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Abstract

We have presented a formal set of synchronization com-
ponents called synchronizers for refining synchronous com-
munication onto HW/SW codesign architectures. Such
an architecture imposes asynchronous communication be-
tween HW-HW, SW-SW and HW-SW components. The syn-
chronizers enable local synchronization, thus satisfy the
synchronization requirement of a typical IP core. In this
paper, we present their implementations in HW, SW and
HW/SW, as well as their application. To validate our con-
cepts, we conduct a case study on a Nios FPGA that com-
prises a processor, memory and custom logic. The final
HW/SW implementation achieves equivalent performance
to pure HW implementation. Our prototyping experience
suggests that the synchronizers can be standardized as li-
brary modules and effectively separate the design of com-
putation from that of communication.

1 Introduction
Many System-on-Chip (SoC) designs start with a func-

tional specification that assumes synchronous Model of
Computation (MoC) [2, 5]. This design style is attractive
since it allows one to separate timing from function. The
designer can concentrate on the design of the system func-
tionality without being distracted by low-level communica-
tion details. This also facilitates verification, which is a key
activity at the system level. Later, the implementation de-
tails and design constraints can be gradually filled in and
fulfilled by refinement.

To deal with increasing SoC design complexity, IP reuse
is a key [6]. By using validated components, time-to-market
can be shortened; design productivity can be increased; de-
sign quality can be better guaranteed. Communication re-
finement, which is a crucial step in a refinement-based de-
sign flow, must address IP reuse. However, given a huge
number of IP components, which can be either hardware
(HW) or software (SW), integrating them in a whole system
presents challenges. First, most HW IP modules are syn-

chronous and probably run with a different speed. Compos-
ing these synchronous components together has to bridge
and arbitrate different clock domains. Second, refining
communication between software IP modules must observe
data and control dependency. Not only functionally correct,
a refined system implementation must be efficient. Third,
communication between HW and SW components needs
to explicitly or implicitly pass data and control. While
such problems as refining synchronous communication onto
asynchronous architectures can be addressed by ad hoc ap-
proaches, providing a systematic approach is essential to
maintain functional correctness, enable automation, and to
facilitate IP reuse.

We have proposed a set of well-defined synchronizers to
glue synchronous components on asynchronous communi-
cation architectures [12]. In this paper, we focus on their
implementation and application. The remainder of the pa-
per is structured as follows. The related work is briefed in
Section 2. We introduce the synchronous MoC and a digital
equalizer model in Section 3. The concept of synchronizers
is summarized in Section 4, followed by the implementa-
tions of the synchronizers in HW, SW and HW/SW in Sec-
tion 5. In Section 6, we present the case study prototyped
on an FPGA. Finally we conclude the paper in Section 7.

2 Related Work

Based on the separation of communication from com-
putation and function from architecture, a large body of
work on communication refinement exists in the literature.
Through the Virtual Component Interfaces (VCI) of the
VSI Alliance [10], the COSY-VCC design flow [3] sup-
ports communication refinement from specification, to per-
formance estimation and to implementation. IPSIM [7] de-
veloped on top of SystemC 3.0 supports an object-oriented
methodology and establishes two inter-module communi-
cation layers. The message box layer concerns generic and
system-specific communication, while the driver layer im-
plements higher level application dependent communica-
tions. The SpecC methodology defines four levels of ab-
straction, namely at the specification, architecture, commu-



nication and implementation level, and the refinement trans-
formations between them [8].

Unlike the above works, our work starts with a system
model specified using synchronous MoC. The Latency In-
sensitive Design (LID) [4] assumes synchronous modeling
paradigm as ours. It targets synchronized HW design when
wires interconnecting IP blocks experience indefinite laten-
cies. However, LID considers synchronized HW, therefore
providing global clock and state. Our work targets archi-
tectures where neither global clock nor state exists. Sec-
ond, LID is not applicable to parallel software architectures
in which communication is offered by an operating system.
Our approach is applicable to pure SW (single-threaded and
multi-threaded) and mixed HW/SW in addition to pure HW.

