED

AE

EF

FB

FE

BF

45

10

5104

54

01

1540

56

21

62

65

12

26

67

32

73

76

23

37

89

9548

98

5984

9A

A6

A9

6A

AB

B7

BA

7B

CD

D98C

DC

9DC8

DE

EA

ED

AE

EF

FB

FE

BF

Table1. Number of cycles in CDG of mesh networks

TG
Number of cycles in
corresponding CDG

Mesh (2x2) 2

Mesh (2x3) 8

Mesh (3x3) 292

Mesh (3x4) 14,232

Mesh (4x4) 6,982,870

Mesh (4x5) 3,656,892,444

3.4 Create Routing Space (RS)
In this step, we apply Dijkstra’s algorithm to the acyclic CDG to

find all shortest paths between source and destination of flows in

corresponding TG and create a set of f flows �� � ���,��,… ,���
where f is the number of all flows in the system. �� � 	
� ,�� ,�� �,
where
� and �� are the packet generation rate and the number of
available shortest paths for flow i, respectively. Also, �� is itself a
set and includes all �� routes for flow i.

Usually more than one shortest path is available between two
nodes 	�� � 1� in the routing space RS, so it is reasonable to
choose a path such that the load is evenly spread across the
network. In the next subsection, we formulate an optimization
problem over RS to find a suitable route for each flow and then use
the simulated annealing heuristic to solve this problem.

3.5 Routing Space Exploration
In this subsection, we define an optimization problem to explore

the routing space of RS. It is essential to define decision variables
and objective functions in formulating the optimization problem.
As previously mentioned, our goal is to select a path for flow i 	1 � � � �� among �� available paths. Therefore, we define � � ���, ��,… , ��� as decision variables in the space of RS where �� refers to a path number for flow i 	1 � �� � ��� . A routing
algorithm prevents congestion in the network by balancing the load
over network channels, so the standard deviation of channels
throughput can be used as a criterion for load balance in the
network. The more balanced the channel load, the smaller the
standard deviation of channels throughput. Hence, we consider
standard deviation of channels throughput as an objective function.

Assuming the network is not overloaded, the throughput of
channel c in TG, Tc , can be calculated using the general equation

 �� � ∑
� � �	�, ������ (1)

where the �	�, �� is a Boolean function and equals 1 if the flow i
passes through channel c and equals 0 otherwise. Note that we
assume a deterministic routing algorithm, thus the function of �	�, �� can be predetermined, regardless of topology and routing
algorithm. After computing �� for all channels in the TG, the
standard deviation of channels throughput can be calculated using
the following equation � � ���∑ 	�� � �������� (2)

where L is the number of channels in the network and �� is the
average throughput of all channels. If the load is completely
balanced over the channels, then � � 0. CAR framework uses the
simulated annealing heuristic to minimize the objective function 	�� as described briefly in the following.

The name and inspiration of simulated annealing algorithm
come from physical annealing technique in metallurgy. To simulate

the physical annealing process, simulated annealing algorithm will
randomly choose a neighbour solution to replace the current

solution. As we mentioned before, � � ���, ��,… , ��� is the set of

decision variables where �� is the path number for flow i 	1 � �� ����. To choose a neighbour of X, we generate a random number r
where 1 � ! � � to choose a flow, and then generate another
random number ��	
� where 1 � ��	
� � �� and ��	
� " �� to
choose another path for flow r. The new solution is accepted based
on an equation that depends on the difference of the objective
function values between the two states. We follow the Metropolis
algorithm [2] as the acceptance criterion which accepts all downhill
moves (from higher value to lower value) and probabilistically
accepts uphill moves (from lower value to higher value). The
acceptance of uphill moves allows saving the method from
becoming stuck at a local minimum. Detailed information about
simulated annealing approach can be found in [12].

4. Experimental Results

To evaluate the capability of CAR framework, we developed a
discrete-event simulator that mimics the behaviour of routing
algorithm in the networks at the flit level. Due to the popularity of
the mesh network in NoC domain, our analysis focuses on this
topology but CAR framework can be equally applied for other
topologies without any change. We compare the performance of
CAR with DOR which becomes XY routing algorithm in 2D mesh
networks.

To achieve a high accuracy in the simulation results, we use the
batch means method [15] for simulation output analysis. There are
10 batches and each batch includes 1000 up to 1,000,000 packets
depending on the workload type, packet injection rate, and network
size. Statistics gathering was inhibited for the first batch to avoid
distortions due to the startup transient. The standard deviation of
latency measurements is less than 1.8% of the mean value. As a
result, the confidence level and confidence interval of simulation
results are 0.99 and 0.02, respectively.

