
EWD: A Metamodeling Driven Customizable
Multi-MoC System Modeling Framework

DEEPAK MATHAIKUTTY, HIREN PATEL, and SANDEEP SHUKLA

Fermat Lab., Virginia Tech

and

AXEL JANTSCH

Royal Institute of Technology, Sweden

We present the EWD design environment and methodology, a modeling and simulation framework
suited for complex and heterogeneous embedded systems with varying degrees of expressibility and
modeling fidelity. This environment promotes the use of multiple models of computation (MoCs)
to support heterogeneity and metamodeling for conformance tests of syntactic and static seman-
tics during the process of modeling. Therefore, EWD is a multiple MoC modeling and simulation
framework that ensures conformance of the MoC formalisms during model construction using a
metamodeling approach. In addition, EWD provides a suite of translation tools that generate exe-
cutable models for two simulation frameworks to demonstrate its language-independent modeling
framework. The EWD methodology uses the Generic Modeling Environment for customization of
the MoC-specific modeling syntax into a visual representation. To embed the execution semantics of
the MoCs into the models, we have built parsing and translation tools that leverage an XML-based
interoperability language. This interoperability language is then translated into executable Stan-
dard ML or Haskell models that can also be analyzed by existing simulation frameworks such as
SML-Sys or ForSyDe. In summary, EWD is a metamodeling driven multitarget design environment
with multi-MoC modeling capability.

Categories and Subject Descriptors: C.5 [Computer System Implementation]; I.6.5 [Simula-
tion and Modeling]: Model Development; D.1.1 [Programming Techniques]: Applicative (Func-
tional) Programming; J.6 [Computer-Aided Engineering]

General Terms: Design, Languages, Verification

Additional Key Words and Phrases: Metamodeling, metamodel, MoC, functional language, deno-
tational semantics, interoperable modeling language, heterogeneous system design, Ptolemy II,
SystemC, ForSyDe

Software systems developed by us are codenamed after famous computer scientists. EWD (e-wood)
stands for E. W. Dijkstra.
This work has been supported by the NSF project CCR-0237947 and SRC Integrated Systems
Grant.
Authors’ addresses: D. Mathaikutty, H. Patel, and S. Shukla, Fermat Lab, Virginia Tech,
Blacksburg, VA; email: Shukla@vt.edu; A. Jantsch, Department of Microelectronics and Informa-
tion Technology, Royal Institute of Technology, Sweden.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1084-4309/2007/08-ART33 $5.00 DOI 10.1145/1255456.1255470 http://doi.acm.org/
10.1145/1255456.1255470

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

2 • D. Mathaikutty et al.

ACM Reference Format:
Mathaikutty, D., Patel, H., Shukla, S., and Jantsch, A. 2007. EWD: A metamodeling driven cus-
tomizable multi-MoC system modeling framework. ACM Trans. Des. Autom. Electron. Syst. 12, 3,
Article 33 (August 2007), 43 pages. DOI = 10.1145/1255456.1255470 http://doi.acm.org/10.1145/
1255456.1255470

1. INTRODUCTION

Most system models for System-on-Chip (SoC) are heterogeneous and encom-
pass multiple models of computation (MoC)s in their different components. This
indicates an essential need for multi-MoC support at various abstraction lev-
els in modeling and simulation frameworks. Furthermore, having a multi-MoC
framework is quite useful as an experimentation platform for researchers to
integrate different modeling domains and paradigms as well as various design
and verification tools. System-level design environments such as Ptolemy II
[Brooks et al. 2005] and SystemCH [Patel and Shukla 2005] offer heterogeneous
modeling support through their multi-MoC language. However, none of these
design environments support easy customization. The customizability aspect
of a design environment allows the user to make additions to its modeling capa-
bility by introducing support for newer MoCs for specific application domains,
which in turn increases the modeling fidelity. Informally, fidelity indicates the
number of different MoC capabilities supported by a modeling framework.

The capability of a design environment to customize its modeling language is
called metamodeling. The component of a design environment that allows such
a capability is called a metamodeling framework. GME [Ledeczi et al. 2001]
is an example of such a metamodeling framework that allows the description
of a modeling domain by capturing the domain-specific syntax and static se-
mantics into visual notations and rules called the metamodel. The dynamic or
execution semantics of the modeling domain is provided through interpreters,
which analyze and translate the visual models into executables. The metamod-
eling capability is provided through a set of generic concepts implemented as
UML-class diagrams and OCL constraints, resulting in visualization, design-
time checks, and customization. We present EWD, a multiple MoC modeling
and simulation framework that uses this capability to describe a metamodel-
ing driven multi-MoC modeling formalism. The MoC-specific syntax and static
semantics1 in EWD are expressed with the generic concepts in GME by cre-
ating metamodels for them. In this article, we briefly compare EWD against
contemporary design environments such as Ptolemy II, SystemCH [Patel and
Shukla 2005] and Metropolis [The Metropolis Project Team 2004] with respect
to their metamodeling-based customizability.

Simulation frameworks execute the heterogeneous design description
through the underlying imperative language-based compilers such as the
C++/Java compiler for SystemCH [Patel and Shukla 2005] and Ptolemy II-based
designs. Some other simulation frameworks follow an alternative approach
of using a functional language, such as the hardware description language

1We mean the well-formedness of constructs in the modeling language.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 3

HML [Li and Leeser 2000] implemented in Standard ML (SML) [Milner et al.
1997], which combines strong typing with polymorphism and automatic type
inference to express the functionality of the hardware specified. Some MoC-
specific functional frameworks are ForSyDe [Sander and Jantsch 2004] im-
plemented in Haskell [Thompson 1999], and the SML-Sys [Mathaikutty 2005;
Mathaikutty et al. 2004b] framework in SML. These frameworks are based on
formal semantics and functional paradigms which facilitate the application of
formal methods for transformation, synthesis, and verification. Furthermore,
these frameworks implement MoCs as higher order functions, resulting in a
formal underpinning due to their denotational nature.