3 Specification in Synchronous MoC

3.1 Functional system specification

The synchronous MoC [2, 5] is based on an elegant and
simple mathematical model, the perfect synchrony hypoth-
esis, i.e., both computation and communication take no ob-
servable time. It has been the ground of synchronous lan-
guages such as Esterel, Signal, Argos and Lustre.

A system is modeled as a set of concurrent communicat-
ing processes via signals. Processes use ideal data types and
assume infinite buffers. Signals are ordered sequences of
events. Each event has a time slot as a slot to convey data.
If the data contains useful value, the event is present and
called a token; otherwise, the event is absent and modeled
as a � representing a clock tick. Each signal can be related
to the time slots of another signal in an unambiguous way.
The output events of a process occur in the same time slot as
the corresponding input events. Moreover, they are instan-
taneously distributed in the entire system and are available
to all other processes in the same slot. Receiving processes
in turn consume the events and emit output events again in
the same time slot. A signal can thus be viewed as being
transported on an ideal communication channel which has
no delay for any event data types (unlimited bandwidth).

Two events are synchronous if they have the same tag.
Two signals are synchronous if each event in one signal
is synchronous with an event in the other signal and vice
versa. A process is synchronous if every signal of the pro-
cess is synchronous with every other signal of the process.
A system is synchronous if all processes are synchronous
locally and globally (synchronous with signals of other pro-
cesses). A system specified in the synchronous paradigm is
a synchronous system. For feedback loops, the perfect syn-
chrony leads to cyclic dependency between an input signal
and an output signal. If such cyclic communication is al-
lowed in system behavior, some mechanism must be used
to resolve it [9]. One possibility is to introduce a delay in
the output signal. This breaks the deadlock, and the system
model becomes deterministic, i.e., given the same input se-

quences of events, it generates the same output sequences
of events.

3.2 The digital equalizer model
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Figure 1. The digital equalizer.

As an example, we show the specification of an equal-
izer, whose functionality is to regulate the bass and treble
components of an audio stream

−−−−−→
AudioIn in response to the

user input through the four button signals, namely,
−−−−→
BassUp,−−−−→

BassDn,
−−−−−−→
TrebleUp and

−−−−−−→
TrebleDn. The four signals are col-

lectively called
−−−−−→
Buttons signal. In addition, it has a control

loop that prevents the bass level from exceeding a prede-
fined threshold in order not to damage the speakers.

The digital equalizer is structurally decomposed into
four functional blocks or subsystems shown in Figure 1. Its
function is specified by the following set of equations:

AudioOut = Equalizer(Buttons,AudioIn)
where
AudioOut = AF(Levels,AudioIn)
Levels = BC(Buttons, init : Overrides)
DistortionFlag = AA(AudioOut)
Overrides = DC(DistortionFlag)
init = �

(1)
The first equation represents the system layer. It takes two
input signals

−−−−−→
Buttons and

−−−−−→
AudioIn as arguments, generating

the output signal
−−−−−−→
AudioOut. The evaluation of this equation

calls for the evaluation of the next four equations that de-
scribe the subsystem layer. The final equation sets the initial
value of the signal

−−−−−−→
Overrides (

−−−→
Overr) to �, which is needed

to resolve the cyclic dependency due to the feedback loop.
The Audio Filter (AF) subsystem, as depicted in Figure 2,
handles the bass and treble components of the digital audio
input in response to the amplification level from the Button
Control (BC). The Audio Analyzer (AA) analyzes the audio
output signal and checks if the bass exceeds a predefined
threshold using a Fast Fourier Transform (FFT) component
to determine the frequency spectrum. The Distortion Con-
trol (DC) determines if a violation occurs. It generates the
corresponding commands for the Button Control. The But-
ton Control monitors the button inputs and the override sig-
nal from the Distortion Control, in turn passing the amplifi-
cation level to the Audio Filter.
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Figure 2. The Audio Filter’s internal structure

