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Abstract—In the context of Industry 4.0, constantly evolving
shop floors generate the need for a highly adaptive and au-
tonomous automation system with lean maintenance, minimum
downtime, maximum reliability, and resilience. Future Manu-
facturing Execution Systems (MESs) will be more complex and
dynamic as well as distributed physically and logically. This
makes it very difficult, if not impossible, for the conventional
centralized architectures to effectively control these vibrant
Cyber-Physical Production Systems (CPPSs). To address these
issues, we propose Self-Aware health Monitoring and Bio-inspired
coordination for distributed Automation systems (SAMBA), an
architecture which tackles these challenges. SAMBA increases the
ability of the system to intelligently adapt to rapidly changing
environment and conditions of future CPPSs.

Index Terms—Self-awareness, Monitoring, Health Monitoring,
Distributed Cyber-Physical Systems, Bio-inspired, Cognitive Sys-
tem, Automation Systems, System Architecture.

I. INTRODUCTION

Modern industrial systems are complex systems that inte-
grate distributed physical, software and, network components,
i.e., Cyber-Physical Production Systems (CPPSs). Continuous
advances in all three areas of hardware, software, and commu-
nication increase the expectations on the performance of these
systems in terms of flexibility, reliability, and responsiveness.
To address the requirements, there is a shift towards distributed
design solutions that give more autonomy to field level con-
trollers. This interest is further reflected in the decentralized
decision design principles of Industry 4.0 [1]. To maintain the
operability of such heterogeneous and dynamically evolving
systems, there is a need for intelligent devices with self-
monitoring and self-maintenance properties [2]. Autonomous
self-organization systems, common in real life organisms, are
hence a focal point in Bio-Inspired Artificial Intelligence [3].

A major challenge in distributed industrial systems is to
cope with the distributed nature of events and the lack of cen-
tral interventions, in a dynamic environment with constantly
increasing volume of interconnected devices [2]. The growing
complexity makes the maintenance of a model that captures
the system dynamics unfeasible [4]. Therefore, the application
of model-based monitoring techniques is also not a suitable
solution [5]. In addition to that, real-time constraints generate
the need for fast, coordinated diagnostics and decision-making
for quick detection and handling of events and anomalies dur-
ing the operation. Cognitive systems, inspired by the method

of processing information by human, can process information
efficiently in higher levels of abstractions while they learn to
adapt their behavior to the dynamics of the environment [6].

In this work, we propose an architecture for supervision
of distributed, dynamic, and complex CPPSs. The proposed
system is a community of individual Autonomous Cooper-
ating Objects (ACOs). Each ACO in the system learns the
specifics of its environment locally and makes decisions to
pursue its own goals regarding behavior and performance.
Further, each entity is only aware of its individual goals
whereas altogether the system pursues the global objectives
which are not represented explicitly in any individual entity.
The architecture considers self-aware local data analysis and
cognitive decision-making to detect changes, anomalies, and
unexpected events during the operation, to adapt accordingly.
Through the mitigation of errors, it reduces costs imposed by
downtime and maintenance interventions.

In the rest of this paper, we first review the state of the
art in the areas relevant to our approach, i.e., autonomous
monitoring, cognitive systems and distributed clustering. In
Section III, we explain how these methods are integrated into
the Self-Aware health Monitoring and Bio-inspired coordina-
tion for distributed Automation systems (SAMBA) architec-
ture and present the modules of the solution and their main
functionality. Next, we go through two exemplary scenarios
with anomalies and elaborate the system behavior for handling
these events in Section IV. Finally, we discuss potential
benefits of the proposed architecture and draw our conclusions.

II. STATE OF THE ART

There is a strong need for today’s automation systems to
become smart, where smart is defined by extended function-
ality, multi-functionality, self-diagnosis, and reconfigurability
[7]. Smart applications in this context are usually systems with
distributed intelligence. However, the controllers normally use
a legacy or proprietary hardware and software environment
[8], which increases the complexity of reconfiguration. In sub-
systems within the smart applications, several processes are
performed in parallel, which further increase the overall com-
plexity of the system. This also makes software engineering
more difficult because there is a strong dependency on vendors
[9].