SML-Sys facilitates the integration of modeling domains, languages, and
tools on both the syntactic and semantic level. The uniform representation of
different MoCs in the same semantic framework paves the way for analysis, ver-
ification, and optimization across MoC domain boundaries. In Jantsch [2003],
there is a discription of how functionality can be moved from one MoC domain
into another while preserving the system behavior and important properties
of the system. Even though we have not yet demonstrated the full potential of
a uniform semantic framework that encompasses various MoCs, we believe it
will greatly help in the understanding of heterogeneous systems well beyond
what pure simulation-based environments and frameworks can accomplish.
Note, that we do not require that the designer uses a single, all-encompassing
design language to express all different MoCs. Current design languages such
as Verilog, VHDL, C, or SystemC can be used to model different parts. We
only require that these different parts can be projected onto specific MoCs in
our framework. This can be enforced by establishing coding and interpretation
rules for each design language. Then the analysis, verification, and optimiza-
tion techniques of the multi-MoC framework become valid for the models of the
frontend design languages. Note, that arbitrary VHDL or SystemC code does
not automatically adhere to any specific MoC other than the native MoC of that
language. Consequently designers have to be aware of the MoC they are using
just like they must adhere to the modeling rules when using VHDL for RTL
synthesis.

EWD integrates the SML-Sys framework into the design environment and
eases an automatic translation of a high-level MoC-based system description
into executable models in SML. SML-Sys is one of the many targets for code
generation in EWD. Moreover, we illustrate a metamodeling-based design envi-
ronment by building metamodels to support the same MoCs used in SML-Sys.
Therefore, we have elaborated on SML-Sys, its choice of MoC classification,
and its comparison with Tagged Signal Model (Appendix A). Although with the
instantiation of a very different metamodel, EWD could be used to enforce var-
ious MoCs and MoC interactions, this article concentrates only on metamodel
instantiations related to SML-Sys. Therefore, we believe this extra information
will help readers in understanding the article better.

The rest of the article is organized as follows: In Sections 2 and 3, we present
the necessary background and related work. Section 4 discusses the design-
flow of the EWD methodology. In Section 5, we explain the model construction
phase of the EWD design flow and use the example of an adaptive amplifier

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

4 • D. Mathaikutty et al.

to illustrate it. In Section 6, we discuss the parsing phase by briefly introduc-
ing the IML syntax and intermediate parsing stages. In Section 7, we briefly
outline the multitargeted capability that we achieve in EWD, and the follow-
ing section discusses our experience with EWD and presents the modeling of a
digital equalizer example. Finally, we conclude by summarizing the article and
discussing the work in progress.

1.1 Main Contributions

EWD’s design environment has three main components, a metamodeling frame-
work based on GME, a multi-MoC modeling framework based on the definition
of generic MoCs in Jantsch [2003], and simulation frameworks such as SML-Sys
and ForSyDe based on functional languages. These three components together
provide the following features in EWD:

—a modeling framework that supports visual multi-MoC modeling and enforces
semantic constraints during model construction for conformance to the un-
derlying MoC;

—a visual metamodeling framework that provides extendibility through meta-
models, allowing the user to enhance/restrict the modeling framework based
on the levels of modeling fidelity versus genericity required;

—executable simulation models are automatically built by the tool, and cur-
rently the target simulation languages are SML and Haskell-based modeling
extensions, namely, SML-Sys and ForSyDe;

—the multitargeting is achieved through XML-based interoperability that led
to the definition of an interoperable language and its binding to various target
languages.

Furthermore, we provide an extensive comparison of EWD with contemporary
design environments such as Ptolemy, Metropolis, and ForSyDe based on their
metamodeling and multi-MoC capability. Finally, we provide a case study and
outline our design experience from using the EWD environment.

2. BACKGROUND

A model of computation [Lavagno et al. 1998] describes MoC behavior in terms
of how the communication proceeds and how the computation occurs. Examples
of MoCs are discrete event (DE), synchronous dataflow (SDF), and finite state
machine (FSM). A multi-MoC modeling framework provides the designer with a
language to describe the structure and behavior of systems using MoC-specific
constructs. Usually, languages such as C++ for SystemC, Java for Ptolemy and
UML for EWD, provide support for MoC capabilities in a particular model-
ing framework. The modeling fidelity of a framework is defined as the degree
to which a framework supports modeling designs represented by their most
natural MoCs. The expressiveness of a framework is the overall capability of
describing any behavior. A framework that provides constructs for describing
the structure and behavior of MoCs has higher modeling fidelity as opposed to
one that does not support such constructs. For example, SystemC inherently

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 5

supports a DE-based modeling language, but with the SDF extension provided
in SystemCH [Patel and Shukla 2005], the designer has additional constructs
to easily model SDF designs. This adds support for multi-MoC capability in
the system-level design language. Often SystemC designers devise techniques
using events to mimic the design’s inherent MoC with the side effect of pro-
gramming overhead, complexity, and the higher possibility of design errors.
This shows that the expressiveness of SystemC is also high, providing design-
ers with the capability to describe any behavior using C++. On the other hand,
the advantage of representing designs via MoCs is in the reduction of these
modeling and design errors as well as reducing the complexity in constructing
such designs.