For the sake of comprehensive study, numerous validation
experiments have been performed for several combinations of
workload types and network size. In what follows, the capability of
CAR will be assessed for both synthetic and realistic traffic
patterns. Since their applications differ starkly in purpose, these
classes of NoC have substantially different traffic patterns.

4.1 Synthetic Traffic
Synthetic traffic patterns used in this research include uniform,

transpose, shuffle, bit-complement, and bit-reversal [4]. After
developing models describing spatial traffic distributions, we
should use an appropriate model to model the temporal traffic
distribution. In the case of synthetic traffics, we use the Poisson
process for modelling the temporal variation of traffic. It means
that the time between two successive packet generations in a core
is distributed exponentially. The Poisson model widely used in
many performance analysis studies, and there are a large number of
papers in many application domains that are based on this
stochastic assumption.

The average packet latencies in the 4x4 and 8x8 mesh networks
are plotted against offered load in the network in Figure 4 and
Figure 5, respectively. We observe that under uniform and bit-
complement traffic patterns CAR converges to DOR, because in
such traffic patterns the standard deviation of channels throughput
is minimum for DOR. This result is consistent with other results
reported in [3][6][9][14]. The main reason is that the DOR

distributes packets evenly in the long term [6]. Previous works,

(a) (b)

(c) (d)

Figure 4. Average packet latency under (a) uniform and bit-

complement, (b) transpose, (c) bit-reversal, and (d) shuffle
traffic patterns in 4x4 mesh network

Odd-Even [3], turn model [6], DyAD [9], and APSRA [14]
indicate that in the case of uniform traffic, their proposed
approaches underperform DOR. However, as can be seen in Figure
4.a and 5.a, our proposed framework has the same performance as
DOR for different traffic loads.

Figure 4.b and 4.c compare the latency of DOR and CAR in 4x4
mesh network under transpose and bit-reversal workloads,
respectively. It can be vividly seen that CAR considerably
outperforms DOR. In these cases, CAR can find routes for flows
such that the standard deviation of channels throughput equals
zero. This means that the load is completely balanced across the
network channels. Also, in the case of 8x8 mesh network, CAR has
better performance than DOR as shown in Figure 5.b and 5.c.

Figure 4.d and 5.d reveal that under shuffle traffic pattern CAR
slightly outperforms DOR.

Table 2 shows the maximum sustainable throughput of the
network for each workload and for each routing algorithm in 4x4
and 8x8 mesh networks. It also shows the percentage improvement
of CAR over DOR and reveals that on average CAR outperforms
DOR. The maximum load that the network is capable of handling
using CAR is improved by up to 205%.

Also, the performance of CAR framework is compared against
DyAD routing scheme [9] which combines deterministic and
adaptive routing algorithms. We simulate the uniform and
transpose workloads on the similar architecture (6x6 mesh
network) and compare their improvement over DOR. Table 3
shows the percentage improvement of DyAD and CAR over DOR.
In case of uniform workload, DyAD underperforms DOR while
CAR has the same performance as DOR. In case of transpose

Table 2. Improvement in maximum sustainable throughput of

CAR as compared to DOR for different synthetic workloads

Workload
4x4 mesh network 8x8 mesh network

DOR CAR Impr. DOR CAR Impr.

Uniform 7.4 7.4 0 15.9 15.9 0

Transpose 3.8 11.6 205% 7.7 10.3 34%

Bit-comp. 5.6 5.6 0 8.8 8.8 0

Bit-rev. 3.8 11.6 205% 7.6 9.0 18%

Shuffle 6.6 6.9 5% 12.2 13.1 7%

(a) (b)

(c) (d)

Figure 5. Average packet latency under (a) uniform and bit-

complement, (b) transpose, (c) bit-reversal, and (d) shuffle
traffic patterns in 8x8 mesh network

traffic pattern, DyAD and CAR give about 62% and 56%
improvement over DOR, respectively. This means that our
deterministic routing policy can compete with adaptive routing
policies (DyAD switches to adaptive mode under high traffic load)
and meanwhile guarantees in-order packet delivery.