Among recently developed platforms Guang et al. [10],
[11] have pursued self-monitoring and adaptation as first-
class citizens in their systems. To that end, they have devised
a general, agent-based architecture and design methodology,
namely HAMSoC. Sarma et al. [12], [13] take the view that
self-awareness is dependent on monitoring, measuring various
kinds of data and working on virtual sensing through process-
ing existing hardware measurement data. Upon their platform,
a sophisticated, self-aware system is based. Hoffmann and
co-workers have developed SEEC [14], a general framework
for self-awareness using an observe-decide-act paradigm. The
system cyclically monitors key features, applies a control and
decision algorithm, and deploys appropriate actions to adapt to
changes in the environment and its own state. Awareness may
also emerge in cooperating systems of systems (SoS). Preden
and coworkers [15], [16] have studied distributed surveil-
lance systems and assign particular importance to the role
of attention and context awareness in sensing and processing
data. They believe that these properties facilitate the efficient
operation of distributed sensing systems.

A challenge of software design is to design a decision-
making module that is able to respond to different types of
inputs with different sequences of actions. “Cognition can
be viewed as the process through which the system achieves
robust, adaptive, anticipatory, autonomous behavior, entailing
perception and action” [17]. In a technical application, the
functionality of a cognitive system can be broken down to a
map between situations and corresponding actions that satisfy
goals [18]. Because they are inspired by biological systems,
their natural application is in robots like SOAR [19] and
BDI [20]. Some of other applications are virtual actors in
simulators like ICARUS [21], TAC-Air-Soar [19] and BDI
[22]. The US Navy also uses cognitive systems, e.g., the LIDA
architecture [23] to manage jobs for sailors. The system offers
jobs depending on the sailor’s preferences, the Navy’s policies,
the needs of the tasks and their priorities. The cognitive model
SiMA [24] mimics the human psyche by providing functions
that generate human behavior. Unfortunately, among the many
of the known cognitive architectures, most of them have never
left the laboratory. An attempt to do this is made in the project
KORE [25], which applies the SiMA model to a generic
human-inspired control system that learns from experience and
generates rule-based control strategies for building automation.
The application of KORE serves as a starting point for the
decision-making module in SAMBA.

One of the major challenges in distributed industrial systems
is the provision of a global overview that reflects the over-
all system objectives without compromising the autonomous
behavior of system components [26], [27], [28]. A relevant
approach to distributed industrial automation is the PROSA
architecture [29]. It addresses the global overview problem
via dynamic clustering of tasks that can be resolved more
efficiently from a central control point. For a particular prob-
lem, it assigns a temporary mediator with a limited scope of
the control functionality, [30], [31]. While dynamic clustering
algorithms are still very uncommon in industrial systems, they

have been used extensively in ad-hoc wireless networks [32]
mostly for optimizing the routing protocol [33] with energy
consumption and delay as main objective functions. Interest-
ingly, in search for adaptive, scalable, and robust solutions
a substantial body of work has linked clustering and routing
in wireless sensor networks with concepts based on swarm
intelligence [34]. However, what all of these solutions have
in common is introducing a central point of control. The
proposed solution aims to avoid this by introducing local goal
propagation instead of assigning a hierarchy.

III. PROPOSED ARCHITECTURE

This section describes a high-level overview of the proposed
architecture for self-aware health monitoring in distributed
CPPS and some of its functionalities.