2.1 MoC Classifications

The most well-known classification of MoCs has been stated in the context
of Ptolemy II projects [Brooks et al. 2005] called modeling domains. Some
of Ptolemy II’s modeling domains [Lee and Sangiovanni-Vincentelli 1998] are
FSM, DE, Continuous Time (CT), Communicating Sequential Processes (CSP),
Kahn Process Network (KPN), etc. Another classification of MoCs called generic
MoCs has been done by abstracting the time of complex designs in the context
of ForSyDe project [Sander and Jantsch 2004]. This work can be distinguished
from Ptolemy’s work as a distinction of the denotational view versus opera-
tional view of MoCs. The denotational view of an MoC consists of a recursive
formalism of the MoC semantics using mathematical objects. The operational
view of an MoC describes a specific implementation of the MoC syntax and se-
mantics based on how the computation takes place and how the communication
proceeds.

2.2 Generic MoCs

We briefly introduce the generic MoCs defined in Jantsch [2003]. These MoCs
are built on processes, events, and signals. Events are the elementary units
of information exchanged between processes. Signals are finite or infinite se-
quences of events. The activity of processes is divided into evaluation cycles. A
process partitions its input and output signals into subsequences corresponding
to its evaluation cycles. An evaluation cycle defines the number of events in a
subsequence. During each evaluation cycle, a process consumes exactly one sub-
sequence of each of its input signals. To relate functions on events to processes,
we introduce process constructors. These are parameterizable templates that
instantiate processes of a specific computational behavior. Furthermore, we de-
fine process combinators to construct process networks (PN)s through process
compositions.

A generic MoC is defined as a set of processes and process networks that
are constructed from the given set of process constructors and combinators.
It is further categorized based on “how the processes communicate and syn-
chronize” with other processes and, in particular with the “timing informa-
tion” available to and used by the process. The classification of MoCs [Jantsch

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

6 • D. Mathaikutty et al.

2003], characterized by the duration of their evaluation cycle, are: Untimed
MoC (UMoC), Synchronous MoC (SMoC), and Timed MoC (TMoC).

(1) UMoC. Processes communicate and synchronize based on the order of
events in the absence of time.

(2) SMoC. The time line is abstracted into uniform intervals. Every computa-
tion within an interval occurs at the same time, but the intervals are totally
ordered along the timeline, implying the evaluation cycle of processes lasts
exactly one time interval. It is further categorized into two, which is based
on whether the output event of a process occurs in the same time interval
as the corresponding input event (perfectly synchronous MoC) or whether
every process incurs a delay from an input event to an output event (clocked
synchronous MoC).

(3) TMoC. This MoC is a generalization of SMoC. Timing information is con-
veyed on the signals by transmitting absent events (�) at regular time in-
tervals. In this way, processes always know when a particular event has
occurred and when no event has occurred. It differs from the synchronous
MoC on two accounts, the granularity of the timing structure is much finer
and a process can consume and emit any number of events during one eval-
uation cycle.

2.3 SML-Sys Framework

The SML-Sys library facilitates the instantiation of the untimed, synchronous
and timed MoCs. Modeling using SML-Sys framework starts by capturing the
system behavior into an abstract functional specification. This is refined inside
the functional domain by a stepwise application of well-defined transforma-
tion rules into an efficient optimized implementation specification. We discuss
the UMoC of the SML-Sys framework by introducing the notations and briefly
describing the implementation. A process communicates with another process
by writing to and reading from signals. The set of values V represents the
data2 communicated over a signal, and the set E constitutes the events that
are basic elements of a signal containing values. Untimed events are values
and their set is denoted by Ė = V with ė ∈ Ė denoting an event. Signals are
an ordered sequence of events such that ėi denotes the ith event in a signal.
We use Ṡ to denote the untimed signal set and ṡ to designate an individual
untimed signal. Processes are defined as functions on signals that are map-
pings between signal sets (p : Ṡ → Ṡ). These mappings are implemented by
operating on subsequences instead of on the whole sequence. These operations
may have no state (identical subsequences are mapped into identical subse-
quences) or may have state (identical subsequences may be mapped to different
subsequences).

2.3.1 UMoC in SML-Sys. UMoC adopts the simplest timing model corre-
sponding to the causality abstraction. Processes modeled as state machines
are connected to each other via signals. Signals transport data values from

2The data can be any abstract or concrete type.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 7

a sending process to a receiving process. The data values do not carry time
information, but the signals preserve the order of emission.

Process Constructors. In the UMoC, we implement a set of process construc-
tors (suffixed with U) that are used to define different computational blocks that
are either processes or PNs. We discuss the formulation of a single input-output
Mealy-based process constructor with respect to finite signals in the following.

Mealy-based process constructor. This is a constructor that creates a process
p with a state, which, when given an input signal ṡ, generates an output signal
ṡ′. It resembles a Mealy state machine, which is described with four parameters:

(1) ω0: the initial state of the Mealy state machine and ωi is the state at the
ith evaluation cycle;

(2) f : the output encoding function computes the output subsequence ȧ′
i based

on the current state ωi and the corresponding input subsequence ȧi;
(3) g : the next-state function determines the next state based on the current

state ωi and the corresponding input subsequence ȧi;
(4) γ : determines the size of each input subsequence. It computes these sizes

based on the current state (ωi).

The function-based semantics for the mealyU process constructor are:

mealyU(γ , g , f , ω0) = p where,
p(ṡ) = ṡ′

ψ(v, ṡ) = ȧi

v(i) = γ (ωi)
g (ωi, ȧi) = ωi+1
f (ωi, ȧi) = ȧ′

i

ṡ, ṡ′, ȧi, ȧ′
i ∈ Ṡ, ωi ∈ Ė, i ∈ N, where

ψ is the partition function that creates subsequences of the signal ṡ based on v.