Table 3. Improvement in maximum sustainable throughput of

DyAD and CAR over DOR

Workload
Improvement over DOR

DyAD CAR

Uniform -26% 0

Transpose 62% 56%

4.2 Realistic Traffic

In case of realistic traffic, we consider two virtual channels for
links to show the consistency of proposed framework with multiple
virtual channel routing. As realistic communication scenarios, we
consider a generic multimedia system (MMS) and the video object
plane decoder (VOPD) application. MMS includes an H.263 video
encoder, an H.263 video decoder, an mp3 audio encoder, and an
mp3 audio decoder [10]. The communication volume requirements
of this application are summarized in [10]. VOPD is an application
used for MPEG-4 video decoding and its communication graph is
available in [18]. Several studies reported the existence of bursty
packet injection in the on-chip interconnection networks for
multimedia traffic [16][19]. Poisson process is not the appropriate
model in case of bursty traffic; consequently, we used two-state
Markov modulated process as stochastic traffic generators to model
the bursty nature of the application traffic [4]. The two states
represent an “on” and ”off” mode for injection process with
average communication bandwidth matching the applications’
average communication bandwidth.

Since in such systems, there are various types of cores with
different bandwidth requirements, placement of tasks on a chip has
strong effect on the system performance. To find a suitable
mapping of these applications, we formulate another optimization
problem to prune the large design space in a short time and then
again use the simulated annealing heuristic to find a suitable
mapping vector.

30

90

150

210

270

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Uniform & Bit Complement Traffic Patterns

Bit complement - DOR

Bit complement - CAR

Uniform - DOR

Uniform - CAR

30

90

150

210

270

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Transpose Traffic Pattern

DOR

CAR

30

90

150

210

270

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Bit Reversal Traffic Pattern

DOR

CAR

30

90

150

210

270

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Shuffle Traffic Pattern

DOR

CAR

50

100

150

200

250

300

0 5 10 15

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Uniform & Bit Complement Traffic Patterns

Bit complement - DOR

Bit complement - CAR

Uniform - DOR

Uniform - CAR

50

100

150

200

250

300

0 2 4 6 8 10

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Transpose Traffic Pattern

DOR

CAR

50

100

150

200

250

300

0 3 6 9

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Bit Reversal Traffic Pattern

DOR

CAR

30

120

210

300

0 3 6 9 12

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

Shuffle Traffic Pattern

DOR

CAR

Figure 6. Average packet latency of VOPD application for

three different mapping configurations vs. offered load

An efficient mapping tries to balance load over channels
(minimizes the standard deviation of channels throughput) and also
keeps the average hop count as small as possible. However,
minimizing the standard deviation and minimizing the average hop
are not always in the same direction. Therefore, to improve load
balance, we have to increase the average path length [4]. To show
how these parameters, average hop and standard deviation of
channels throughput, affect the communication latency, we
consider three different task mappings of VOPD application to the
tiles of a 4x4 mesh on-chip network. Then, the system is simulated
for these mapping configurations and the corresponding average
packet latency values are plotted against offered load in Figure 6.
Although the average hop in mapping A (1.76) is about half of the
average hop in mapping B (3.48), mapping A underperforms
mapping B. This is due to more balanced load in mapping B (the
standard deviation of channels throughput in mapping B (0.027) is
less than the standard deviation in mapping A (0.068)). On the
other hand, the load in mapping B is more balanced in comparison
to mapping C. However, due to smaller average hop in mapping C,
it outperforms mapping B for all levels of network throughput.
Thus, we define a new criterion named AxD (Average hop x
standard Deviation) and use it as the objective function in the
optimization problem of congestion-aware mapping (similar to
congestion-aware routing).

Initially, we map task i to node i and then try to minimize the
AxD through the simulated annealing approach. Figure 7.a shows
that in the case of MMS application and DOR, for the initial
mapping M1, AxD equals 0.57 and after a certain number of tries,
the mapping vector converges to the mapping M4 with AxD =
0.04. Furthermore, AxD values for mappings M2 and M3, which
are two local minimum points in simulated annealing process, are
shown in the figure.

After the mapping phase, we apply the CAR framework to these
four mapping vectors. Figure 7.a reveals that in case of mapping
M1, CAR can significantly reduce the AxD from 0.57 to 0.24. This
great difference is due to the unbalanced load of DOR. However,
for more efficient mapping vectors (M2, M3, and M4), we achieve
less improvement. Specially, in the case of best mapping (M4),
AxD is reduced insignificantly from 0.0397 to 0.0395. It is
reasonable that DOR is congestion-aware for the best mapping,
because during the mapping problem solving process, we fix the
routing policy to DOR and strive to minimize AxD for this routing
policy. Figure 7.b shows that the simulation results confirm this
conclusion. In the case of mapping M1, CAR significantly
outperforms DOR, but in the case of M4, the latency is the same
for both DOR and CAR. Likewise, as shown in Figure 7.c and 7.d,
for the VOPD application, the analysis result is the same as MMS
application.