A. Definitions

In the rest of this paper following terms are used which
we define them here: component refers to sensors, actuators,
and other similar soft/hardware parts in a device. Entity refers
to a set of components (hardware and software). Autonomous
Cooperating Object (ACO) refers to the entity which has (and
can independently complete) a task concretely defined in the
production process [35]. An ACO processes the data from
its components, controls its components, performs problem
mitigation regarding its task, and deals with other ACOs
through negotiation. There is often a one to one correlation
between entities and the ACO logic added by SAMBA. Human
refers to a human being (e.g., operator) in the industrial
systems. System refers to a set of entities and, if applicable,
humans. Product Object refers to a manipulated object, not
belonging to any entity in the system, which consists of parts
or the entirety of the final product of the system.

B. System Architecture

An entity of the system has a specific functionality in the
production process; it includes hardware parts, a control unit
and a logical unit which is often encapsulated as an ACO.
The ACO interacts with the environment through the hardware
parts, i.e., its sensors and actuators, and provides the set-
points to the controller for regulating the behavior of the entity
locally. As a result, the global system behavior emerges from
the local decisions of these distributed entities.

The general architecture of an entity is illustrated in Fig. 1.
The main components of the ACO are the operation module,
Self-Aware Health Monitoring (SAHM), internal manager and,
external manager. The role of the operation module is to
transfer the sensed data to the SAHM and the internal manager.
The SAHM detects and diagnoses faults and failures in the
system. When such events occur, the internal manager uses
appropriate reasoning to find and execute the best policy for
the detected errors. If this policy involves other ACOs in
the cluster, the external manager negotiates with them in this
regard; otherwise, it informs them about relevant changes.

During the system operation, the operation module con-
sistently updates the ACO with information from its local



Fig. 1. General Architecture of an entity.

environment. It shares the data not only with the SAHM
and the internal manager of its entity but also with other re-
questing ACOs (indirectly and through external manager). The
SAHM monitors the health status of the ACO by processing
information from the operation module, and if necessary, by
requesting information from other ACOs to interpret the local
information. This module is working independently from the
internal manager, which is the decision-making unit of the
ACO. The internal manager receives the requested abstracted
data and the health status from the SAHM, and a list of
available resources and the requests of other ACOs through
the external manager; it evaluates the goals and chooses the
actions that maximize the chances of fulfilling its goals. Also,
if an error is detected by the SAHM, it reports it to the
logger and, if human intervention is necessary, it notifies the
operator of the system (user). Finally, the external manager
is responsible for responding to requests from the internal
manager and the SAHM, and for establishing connections
with the other ACOs of the cluster. It also keeps a list of
external resources (other ACOs) in the cluster which can help
the operation. Therefore, it is aware of the existence of its
neighbors, their types and their order in the process. The
purpose of each subsystem in the architecture is discussed in
more detail in rest of this section.

1) Operation Module: which can be interpreted to be a
driver, translates the data between the hardware and software
parts of a system. The operation module serves as an interface
between hardware and software to communicate with the phys-
ical environment and provide information for SAHM. It also
serves (when necessary) as the intermediating agent between
the legacy systems and the ACO. Moreover, it receives the
high-level set-points from the internal manager and translates
the to the low-level settings of its components.

2) SAHM: aims at data abstraction and anomaly detection
inspired by natural phenomena and self-awareness concepts
such as history, data reliability, attention, and confidence. For
example, using history in a self-reflective manner, it creates
better abstractions and finds methods which have a better
performance and a higher confidence. Anomaly detection is
split into four sub-modules which detect a specific information
of the anomaly including anomaly itself, its characteristics, and
its cause as well as potential future effects of the anomaly.
Here, SAHM uses attention to trigger certain processes (e.g.,
prediction, or cause detection) only when necessary, and
confidence to trigger only the best algorithms (proven to be so
for the current condition according to the history). Thus, it can
maintain a small footprint without limiting its performance.
The detection approach mostly relies on the self-observation,
however, sometimes negotiation with other entities increases
the knowledge of an entity regarding itself and anomalies.
Therefore, the self-aware health monitoring module monitors
various parameters of a subsystem in a distributed manner.