The list of elementary process constructors implemented in SML-Sys for the
UMoC is shown in Table I. The Mealy-based process constructor discussed can
be extended to handle multiple inputs making it more generic, which simplifies
Table I.

Process Combinators. We define composition operators to combine different
processes to form processes and PNs. The sequential, parallel, and feedback
operators shown in Figure 1 and the formulation of the feedback operator is as
follows.

Feedback composition operator. Given a process p : (Ṡ × Ṡ) → (Ṡ × Ṡ) with
two input signals and two output signals, we define the process FBp(p) : Ṡ → Ṡ.
The behavior of the process FBp(p) is defined by the least-fixed point (LFP)
semantics.

FBp(p)(ṡ1) = ṡ2, wherep(ṡ1, ṡ3) = (ṡ2, ṡ3).

The output ṡ3 is fed back as input to the process and the constructor termi-
nates when the output ṡ3 does not change and has fixed pointed. The current

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

8 • D. Mathaikutty et al.

Table I. Process Constructors for the Untimed MoC

Name UmoC Description
Map mapU Perform a computation ‘f ’ on ‘c’ events
Scan scanU Processes with an internal state and a next state function
Moore mooreU Process with a state and the output is a function of the state
Mealy mealyU Process with a state and the output depends on the state & current input
Scand scandU Scan process with the initial state
Zip zipU Zips the inputs together based on two functions
Zip zipUs Zips the inputs together based on two constants
Zip zipWithU Zips the inputs with an arbitrary function
Unzip unzipU Unzips a zipped signal appropriately
Source sourceU Initialize a signal with events
Sink sinkU Initialize a signal to an empty signal
Init initU Initialize a signal with another signal

Fig. 1. Parallel, sequential, and feedback operators.

output for ṡ3 is computed based on the current input s1 and the previous output
of ṡ3 (given as input). The process FBp(p) terminates when the current output
ṡ3 and the previous input ṡ3 is the same, implying that a pattern is repeating
on ṡ3, which is the fix-point value of the process.

Finally, the untimed model of computation is defined as UMoC = (C,O), where

C = {mapU, scanU, scandU, mealyU, mooreU, zipU, zipUs, zipWithU, unzipU,
sourceU, sinkU, initU}

O = {‖, ◦, FBp}

We have also implemented the SMoC and TMoC that are detailed in
Mathaikutty [2005].

2.3.2 Interfacing MoCs in SML-Sys. It is evident that two different PNs
constructed in the same MoC domain may have different timing information.
So when connecting them, the relation between their timing must be defined.
This relation can be constant and simple or it can vary dynamically. We define
interface process constructors that enable connecting two processes within the
same MoC when the relation between their timing information is a constant and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 9

simple. These constructors perform a sampling functionality. The constructor
inDup carries out a sampling-up functionality where the constructor emits r
events for each input event (up-rating). Similarily, the constructor inDdown car-
ries out a sampling-down functionality where the constructor emits one event
for r input events (down-rating).

Furthermore, we define interface process constructors that bridge the pro-
cesses in different MoC domains by adding or removing the timing informa-
tion. We define the interface processes that add timing information with the
prefix insert and those that remove timing information with the prefix strip.
A strip-based interface constructor removes the timing information that they
receive on their input signals. For example to obtain an untimed input from a
synchronous process, the absent events (�) should be removed, and the other
events are passed to the input in the same order as they appear. On the other
hand, an insert-based interface constructor injects r number of events into the
output. The events inserted are absent events, and r is determined based on
the evaluation cycle of the process. The details of the formulation and imple-
mentation are provided in [Mathaikutty 2005].

2.4 Metamodeling

A metamodeling framework facilitates the description of a modeling domain
by capturing the domain-specific syntax and static semantics into an abstract
notation called the metamodel. This metamodel is used to create a modeling
language that the designer can use to construct domain-specific models by con-
forming to the metamodeling rules governed by the syntax and static seman-
tics of the domain and the framework that enables this is called the modeling
framework. Static semantics refer to the well-formedness of syntax in the mod-
eled language and are specified as invariant conditions that must hold for any
model created using the modeling language. The facility of a metamodeling
framework and a metamodel put together is called the metamodeling capa-
bility as in Figure 2. We identify two distinct roles played in a metamodeling
framework. The role of a metamodeler who constructs domain-specific meta-
models and the role of a modeler who instantiates these metamodels for creating
domain-specific models.

Consider an audio signal-processing domain. The metamodel specifies the fol-
lowing types of entities: microphones, preamps, power amps, and loudspeakers.
Microphones contain one output port, preamps and power amps each contain
a single input and output port, and a loudspeaker contains a single input port.
The metamodel also specifies the following relationships among the types: a
microphone’s output port may be connected to the input ports of any number
of preamps, a preamp output port may connect to any number of power amp
input ports, and a power amp output port may connect to one or more loud-
speaker input ports. Such syntactic model construction rules are enforced by
the metamodel during modeling and the design editor will not allow any ob-
jects or relationships not specified in the metamodel to exist. Therefore, if a
designer modeling an audio system tries to connect a microphone’s output to
the input port of the loudspeaker (in reality this might lead to damaging the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

10 • D. Mathaikutty et al.

Fig. 2. Metamodeling capability.

loudspeaker), the metamodel will flag a violation and revert the model back to
the state it was before the violation occurred.