4 The Concept of Synchronizers

4.1 The synchronization problem

In the system model all signals of processes are syn-
chronous. A process expects to receive and emit events con-
taining values in a regular interval. However, when imple-
menting the model in HW and SW, it is not always possible
to guarantee this. There is no ideal communication. In-
stead the communication channels are typically bandwidth-
limited due to resource sharing, and may have a stochastic
delay. Since the correctness of a functional model is based
on the ideal communication, any deviation from the perfect
communication could lead to inconsistent behavior. Any
implementation of a functional model must therefore main-
tain synchronization consistency, i.e., the synchronization
semantics must be preserved. This is achieved through well-
defined semantic-preserving communication refinement.

4.2 Process synchronization property

The perfect synchrony may overly specify a system due
to globally synchronizing all processes and signals. In fact,
whether or not the input signals of a process must be syn-
chronous, i.e., the synchronization property of a process,
is subject to the evaluation condition of the process, i.e.,
the condition(s) to evaluate its input events. Because of
the tight synchronization in the model, some processes may
be over specified, limiting the implementation alternatives.
During the refinement, the designer(s) must inspect and de-
termine the synchronization property of the processes.

In [12], we use firing rules to discuss the synchroniza-
tion property of synchronous processes. For a synchronous
process with n input signals, PI is a set of N input patterns,
PI = {I1, I2, · · · , IN}. The input patterns of a synchronous
process describe their firing rules, which give the conditions
of evaluating input events at each event cycle . I i (i ∈ [1,N])
constitutes a set of event patterns, one for each of n input
signals, Ii = {Ii,1, Ii,2, · · · , Ii,n}. A pattern Ii, j contains only
one element that can be either a wildcard ∗ or an absent
value �, where ∗ does not include �. Based on the def-
inition of firing rules, we propose four classes of process
synchronization properties as follows:

• Strict synchronization. All the input events of a process must
be present before the process evaluates and consumes them.
The only rule that the process can fire is PI = {I1} where

I1 = {[∗], [∗], · · · , [∗]}.

• Nonstrict synchronization. Not all the input events of a pro-
cess are absent before the process fires. The process can not
fire with the pattern I = {[�], [�], · · ·, [�]}. This class also
includes processes that can not fire if one or more particular
input events are �.

• Strong synchronization. All the input events of a process
must be either present or absent in order to fire the process.
The process has only two firing rules PI = {I1, I2}, where
I1 = {[∗], [∗], · · · , [∗]} and I2 = {[�], [�], · · · , [�]}.

• Weak synchronization. The process can fire with any pos-
sible input patterns. For a 2-input process, its firing rules
are PI = {I1, I2, I3, I4} where I1 = {[∗], [∗]}, I2 = {[�], [�]},
I3 = {[∗], [�]} and I4 = {[�], [∗]}.

We can identify processes with a strict, strong, and weak
synchronization property in the equalizer (Fig. 1 and 2).
The BassFilter (s0 and s1) and TrebleFilter (s0 and s2) have
a strict synchronization. Both filters are composed of a FIR
filter and an amplifier. The FIR filter is a sequential pro-
cess specified as an FSM. Its state transition is sensitive to
timing, thus a � value in an audio stream can change the val-
ues of its output sequence. Meanwhile, the amplifier must
have an amplification level. An � value makes the ampli-
fier undefined. The Sum process (s3, s4 and s5) has a strong
synchronization. It is a combinational process and thus tol-
erable to events with a � value. When it receives� events, it
will output � events. However, the three events of s3, s4 and
s5 must be synchronized before being processed since they
represent the low, medium and high frequency components
of the same audio sample. The Distortion Control and But-
ton Control processes generate amplification levels for the
audio filters. They have a weak synchronization. They can
fire even when either or both of their input events are absent
(�) since pressing buttons happens irregularly and the bass
level surpassing the threshold occurs aperiodically.