Figure 7.b and 7.d reveals that in case of application-specific

traffic patterns, the improvement in the performance of routing

 (a) (b)

 (c) (d)

Figure 7. (a) The effect of mapping and routing on the

performance of MMS application, (b) average packet latency

for different mapping and routing schemes in the case of MMS

workload, (c) the effect of mapping and routing on the

performance of VOPD application, (d) average packet latency

for different mapping and routing schemes in the case of

VOPD workload

schemes highly depends on how the application tasks are mapped
to the topology. This fact was not considered in the related works
such as [11]. Also, Table 4 reports the maximum acceptable traffic
for different mapping vectors under MMS and VOPD workloads.
The better mapping vector results in smaller improvement in the
saturation point.

Table 4. Improvement in Maximum Sustainable Throughput of

CAR as Compared to DOR for Realistic Applications

Mapping
MMS application VOPD application

DOR CAR Impr. DOR CAR Impr.

M1 1.8 3.6 100% 2.9 4.9 69%

M2 2.1 3.9 86% 3.5 5.2 49%

M3 3.2 4.3 34% 5.1 6.4 25%

M4 4.7 4.7 0 6.7 6.7 0

Nowadays, in embedded systems-on-chip there are several

different types of cores including DSPs, embedded DRAMs,
ASICs, and generic processors which their places are fixed on the
chip. On the other hand, such a system hosts several applications
with completely different workload. Furthermore, modern
embedded devices allow users to install applications at run-time, so
a complete analysis of such systems is not feasible during design
phase. As a result, it is not feasible to map all applications such that
the load is balanced for all of them with specific routing algorithm
and we should balance the load in routing phase.

In this section we used the CAR framework to find low
congestion routes in the mesh network. Due to simplicity,
regularity, and low cost merits of 2D mesh topology, it is the most
popular one in the field of NoC. However, for large and 3D NoCs,
which will be popular in the future, the communication in mesh

30

60

90

120

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c
le

s
)

Offered traffic (flits/cycle)

VOPD Application

Mapping A

Avg = 1.76
Dev = 0.068
AxD = 0.120

Mapping B

Avg = 3.48
Dev = 0.027
AxD = 0.094

Mapping C

Avg = 1.22
Dev = 0.040
AxD = 0.049

DOR

CAR

0

0.2

0.4

0.6

M1
M2

M3
M4

0.57

0.42

0.23

0.04

0.24

0.20

0.16

0.04

A
x
D

Mapping & Routing Effect on Performance

30

60

90

120

0 1 2 3 4 5

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

MMS Application

M1, DOR
M1, CAR
M4, DOR
M4, CAR

AxD = 0.57

AxD = 0.24

AxD = 0.04

DOR
CAR

0

0.1

0.2

0.3

0.4

M1
M2

M3
M4

0.36

0.24

0.15

0.05

0.17

0.10
0.10

0.05

A
x
D

Mapping & Routing Effect on Performance

30

60

90

120

0 1 2 3 4 5 6 7

L
a

te
n

c
y
 (

c
y
c

le
s

)

Offered traffic (flits/cycle)

VOPD Application

M1, DOR
M1, CAR
M4, DOR
M4, CAR

AxD = 0.36

AxD = 0.17

AxD = 0.05

architecture takes a long time. In the next subsection we use CAR
to find deadlock-free paths in an arbitrary topology.

4.3 Find Routes in an Arbitrary Topology
To show the capability of CAR framework to find deadlock-free

routes in an arbitrary topology, we consider the topology shown in
Figure 8.a. CAR reports that under uniform traffic pattern there are
2 cycles in the corresponding CDG and by prohibiting turns 52 to
21 and 87 to 73 (shown in Figure 8.b) the deadlock-freedom is
guaranteed.

 (a) (b)

Figure 8. (a) A custom topology and (b) prohibited turns

Table 5 shows the routing table for node 0 of the topology in

Figure 8.a. Each route in the table specifies a path from node 0 to a
given destination as channels name. SE, SW, and EJ specify South
East, South West, and ejection channels, respectively. To route a
packet, the routing table is indexed by destination address to look
up the pre-computed route by CAR. This route is then added to the
packet. Since there are 7 channels in this network (E, S, NE, NW,
SE, SW, and EJ), they can be encoded as 3-bit binary numbers.
Also, there are techniques to reduce the size of routing tables
[4][14].