We extend this notion of metamodeling to a design environment where this
capability is used to create and customize MoC-specific metamodels that are
used to generate a multi-MoC modeling framework. Design environments such
as SystemCH, Ptolemy, Metropolis and EWD allow different degrees of meta-
modeling, therefore, we measure this characteristic of a design framework
based on the ease of customization. An environment that can easily customize
the MoC-specific metamodels to enhance or restrict its genericity has a high
metamodeling capability. An alternate notion of distinction is based on whether
metamodeling is implicitly provided versus it having an explicit capability.

Implicit Metamodeling vs Explicit Metamodeling. A design environment
with Explicit metamodeling capability must be associated with a metamod-
eling language, which provides an abstract syntax devoid of implementation
details that is customized into MoC-specific metamodels. It expresses a col-
lection of modeling object types, along with the relationships allowed between
those object types and the attributes associated with the objects. Furthermore,
the framework should enforce the MoC during the modeling activity through
metamodeling rules. A design environment has implicit metamodeling capabil-
ity if it does not have a metamodeling language for domain-specific description
and makes use of the underlying programming language for the purpose.

Some essential concepts [Nordstrom et al. 1999] of the metamodeling lan-
guage are shown in Table II.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 11

Table II. Essential Concepts of a Metamodeling Language

Concepts Description
Connection Provides rules for connecting objects together and defining interfaces.

Used to describe relationships among objects
Aspects Enables multiple views of a model. Used to allow models to be

constructed and viewed from different perspectives.
Hierarchy Describes the allowed encapsulation and hierarchical behavior of model

objects. Used to represent information hiding.
Object Association Binary and n-ary associations among modeling objects. Used to

constrain the types and multiplicity of connections between objects.
Specialization Describes inheritance rules. Used to indicate object refinement.

When investigating some heterogeneous modeling framework, we find that
EWD has explicit metamodeling capability since it is built using GME’s meta-
modeling framework. Ptolemy and SystemCH have implicit metamodeling ca-
pability, and the designer is burdened with having to know the underlying
programming language (Java, C++) in order to customize the modeling frame-
work. In SystemCH, the task of adding a new MoC requires kernel-level devel-
opment along with an in-depth understanding of SystemC kernel implemen-
tation. Metropolis has a metamodeling language inspired from Java which is
nonvisual and based on extensions to abstract classes and class instantiations.
AToM3 [Vangheluwe and Lara 2003] is another modeling tool that uses meta-
modeling and graph-based transformation for model development. They employ
metamodeling to define the modeling syntax similar to EWD.

2.5 Generic Modeling Environment

The Generic Modeling Environment (GME) [Ledeczi et al. 2001] is a config-
urable toolkit that facilitates the easy creation of domain-specific modeling and
program synthesis environment. It is proposed as a design environment that is
configurable for a wide range of domains and overcomes the high cost associated
with developing domain-specific environments such as Matlab/Simulink for sig-
nal processing and LabView for instrumentation. The metamodeling frame-
work of GME has a meta-metamodel that is a set of generic concepts which are
abstract enough such that they are common to most domains. These concepts
can then be customized into a new domain such that they support that domain
description directly. The customization is accomplished through metamodels
specifying the modeling language of the application domain. It contains all the
syntactic, semantic and presentation information regarding the domain and
defines the family of models that can be created using the resultant modeling
framework. These models can then be used to generate the applications or to
synthesize input to different COTS analysis tools.

For clarity, we reiterate a few definitions for terms used in the context of
GME.

(1) A modeling framework is a modeling language for creating, analyzing, and
translating domain-specific models.

(2) A metamodel defines the syntax and static semantics of a particular
application-specific modeling framework.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

12 • D. Mathaikutty et al.

(3) A metamodeling framework is used for creating, validating, and translating
metamodels.

(4) A meta-metamodel defines the syntax and semantics of a given metamod-
eling framework.

The generic concepts describe a system as a graphical, multiaspect attributed
entity-relationship (MAER) diagram. Such a MAER diagram is indifferent to
the dynamic semantics of the system, which is determined later during the
model interpretation process. The generic concepts supported are hierarchy,
multiple aspects, sets, references and explicit constraints which are described
using the following constructs.

A project (Project
) contains a set of folders that act as containers help-
ing to organize a collection of objects. The elementary objects are called atoms
(Atom
) and the compound objects that can have parts and inner structure
are called models (Model
). These objects are instantiated to be a specific
kind with a predefined set of attributes. The kind describes the role played by
these objects and the attributes are used to annotate them with domain-specific
characterizations. The parts of a model are objects of type atom or other models.
Aspects primarily provide visibility control. Every design has a predefined set
of aspects describing different levels of abstraction. The existence of a part of
the domain within a particular aspect is determined by the metamodel. The
simplest way to express the relationship between two objects in GME is with
connections. A connection establishes an annotated relation between a set of ob-
jects through predefined attributes. Constraints in GME are articulated based
on the predicate expression language called OCL. They are used to express re-
lationship restrictions as well as rules for the containment hierarchy and the
values of the properties (static semantics of the domain).

The authors of Chen et al. [2005] employ GME with GReAT [Ledeczi et al.
2001] and AsmL [Glasser and Karges 1997] to provide structural and behavioral
semantics to domain-specific modeling languages (DSML). GReAT provides an
infrastructure that allows for model-based transformation with a set of rules
governing the manner in which the transformation from one metamodel to
another occurs. AsmL is a Microsoft language based on the formal semantics
of ASM developed by Gurevich [1995] and Borger and Strk [2003].

The design flow in Chen et al. [2005] contains two metamodels, one for the
DSML and the second for AsmL. Input to their system is a model designed fol-
lowing the DSML. The model is then transformed using GReAT into an equiv-
alent model following the AsmL metamodel. Code generation is supported via
interpreters whereby executable AsmL code for the model is the output. This
can then be simulated using AsmL.