3) Internal Manager: The decision-making problem in an
ACO is formulated as the problem to select one action that
satisfies system objectives and fulfills the constraints of the
external environment. Here, system objectives are defined by
three inputs: system performance, health value, and requests
from other ACOs. The system performance is estimated on the
basis of the production plan of the Manufacturing Execution
System (MES), whereas the health value is provided by the
SAHM as a means of how error-free the system is currently
working. Requests from other ACOs are provided by the
external manager. The internal manager decides, which of the
system objectives shall be given the priority and what the ACO
shall do to satisfy them, e.g., mitigate an error in the entity if
the health value is low. Methods used are case-based reasoning
and reinforced learning, based on the categorized causes of
problems discovered by SAHM. Through information requests
from other ACOs, the lack of an accurate model in a complex
system is compensated. The internal manager improves its be-
havior through the evaluation of its previously executed actions
while taking into account the system dynamics. Further, it also
needs to ensure that safety requirements and timing constraints
are always met.

4) External Manager: In order to compensate for the lack
of a global overview due to the distributed nature of the pro-
posed system, dynamic clustering is applied, which provides
a flexible way to integrate global objectives in a distributed
environment. The challenge is to form clusters based on
functional requirements of the shop floor and manufacturing
instructions. Currently, there is no methodology to formal-
ize production order ontology in relation to the anomalies.
Instead of pre-defined rules of the existing solutions, the
external manager defines dynamic methods using learning
algorithms (e.g., neural networks, and reinforcement learning)
to automatically discover the cluster formation rules in the
basis of the production order and the physical layout of the
shop floor. A set of generic classifiers that operate on non-
application-specific characteristics are defined and used by



the external manager to determine the essential connections
in the cluster and further establish weighted links between
ACOs based on the prioritized set of controlled parameters.
These weighted connections are updated during run-time using
backpropagation based on the results of communication and
decision execution evaluations, providing an additional level
of flexibility and adaptation to the system. The resulting unit,
external manager, provides an implicit connectivity among
the relevant ACOs and facilitates transparent negotiations
between SAHM and the internal manager of one ACO and
those of other ACOs in the cluster via establishing their
relevance to a particular request. The external manager bases
its technique on a non-deterministic relevance of connection
between individual ACOs about a particular event.

IV. USE CASE EXAMPLE

To understand how the proposed architecture works, we go
through a use case example. The error mitigation behavior is
applied in the domain of conveyor systems.

A. Specification

The use case describes the operation of four conveyor
sections that supply two robotic arms with objects. A potential
configuration of the system is illustrated in Figure 2.

There are three different types of entities in the system: i)
Conveyor sections: Each section includes the conveyor belt
and supporting equipment, such as the motor connected to it,
along with the sensors for object detection and monitoring of
the system parameters (e.g., current, voltage of the motor, and
velocity), ii) Product sorter: It includes the sorting mechanism
and the sensors for sensing the objects for sorting. Depending
on the object it supplies the conveyor belts 2, 3 and 4
accordingly, iii) Robotic arms: Each arm has (a) motor(s) and
sensors to detect the position of the item. Depending on the
task completion time they generate a supply rate demand and
send it to the neighboring conveyor belts.

The central conveyor (conveyor 1) transports objects that
according to selection criteria are either routed by the product
sorter to conveyors 3 or 4 for processing, or to conveyor 2
(for human intervention or further processing). Each conveyor

Fig. 2. SAMBA use case with conveyor belts and robotic arms.

section represents an entity; it is controlled separately by the
logical unit (ACO) and is connected to sensors and actuators
(e.g., a motor, or other actuators). Similarly, the sorter and
the robotic arms are separate entities. Since there is no
central control unit, the different entities communicate with
the neighboring entities and adjust their behavior accordingly
to make the whole system operate effectively.