4.3 Achieving synchronization consistency

Apparently, for processes with a strict or strong synchro-
nization, their synchronization properties can not be satis-
fied if any of their input signals passes through a nonde-
terministic channel since the delay via such a channel is
stochastic. As a consequence, the signals of processes can
not be globally synchronous. However, they can be locally
synchronized by using adapters to satisfy their synchroniza-
tion properties. To achieve strong synchronization, we use
a synchronizer process sync; to achieve strict synchroniza-
tion, we use three processes, sync, deSync and addSync.
We use a two-input process to illustrate these processes in
Fig. 3. A synchronizer process sync aligns the tokens of
its input events, as shown in Fig. 3a. It does not change
the time structure of the input signals. A desynchronizer
deSync removes the absent values, as shown in Fig. 3b.
All its input signals must have the same token pattern, re-
sembling the output signals of the sync process. Removing
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Figure 3. Processes for synchronization

absent values implies that the process is stalled. The desyn-
chronizer changes the timing structure of the input signals,
which must be recovered in order to prevent from incurring
unexpected behavior of other processes that use the timing
information. An add-synchronizer addSync adds the absent
values to recover the timing structure, as shown in Fig. 3c.
It must be used in relation to a deSync process. If the input
events of the deSync is a token, the addSync reads one event
from its internal buffers for each output signal; otherwise,
it outputs an � event. As can be seen, the two processes
deSync and addSync are used as a pair to assist processes to
fulfill strictness.

For feedback loops, we use a relax synchronizer to gen-
erate synchronization events whenever necessary, as shown
in Figure 3d. If the input event is a token, it outputs the
token; otherwise, a token x0 is emitted. The exact value of
x0 is application dependent. In this way the loop is virtu-
ally broken, and the system throughput can be greatly en-
hanced. Relaxing synchronization is a design decision to
preserve synchronization semantics. It leads to value dis-
crepancy between the specification and the refined model.
This value discrepancy must be acceptable by the system
requirements. Otherwise, we can not use the relax.

Next, we present the synchronizers implementations in
HW, SW and mixed HW/SW. As we shall see, the parame-
terizable implementations may be standardized in a library.

5 HW and SW Implementations

5.1 Synchronizers in HW

5.1.1 The deSync and addSync components

As we discussed in Section 4.3, the deSync component takes
stochastically arriving events coming from a channel and
feeds them into a synchronous process. It is used in a pair

with an addSync component, as illustrated in Figure 4.
The deSync process determines when the synchronous

process can be started and then fire it. One way is to raise a
start signal connected to the process which will let the pro-
cess execute until the output data is computed (start-done
method). Another way is to have a clk enable signal that
triggers the process execution as long as the signal is raised
(clock gating method). To detect whether the resulting out-
put data is produced the process can either have a done out-
put signal, or it could always produce data a certain number
of cycles after it has fired.
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Figure 4. A deSync using start-done method.

Using the different signaling schemes results in different
implementations of the deSync component. Figure 4 shows
the input and output signals of the deSync using the start-
done method. When the addSync is ready to store data it
raises add rdy which enables the deSync to fire the process
by raising start. Once the process completes its compu-
tation, the result is presented on result and done is raised.
The deSync component will then forward the done signal to
the addSync component via result done which stores and
forwards the result. The reason why done is not connected
directly to the addSync is that done might stay raised until
the process is fired again. If done was connected directly
to addSync it would be unable to differentiate a halted pro-
cess from one that produces data every cycle. Using the
clock gating method, the deSync implementation will inter-
act with a process that is pipelined such that it takes new
input data and produces new output data every cycle [13].
Both deSync implementations share the same input and out-
put ports.

The addSync component is attached to the output of a
synchronous process (Figure 4). In addition to recovering
timing information, the addSync has two primary functions:
store the output data of the synchronous process, and send
a signal to the deSync when it is able to receive more data.