This design flow is in many ways similar to EWD aside from the eloquent use
of GReAT to perform the model-based transformations. The formal framework
employed in EWD is the functional framework following the generic MoCs and
the transformation is done through XML-based parsers as opposed to GReAT
and AsmL. It must be noted that at the time of EWD’s development, GReAT did
not exist. However, transforming the models to SML-Sys or Haskell can also be
efficiently done with GReAT.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 13

3. RELATED WORK

3.1 ForSyDe Methodology

ForSyDe [Sander and Jantsch 2004] is another functional programming
framework that facilitates synchronous modeling, built on the semantics of
SMoC [Jantsch 2003] in Haskell. The ForSyDe design process starts with the de-
velopment of a high-abstraction formal specification model, which is a perfectly
synchronous model. The synthesis process is divided into two phases. In the first
phase, the specification model is refined into a more detailed implementation
model by the stepwise application of design transformations shown in Sander
and Jantsch [2004]. The second phase is the mapping of the implementation
model onto a given architecture. This phase is comprised of activities such as
partitioning, allocation of resources, and code generation. Synthesizable VHDL
and C is generated for HW and SW implementation, respectively. ForSyDe’s re-
finement methodology based on their transformation library defines different
refinements that are either semantic-preserving or based on design decisions.
The design decisions introduce low-level implementation details at the differ-
ent refinement stages that restrict the methodology from automating these
refinements.

SML-Sys has a high modeling fidelity since it is a multi-MoC modeling frame-
work based on the generic definition in Jantsch [2003], which is an extension of
the ForSyDe methodology. ForSyDe has a low modeling fidelity, since it is based
on a single MoC. ForSyDe describes the function-based semantics of MoCs by
formulating SMoC in a functional language. It’s MoC is based on the synchrony
assumption and is best suited for applications amenable to synchrony, which
limits it. SML-Sys formulated the untimed, clocked synchronous and timed
MoCs as well as the interfacing of these MoCs, and, therefore, is suited for a
wide variety of applications.

3.2 Ptolemy II

Ptolemy II supports multiple modeling domains that facilitate designers to
model in a truly heterogeneous manner, therefore it is a multi-MoC modeling
framework. Every behavior in Ptolemy II is realized by a MoC [Brooks et al.
2005] and a combination of MoCs can be used to describe a system. Ptolemy
II’s multi-MoC framework follows an actor-oriented modeling approach, which
comes with a Java-based graphical user interface (GUI) through which design-
ers can drag-and-drop actors to construct models. Ptolemy II’s action-oriented
approach [Neuendorffer 2005] has a notion of atomic and composite actors. The
atomic actors describe an atomic unit of computation, and the composite ac-
tors describe a medium through which more complex computation described by
other atomic and composite actors can be hierarchically modeled. In Ptolemy
II, directors implement the MoC behavior and simulate the model. A model or
composite actor that follows a particular director is said to be a part of that
MoC’s domain.

An attractive quality of Ptolemy II is that it allows for hierarchical hetero-
geneity [Eker et al. 2003; Brooks et al. 2005] that proposes a better approach

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

14 • D. Mathaikutty et al.

to structure heterogeneous designs. The main idea behind hierarchical hetero-
geneity is to encapsulate different heterogeneous behaviors within components
which can then be hierarchically composed together to complete the description
of the design. With this approach, one director is responsible for simulating the
local network of actors, whereas another network of actors that contains this
component may employ a director following a different MoC. Through the GUI,
a designer can explore domain polymorphism whereby a component’s director
can be replaced with another director, following a different MoC, without having
to alter any other actors of the component.

Very much as Ptolemy II’s GUI, EWD promotes a component-based graphi-
cal interface for describing designs. EWD also realizes its behaviors as MoCs,
but the classification is different compared to Ptolemy II’s. A timing-based ab-
straction is used to describe the generic MoCs in EWD as shown in Section 2.2.
This classification does not formalize all MoCs available in Ptolemy II such as
the CSP and the CT MoCs. Some of the MoCs such as DE and PN-based MoCs
are covered by the generic MoCs. An in-depth discussion on the generic MoCs
classification is available in Jantsch [2003] and Mathaikutty [2005].

We perceive Ptolemy II as having a higher modeling fidelity due to its sup-
port for numerous MoCs and EWD as having a low modeling fidelity due to
its support for only the generic MoCs. However, this does not put EWD at a
disadvantage because of the genericity of EWD MoCs, thus allowing several
of the Ptolemy II MoCs to be easily mapped to a combination of the process
constructors of EWD’s MoCs. For example, to describe an FSM in Ptolemy II,
a designer employs the FSM MoC, whereas in EWD the Mealy process con-
structor from the untimed MoC may be used to map the same behavior. As for
the expressiveness of these two frameworks, in both, the designer must strictly
use the MoC syntax for the modeling purpose and avoid using the underlying
programming language.

Ptolemy II’s support for domain polymorphism requires the actors to be us-
able in multiple domains. Therefore, their implementation does not imply any
MoC-specific execution semantics. Instead, it is the director’s responsibility to
define the MoC semantics that execute the actors and manage the communica-
tion between actors. Ptolemy II checks an actor’s compatibility with a domain
using interface automata and its type checking system [Eker et al. 2003]. How-
ever, there are special cases when actors are not truly polymorphic, such as the
Integrator and DifferentialSystem in the CT domain. In comparison, EWD does
not require any sort of interface automata for checking the compatibility of its
process constructors and combinators because each constructor and combina-
tor is specifically typed with its respective MoC. This information is included
in the metamodel so that violations may be flagged during model construction.