The robotic arms 1 and 2 are processing two different
products. Given the processing time needed for the tasks each
arm communicates with the neighboring conveyor section and
creates a request for the expected supply rate. These requests
are sent to the neighboring conveyors 3 and 4, which in their
turn send each one separately a request for throughput to the
conveyor 1. Conveyors 1-4, are then adapting their speeds
accordingly to satisfy the required throughput rates.

B. Potential Problems

Different problems may occur during the operation of the
system due to faulty equipment, false measurements, mis-
tuning, failed quality controls, missing products, and commu-
nication errors. Among others, we present following problems
which we will elaborate in this paper and later in this section,
we will describe how SAMBA can address them. We use as
a starting point two potential scenarios beyond the nominal
operation, which the system needs to address properly: i) a
motor wearing out, and ii) a change of speed request. We note
that this is not an exhaustive nor an exclusive list of all the
possible scenarios. The purpose of this section, however, is to
explain how the resulting system is able to handle unexpected
events that might appear during the system operation.

In the wearing out of a motor scenario the ACO identifies
the problem in the involved entity, it evaluates the priority
of the problem and adapts the settings at this entity. If these
adaptations lead to changes in the external behavior of the
entity, then the system informs other relevant entities as well
to synchronize the system. In the change of operating speed
scenario, an entity decides to change the speed and modifies
the number of objects it can process over time. When variation
in the operating speed happens, the system should inform
other entities to update themselves, so that the whole system
behavior remains synchronized. In the rest of this chapter, we
explain the system behavior that is triggered in each scenario.

C. SAMBA Solutions

To explain the SAMBA solution, we specify here the
functions that generate the required system behavior in the
presence of the aforementioned problems. This analysis shows
how each of the tasks falls into the responsibility definition of
each module and how it is handled. To this end, we examine
each scenario separately and specify the high-level behavior
of the ACO. In wearing out of a component:

1) SAHM identifies the problem with a degree of certainty,
estimates the deviation from normal performance, makes
a prediction about the expected lifetime of the compo-
nent and notifies the internal manager.



2) The internal manager evaluates the priority of the prob-
lem and adapts the policy of the ACO accordingly (e.g.,
by changing the set-point to reach the desired speed
despite the wear-out).

3) The external manager upon request from the internal
manager passes the necessary information to other ACOs
of the cluster (e.g., in case they need to adapt to this
change -i.e., uncompensated wear-out which is a slow
down-, or if the ACO is leaving the cluster). If necessary,
negotiation will take place to ensure the optimal oper-
ation of the larger system through the communication
between the external managers of the involved ACOs.

Upon request for the change of speed, the following occurs:
1) The internal manager of the ACO initiating the change,

we call it here ACOi, notifies the external manager about
the speed change event.

2) The external manager of ACOi contacts other related
ACOs to make sure they are able to operate at this speed.

3) The external managers of the involved ACOs com-
municate with each other and send feedback to the
requesting ACOi. Negotiation is necessary to coordinate
the collaboration of the ACOs and therefore, to minimize
errors in the global system operation.

4) The external manager of the requesting unit, ACOi,
notifies its internal manager about the received feedback.

5) The internal manager of the ACOi decides to change (or
not to change) the speed and sends a possible operational
range to the external manager.

6) The external manager of ACOi sends the proposed op-
erational range to the external manager of other ACOs.

7) The internal managers of other relevant ACOs are noti-
fied and decide whether to accept or reject the proposal.
If they accept it, they specify the desired speed changes
that are compatible with the proposal.

8) If a speed change is not an optional decision and shall
occur in any case, the ACOi changes its speed, and the
external managers of the dependent ACOs are notified
(and they, in turn, notify their internal managers or those
ACOs observe the event themselves).

9) The internal manager of ACOi adapts the speed based
on the taken decision and sends the necessary command
to the operation module (i.e., the controller).

If for some reason negotiation shall not (e.g., if the internal
manager has to take such a decision independently due to
certain constraints or problems) or cannot take place (commu-
nication between ACOs is interrupted), then only the last two
steps are executed in this scenario.