Table 5. Routing table for node 0 of topology in Figure 8.a.

dst. route dst. route

0 No packet 5 SE, SE, EJ

1 SW, EJ 6 SW, SW, SW, EJ

2 SE, EJ 7 SE, SW, SW, EJ

3 SW, SW, EJ 8 SW, SE, SE, EJ

4 SW, SE, EJ 9 SE, SE, SE, EJ

5. Conclusion

On-chip packet routing is extremely crucial because it heavily
affects performance and power. This calls for a great need of
routing optimization. However, due to the diverse connectivity
enabled by a network and the interferences in sharing network
buffers and links, determining good routing paths, which are
minimal and deadlock free for traffic flows, is nontrivial. In this
paper, we have addressed the congestion-aware routing problem.
With the analysis technique, we first estimate the congestion level
in the network, and then embed this analysis technique into the
loop of optimizing routing paths so as to quickly find deterministic
routing paths for all traffic flows while minimizing the congestion
level. Our experiments with both synthetic and realistic workloads
show that we can extract high quality solutions with small
computational time.

The proposed framework is appropriate for reconfigurable
embedded systems-on-chip which run several applications with
regular and repetitive computations on large set of data, e.g.,

multimedia and computer vision applications. CAR can not only
design minimal and deterministic routing, but also can implement
non-minimal and deadlock-free fully adaptive routing without
virtual channels in arbitrary topology.

6. Reference

[1] K. Bondalapati and V.K. Prasanna, “Reconfigurable
Computing Systems,” Proceedings of the IEEE, 90(7):1201-
1217, 2002.

[2] O. Catoni, “Metropolis, Simulated Annealing, and Iterated
Energy Transformation Algorithms, Theory and
Experiments,” Journal of Complexity 12(4):595-623, 1996.

[3] G.-M. Chiu, “The Odd-Even Turn Model for Adaptive
Routing,” IEEE Transactions on Parallel and Distributed

Systems, 11(7):729-738, 2000.
[4] W. Dally and B. Towles, Principles and Practices of

Interconnection Networks, Morgan Kaufmann Publishers Inc.,
First edition, 2004.

[5] W.J. Dally and C.L. Seitz, “Deadlock-Free Message Routing
in Multiprocessor Interconnection Networks,” IEEE

Transactions on Computers, 36(5):547-553, 1987.
[6] C.J. Glass and L.M. Ni, “The Turn Model for Adaptive

Routing,” Journal of the Association for Computing

Machinery, 41(5):874-902, 1994.
[7] P. Guerrier and A. Greiner, “A Generic Architecture for on-

chip Packet-Switched Interconnections,” Proceedings of the

Design, Automation, and Test in Europe, pp. 250-256, 2000.
[8] A. Hemani, et. al., “Network on a Chip: An Architecture for

Billion Transistor Era,” Proceedings of the IEEE NorChip,
pp. 166-173, 2000.

[9] J. Hu and R. Marculescu, “DyAD - Smart Routing for
Networks-on-Chip,” Proceedings of the Design Automation

Conference, pp. 260-263, 2004.
[10] J. Hu and R. Marculescu, “Energy- and Performance-Aware

Mapping for Regular NoC Architectures,” IEEE

Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 24(4):551-562, 2005.
[11] M. A. Kinsy, et. al., “Application-Aware Deadlock-free Obli-

vious Routing,” Proceedings of the ISCA, pp. 208-219, 2009.
[12] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization

by Simulated Annealing,” Science, 220(4598):671–680, 1983.
[13] S. Murali, et. al., “Analysis of Error Recovery Schemes for

Networks on Chips”, IEEE Design and Test of Computers,
22(5): 434-442, 2005.

[14] M. Palesi, et. al., “Application Specific Routing Algorithms
for Networks on Chip,” IEEE Transactions on Parallel and

Distributed Systems, 20(3):316-330, 2009.
[15] K. Pawlikowski, “Steady-State Simulation of Queueing

Processes: A Survey of Problems and Solutions,” ACM

Computing Surveys, 22(2):123-170, 1990.
[16] V. Soteriou, H. Wang, L.-S. Peh, “A Statistical Traffic Model

for On-Chip Interconnection Networks,” Proceedings of the

MASCOTS, pp. 104-116, 2006.
[17] W. Trumler, et. al., “Self-optimized Routing in a Network-

on-a-Chip,” IFIP World Computer Congress, pp. 199-212,
2008.

[18] E.B. van der Tol and E.G. Jaspers, “Mapping of MPEG-4
Decoding on a Flexible Architecture Platform,” SPIE, vol.
4674, pp. 1-13, 2002.

[19] G. Varatkar and R. Marculescu, “Traffic Analysis for On-
chip Networks Design of Multimedia Applications,” Procee-
dings of the Design Automation Conference, pp. 795-800, 2002.

0

1 2

3 4 5

7 8 96

0

1 2

3 4 5

7 8 96