5.1.2 The sync component

The sync component synchronizes events from two or more
stochastic channels. On the input channels, events can ar-
rive independently of the other channels. But on the output
channels, events are always sent out at the same time.

Conceptually the sync is connected as shown in Figure
3a. It has as many input channels as output channels. While
implementing the sync, its output signals must never use
separate channels if one of the channels can be faster than
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the other. This could make the events sent on the chan-
nels unsynchronized again reversing the effect of the sync
component. Although this can be handled by using deSync
components, it is better to merge the output signals of the
sync and send them in parallel. This will also ensure that the
events never get unsynchronized again, we could even send
them over a stochastic channel before being handled by a
deSync component. Figure 5 shows an example with the bit
width of signals marked, where ’+2’ is the data out avail
and data in rdy signals.

The signaling methods can work in a system in which
events in different parts of the system may travel with a dif-
ferent speed. To support multiple clock domains, we only
need to place a clock domain bridge, for example, a buffer,
on the border between two domains. It receives events using
one clock and sends events using the other [13].

5.2 Synchronizers in SW

While mapping a system model in pure software, the
problem of maintaining synchronization consistency essen-
tially turns into a dependent scheduling problem, because
the execution of processes requires the token availability
that is the pre-condition to fire a process. It is not nec-
essarily to design specific software components to imple-
ment synchronizers. Instead an intelligent scheduler, which
checks the conditions to fire a process and determines the
firing sequence, implicitly implements the synchronizers.

In a single-thread environment, process execution must
be serialized. It is therefore mandatory to compute a sched-
ule. Such a schedule may be computed during compile-
time or run-time. For the equalizer, at the system layer we
can statically schedule the four parallel subsystem compo-
nents, leading to a PASS (Periodic Admissible Sequential
Schedule) as PASS(Equalizer) = {BC,AF,AA,DC}, where
the Button Control should run first considering the initial
token init on the override signal. For each individual pro-
cess, we can further schedule its internal processes with
finer granularity [11].

In a multi-threaded environment with the operating sys-
tem support, process execution is virtually parallelized.
Both dynamic and static scheduling methods can be used to
compute a schedule and perform memory requirement anal-
ysis [1]. A static method generally costs less overhead but
also less flexible. There are applications for which a PAPS
(Periodic Admissible Parallel Schedule) may be computed
off-line. But for most cases, a dynamic scheduler has to
conditionally schedule the processes.

5.3 Synchronizers for mixed HW/SW

In a mixed HW/SW environment, the synchronizers can
be implemented with interface components plus a sched-
uler. The interface components are a hardware compo-
nent which enables a HW process to communicate with a
SW process via, for instance, a shared bus, and vice versa.
Specifically, a HwSw component receives events from a HW
channel and sends it to a SW process; a SwHw component
receives the result from a SW process and sends it to a
HW channel. Data are sent via the bus through write and
read transfers to the addresses of the interface components
(memory-mapped I/O). Both polling and interrupt methods
can be used to signal if the data is available to be accessed.
In addition, a scheduler has to serialize process execution
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Figure 6. Mixed HW and SW processes.

for single-thread execution or parallelize process execution
for multi-thread execution, and meanwhile resolves the syn-
chronization requirement of processes.

Figure 6 shows an example of a mixture of HW and SW
processes. To serialize the system we use a combination
of static and dynamic serialization. P1 and P2 can be stati-
cally serialized within P as PASS(P)= {P1,P2} , while both
P and P3 would be dynamically serialized and fired by the
scheduler. The holder component stores an event until it
can be picked up by P3. It decouples the execution of P3

from P. The scheduler is implemented in SW and runs as
the main program loop. It is responsible for calling all other
functions by looping though all top-level software processes
and checking if they are able to fire. As soon as one pro-
cess has data available on all input HwSw components and
all output SwHw components are able to accept data, the
scheduler will call the function implementing the process.
The resulting scheduler code is sketched as follows:

t ypede f v o l a t i l e s t r u c t { i n t v a l ; i n t s e t ;
} u s r s y n c d a t a ;
s t r u c t u s r s y n c d a t a h o l d e r ={0 , 0} ;
i n t P f u n c ( i n t i n v a l ){

re turn P2 func ( P1 func ( i n v a l ) ) ;
}
vo id r u n s c h e d u l e r ( ){

whi le ( ! s t o p s c h e d u l e r ( ) ) {
i f ( P1 in−>s e t && ! h o l d e r−>s e t ) {

h o l d e r−>v a l = P f u n c ( P1 in−>v a l ) ;
h o l d e r−>s e t =1;}

i f ( P3 in−>s e t && h o l d e r−>s e t && ! P3 ou t−>s e t ){
P3 ou t−>v a l = P3 func ( h o l d e r−>va l , P3−>v a l ) ;
h o l d e r−>s e t =0;}}}



6 Prototyping on NIOS FPGA

6.1 The synchronizer-based design flow
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1. Determine process sync. property

2. Instantiate synchronizers

System model

3. Optimize synchronizers and absents

Figure 7. Synchronizer-based design flow

Figure 7 illustrates the synchronizer-based design flow.
A system is first partitioned into hardware and software pro-
cesses. The processes are computational processes. They
are designed into hardware and software components, re-
spectively, by, for example, reusing IP cores or customiza-
tion. This design of computation can be developed in par-
allel with that of communication, which consists of three
steps:

1. Determine the synchronization property of processes.
This is to identify whether a process has a strict, non-
strict, strong or weak synchronization requirement ac-
cording to the synchronization classification by de-
signers.

2. Instantiate synchronizers. After the synchronization
property of processes is identified, the instantiation of
synchronizers from a library is straightforward. To
wrap a strict process, we use three synchronizers: a
sync, a deSync and an addSync. For a strong process,
we use a sync synchronizer.

3. Optimize synchronizers and absents (�). Synchroniz-
ers can be used at a different level of process granu-
larity. The same type of synchronizers may be merged
to reduce overhead. Moreover, for feedback loops, the
relax may be used to enhance the system throughput.
Dealing with absent, which involves the analysis of
system dependency on timing information, is also an
optimization step. The optimization of absents and re-
laxed synchronization is design decision. It must be
used without violating system requirements.
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Figure 8. The equalizer with synchronizers.

In the following, we describe the prototyping of the
equalizer example on a Nios FPGA [14] according to the
design flow.

6.2 The mapped equalizer

We have prototyped the equalizer on an Altera Stratix
FPGA [14], which is configured to comprise a Nios pro-
cessor, memory and configurable logic. It uses Avalon bus
interconnect.

We first conduct an intuitive partitioning. Both the Au-
dio Filter and Audio Analyzer contain relatively complex
calculations. The Audio Filter contains a large number of
multipliers in the FIR filters and the Audio Analyzer uses
an FFT (256 points) transformation. We therefore choose
to implement them in HW. The Distortion Control and But-
ton Control processes contain simple operations that can be
efficiently implemented in SW. These computational com-
ponents are designed independently of communication.

After the computation blocks are designed, we assem-
bled them together by inserting synchronizers into the sys-
tem. The resulting system is shown in Figure 8. The deSync
and addSync components are added before and after all
strict processes. Two sync components wrap the amplifiers,
and one sync wraps the Sum (+) process. The HwSw and
SwHw components are placed surrounding the two software
processes. As we discussed in Section 4.3, we use a relax
component to optimize the feedback loop guarding from
overloading the bass. We insert a relax between the But-
ton Control and the Audio Filter and use a ’safe’ level for
the bass. As a safe level we reuse whatever level was used
last time. This causes a small delay between that the Au-
dio Analyzer detects that the bass is too high and that the
bass volume is lowered. Since the feedback loop is so short
the delay should be small enough and tolerable. The relax
component will also insert the initial event to ensure the
loop works. The f ork components split one input stream
into two or multiple identical output streams.