3.3 Metropolis

Metropolis describes an embedded system design as a network of components
and their connections through its metamodel (MMM) [Balarin et al. 2003;
The Metropolis Project Team 2004]. EWD is an application-independent de-
sign environment that is used for building engineering systems through its

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 15

meta-metamodel. Therefore, the Metropolis metamodel has more similarities
to the meta-metamodel in EWD.

Metamodeling capability. The Metropolis metamodel implemented in Java
provides computation, communication, and synchronization primitives as ab-
stract classes. Some of these primitives are process, netlist, media, stateme-
dia, and quantity manager. EWD’s meta-metamodel concepts are expressed
as UML class diagrams which support techniques such as hierarchy, multi-
ple aspects, sets, references, and explicit constraints. The Metropolis meta-
model [The Metropolis Project Team 2004] is independent of any MoC seman-
tics. A design could be directly described using this metamodel, but a set of
MoC-specific platforms are provided to facilitate the system description. EWD’s
notion of a meta-metamodel (GME’s meta-metamodel) is also MoC-independent
but, through its metamodels, MoC-specific syntax and semantics are expressed,
therefore its metamodel is closer to Metropolis’s idea of a platform. EWD’s
meta-metamodel is only for customization and the design descriptions are done
through metamodels.

The Metropolis metamodeling capability is provided by inheritance-based
platform derivations, whereas EWD facilitates metamodeling through contain-
ment and constraint-based hierarchical decomposition. One of the main ad-
vantages of EWD’s metamodeling capability is its visualization that we believe
eases customizability. A point to note is that EWD enforces metamodeling rules
(through its metamodel) that the modeler has to strictly follow during model-
ing. These static semantics [Nordstrom et al. 1999] cannot be enforced using
MoC platforms in Metropolis.

Design methodology. The difference between EWD’s MoC-specific meta-
model and Metropolis MoC-based platform is in how they facilitate the modeling
activity. In Metropolis, the user extends the basic process blocks to describe the
needed functionality and expresses the communication through a MoC-specific
medium. In EWD, the process constructors are instantiated (MoC-specific) and
annotated with behavioral code fragments and communication is expressed by
instantiating process combinators. Note that process constructors are embed-
ded with MoC semantics, therefore MoC static semantics are enforced through
the design editor. However, the behavioral annotations are code fragments spe-
cific to a target framework such as SML-Sys or ForSyDe. The extension in
Metropolis is based on the MMM, which is independent of a target simulation
framework, rendering it more complete than EWD. A Metropolis MoC provides
an operational view, whereas EWD’s MoC is denotational. The Metropolis in-
frastructure allows refinements in their platform-based design methodology.
Currently EWD does not allow for such a design flow, but the underlying frame-
works, SML-Sys and ForSyDe, have refinement libraries that assist semantic-
preserving design transformations. Therefore, the multiaspect concept of EWD
can be used to customize it for refinements based on these design transforma-
tion libraries. The Metropolis compilation begins with the system description
that is passed to its frontend compiler to perform syntax and semantic checking
and generate an internal representation. This representation is then executed

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

16 • D. Mathaikutty et al.

Fig. 3. The design flow.

by specific backend compilers for output that can be given to different simu-
lation, synthesis, or verification tools. The compilation flow in EWD is quite
similar to the Metropolis’s compilation. The user’s model is translated to an
internal representation after performing semantic checks. The internal rep-
resentation is based on XML, which is then translated to the SML-Sys and
ForSyDe simulation framework.

4. THE EWD DESIGN FLOW

In EWD, the first step in the design flow is the model construction phase (MC)
followed by the parsing phase, which populates our xmlTree data structure.
Finally, in the code generation phase, the xmlTree facilitates multitarget simu-
lation as shown Figure 3.

The metamodeler implements the metamodels for the generic MoCs, and the
EWD design flow begins with the user being provided with this metamodel for
MoC-based modeling as shown in Figure 4.

(a) MC Phase. In this phase, there are two different functions performed, one
by the user and the other by the design editor. The Modeler Instantiates
the metamodel which establishes the framework for the modeling activ-
ity and then constructs models constrained by the MoCs. The design edi-
tor Performs conformance checks to validate the model against the MoC-
specific metamodel. If an error is flagged, the role is transferred back to the
user where he/she reworks the model until it conforms to the metamodel

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 17

Fig. 4. Usage model.

semantics. Upon completion of this phase, the system converts the model
into an XML representation and saves it in a .xme extension file.

(b) Parsing Phase. We extract the model and metamodel relevant information
and represent it in IML. This modeling syntax provides interoperability and
implementation independence. The IML-based description of the model is
parsed to populate the xmlTree data structure.

(c) Code Generation. The populated xmlTree structure is used to generate SML
or Haskell-based executable models depending on the target framework.
Henceforth, providing the modeler with a multitarget modeling framework
where one can start with a description independent of any programming
language and further process it in different design flows. We envision that
new design flows can be added with ease in EWD.

5. MODEL CONSTRUCTION PHASE

In this phase, the user instantiates the metamodel for the generic MoC, cre-
ating a modeling framework. This framework is composed of different generic
computational components and compositional operators. These computational
components map to process constructors for our generic MoC, and the compo-
sitional operators correspond to process combinators. In our generic MoC, the
process constructors are parameterized functions (process templates) in which
actual behaviors of the constructor are described through functions passed as
arguments. This is mapped to the metamodel through attribute blocks in GME.
Each component has a set of attributes attached to it that encapsulates the
actual behavior of the component. Furthermore, we target different simula-
tion frameworks, therefore, these behaviors are code fragments written in the
language of the target framework. For example, if the simulation is targeting
SML-Sys, the different computational components have their behaviors em-
bedded with functions written in SML. The designer uses the drag-and-drop
feature to instantiate the components and embed the actual behavior within
the attributes, and then uses the appropriate operators to compose them to
complete the model. We briefly discuss our metamodel in the following section.