V. DISCUSSION

SAMBA is designed to operate on the top of existing
systems without requiring major hardware changes, therefore,
it can be applied to legacy systems with low investment
costs. By adding self-awareness, it creates a self-adaptive and
self-optimizing fault diagnosis and prognosis system able to
both reliably improve itself while keeping a small footprint.

A feature that is -to a large extent- missing in the current
practice, and especially in the planned manner. In the proposed
architecture the complexity of the supervising task is split into
smaller problems that are solved locally. The local monitoring
makes the error diagnosis and root cause analysis easier.
Further, the lack of central supervision increases the flexibility
and scalability of the system. This lack of central supervision
is compensated through the ability to discover the environment
and establish new clusters and collaboration with other ACOs,
which dramatically reduces the design and engineering efforts
compared to the state of the art.

The resulting system is expected to be able to detect,
predict and mitigate potential health problems such that the
downtime and number of necessary interventions are min-
imized. Additionally, the automatic reaction supports better
scheduling of predictive maintenance by taking intermediate
actions. Compared to the state of the art, the architecture
introduces a new design paradigm in the industrial environ-
ment and CPPS that allows integration of legacy systems
in manufacturing with considerably less effort due to the
generic nature of the proposed architecture. It also provides
enhanced scalability, especially in the ability of the systems to
discover their environment and anomalies automatically, which
dramatically reduces engineering efforts currently required.
Furthermore, continuous feedback and learning in all three
core functionalities (anomaly detection, environment discovery
and decision making) improve the performance and flexibility
of the system in dynamic manufacturing environments.

Another distinguishing novel characteristic of the proposed
health monitoring unit (SAHM) is that it takes advantage of
self- and context-awareness concepts to locally monitor the
ACO’s own status (enhanced by self-awareness concepts such
as confidence, attention, data-reliability, history, relevance,
and desirability [36], as well as the local context [37]). It
complements this information through communication with
other ACOs to obtain awareness about the bigger picture
and the context in which observations are happening. The
novelty of the decision-making unit (internal manager) is the
adaptation of an existing cognitive architecture to a technical
application that differs from simulated actors or other human-
like applications. The use of cognitive methods provides
an extra level of flexibility in finding solutions in the face
of conflicting constraints. The communication unit (external
manager) provides an implicit connectivity among the relevant
ACOs via distributed clustering that takes into account the
production order structure as well as the physical layout of
the shop floor. The unit facilitates negotiations between the
health monitoring and decision-making units of one ACO
and those of other ACOs in the cluster via establishing their
relevance to a particular request. Finally, the operation unit
(operation module) which is the actual plant controller, or sits
on top of the plant controller, enables the system to work
with legacy systems smoothly. Thus, the proposed architecture
does not necessarily need to modify the existing (legacy)
systems but rather extends their operation by providing the
connectivity and interoperability between the existing system



and the aforementioned three other units to accomplish the set
objectives. We note that the operation unit is still responsible
for meeting safety requirements, and that other units are not
allowed to initiate actions violating safety.

Next steps in the development of SAMBA include the
detailed design of the algorithms for the modules of the archi-
tecture and testing of the emergent system performance. The
algorithms need to run on embedded devices of industrial scale
with soft real-time capabilities. Thus, they should be designed
to address the small footprint and real-time constraints.

VI. CONCLUSION

In this paper, we proposed an architecture for industrial
distributed CPPS to increase the ability of the system to in-
telligently adapt to changing environment and conditions. The
main focus of this architecture is health monitoring and the
mitigation of behavioral deviations. The system automatically
detects the environment, forms clusters, analyzes and detects
events, makes predictive decisions based on multiple non-pre-
defined data processes and mitigates anomalies. The main
benefits of the proposed architecture are showcased in four
main system components and in the synergy they provide.
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