6.3 Further optimization and results

Dealing with absent (�) events is nontrivial. An � event
does not contain a useful value but it carries timing informa-
tion. For combinational processes, the timing information
has no effect. However, to preserve synchronization seman-
tics, it must be transmitted just like a token. To distinguish
it from a token, we can send it as a special value or use a
flag bit in the data. However, if the rate of � events is too
high, too much communication overhead will be incurred.
One optimization is aimed to reduce the rate of the � event.
The Audio Analyzer sends events to the Distortion Control.
255 out of every 256 events will contain the � value. Since
the Distortion Control will emit an event with the � value
every time it receives such an event, the same will hold true
for the

−−−→
Overr signal. However, the Button Control will not

emit � events when � events are received, but it will emit
an event with the same value as the last time. The relax
component after the Button Control would repeat the same
values anyway if no event was received. This means that
we can skip sending the first 255 � events from the Audio
Analyzer and reduce the rate of events on the feedback loop
to 1/256th of the rate through the Audio Filter. As an op-
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Figure 9. The optimized Audio Filter.

timization to reduce cost, we can merge the three pairs of
deSync and addSync into one pair. The Audio Filter is then
simplified as shown in Figure 9.

The final HW/SW implementation achieves an average
processing time of 19 cycles per 12-bit sample, which is the
processing time of the FIR process (16 taps). This implies
that the performance is equivalent to pure hardware imple-
mentation because, even if the system had been designed
using pure HW, its performance still would have been lim-
ited by the same FIR process. The implementation con-
sumes about 7000 logical elements, of which approximately
520 (7.4%) counts for the synchronizers (deSync, addSync,
sync and relax).

7 Conclusion and Future Work
We have proposed a compact set of synchronization

components to systematically glue synchronous compo-
nents or IP blocks on asynchronous implementation archi-
tectures. They are used to maintain synchronization consis-
tency from specification to implementation. We validated
the concept and implementations of the synchronizers with

an equalizer in an FPGA with mixed HW and SW. Our ex-
perience in the prototype suggests that using the synchro-
nizers enables us to decouple the design of computation
from communication. The insertion of the synchronizers
is straightforward, and the resulting system is built correct-
by-construction. Besides, their implementation overhead is
small, enabling efficient design.

Our future work is to automate the synchronizer-based
design flow. We are building more synchronizer implemen-
tations in the library for different application scenarios, for
example, different bus width and clock rates of IP cores and
different communication protocols between hardware and
software. The process synchronization property may be an-
notated by designers. Alternatively, it may be embedded in
a system specification if written in the pattern-match style
[11], and therefore can be automatically extracted. For the
optimization, heuristic algorithms may be developed.

References
[1] S. S. Battacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis

From Dataflow Graphs. Kluwer Academic Publishers, 1996.
[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs, P. L. Guer-

nic, and R. D. Simone. The synchronous languages 12 years later.
Proceedings of The IEEE, 91(1):64–83, January 2003.

[3] J.-Y. Brunel, W. Kruijtzer, H. Kenter, F. Petrot, L. Pasquier,
E. de Kock, and W. Smits. COSY communication IP’s. In Proceed-
ings of the 37th Design Automation Conference, June 2000.

[4] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli.
Theory of latency-insensitive design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
20(9):1059–1076, September 2001.

[5] L. P. Carloni and A. L. Sangiovanni-Vincentelli. On-chip commu-
nication design: roadblocks and avenues. In Proceedings of the
1st IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, 2003.

[6] H. Chang, L. Cooke, M. Hunt, G. Martin, A. McNelly, and L. Todd.
Surviving the SOC Revolution: A Guide to Platform-Based Design.
Springer, 2000.

[7] M. Coppola, S. Curaba, M. Grammatikakis, and G. Maruccia. IP-
SIM: SystemC 3.0 enhancements for communication refinement. In
Proceedings of Design Automation and Test in Europe, 2003.
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