Metamodel for SML-Sys. Our metamodel has the following entities, Pro-
cessConstructor, ProcessNetwork, InterfaceConstructor and ProcessCombina-
tor, that are defined using the generic construct 	Model
. It also contains
an entity Signal defined using an 	Atom
 construct for describing the inputs
and outputs of the model (not shown in Figure 5).

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

18 • D. Mathaikutty et al.

Fig. 5. ProcessNetwork entity in the our metamodel.

5.1 ProcessNetwork Entity

A ProcessNetwork entity as shown in Figure 5 acts as a container for processes
that are composed through a set of combinators, and the self-containment rela-
tion allows a PN to act as a collection of processes and PNs. Furthermore, it con-
tains interface constructors used for combining processes/PNs across MoCs or
with different timing information. A ProcessNetwork entity also contains ports
(Port) defined using the construct 	Atom
. A port has two attributes, namely,
struct and type, which are used to capture the datatype and structure of the in-
formation exchanged. The ports participate in three types of relations, namely,
Port2Port, Port2Signal, and Port2Connector. The Port2Port 	Connection
 is
used to compose two PNs, whereas the Port2Connector is used to connect a PN
to other processes through a process combinator to build a nonelementary PN.
The Port2Signal is used to connect the PN to the inputs and outputs. Defining
these 	Connection
s in a PN restrict the modeler from connecting entities by
creating incorrect connections. For example, if the modeler wants to compose
two processes in a PN without a combinator, the model violates a rule of the
metamodel flagging a design time-error.

The metamodeling rules enforced by the PN structure are (i) an elemen-
tary PN is made up of two processes and a combinator, (ii) a nonelementary
PN is made up of two entities, any of which can be a process or a PN; (iii)
processes cannot communicate with each other unless through a process com-
binator; (iv) if processes that communicate are modeled using different MoC
syntax or have different timings, then they should be bridged through inter-
face constructors; and (v) the data communicated through processes/PNs need
to be consistent. These metamodeling rules are specified using OCL as shown in
Table III & IV and violation of any of the rules in the metamodel will flag a de-
sign time-error.

The construct self refers to the entity to which a constraint is attached. The
function parts() collects the children of a parent entity. The first if-then segment
of the constraint in Table III states that, if the PN contains two processes, then
it is an elementary PN and should not contain a PN or an interface constructor

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 19

Table III. Well-Formedness Constraint for (i) and (ii) of the Metamodeling Rules on a
ProcessNetwork

if(self.parts(“ProcessConstructor”).size() = 2) then
(self.parts(“ProcessNetwork”).size() = 0 && self.parts(“InterfaceConstructor”).size() = 0)

else if(self.parts(“ProcessConstructor”).size() = 1) then
(self.parts(“ProcessNetwork”).size() = 1 ‖ self.parts(“InterfaceConstructor”).size() = 1)

else if(self.parts(“ProcessConstructor”).size() = 0) then
(
(self.parts(“ProcessNetwork”).size() = 2 && self.parts(“InterfaceConstructor”).size() = 0)
‖
(self.parts(“ProcessNetwork”).size() = 1 && self.parts(“InterfaceConstructor”).size() = 1)
)

Table IV. One of the Type Constraints for (v) of the Metamodeling
Rules on a ProcessNetwork

self.parts(“Port”)->
forall(obj1: Port| obj1->attachingConnections()->

forall(obj2: Port2Port|
(obj2->connectedFCO(“dst”).struct = obj1.struct)
&&
(obj2->connectedFCO(“dst”).type = obj1.type)

)
)

as a child. The metamodel evaluates the constraints as soon as the PN is created
and populated. If the constraint evaluates to false, then a violation is obtained
and the modeler is prevented from proceeding. This constraint is called the well-
formedness constraint and is specified to allow easy analysis of the structure
of the system modeled. However, this results in a highly nested system model,
therefore, the user is allowed to disable this constraint and proceed. If the
constraint is disabled, then a PN can contain any number of processes, PNs
and interfaces which follows from the PN structure are shown in Figure 5.

The construct forall is similar to a for loop in C/C++, and it iterates
over a set of entities. The function attachingConnections() collects all the
	Connection
 instances that an entity participates in, and connectedFCO()
collects the source and destination of a 	Connection
 instance. The con-
straint in Table IV states that ports communicating through a Port2Port
	Connection
 must have the same values in their struct and type attributes.
This enforces that the data communicated is consistent and will not cause type
signature errors when translated into SML-Sys/ForSyDe. Similar constraints
exist for all 	Connection
s that a ProcessNetwork entity participates in, and
every connection instance is validated at the same time the entities are con-
nected by the modeler.

5.2 ProcessConstructor Entity

A ProcessConstructor entity is a 	Model
 that acts as a place holder for
three specialized type of constructors, namely, Single Input Process (SIP), Mul-
tiple Input Process (MIP), and Process Initiator (PI) as shown in Figure 6.
Note that in the following figures, a triangle means inheritance and a

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

20 • D. Mathaikutty et al.

Fig. 6. Categorization of the process constructors.

Table V. Synchrony Constraint on a SingleInputProcess

if(self.domain = #SMoC) then self.evaluation cycle = 1

triangle with a black dot means implementation inheritance. These constructs
are part of GME’s meta-metamodel that is used to create our MoC-specific
metamodel.

There are five types of SIP constructors, namely Map, Scan, Mealy, Moore,
and Scand as shown in Figure 6. Similarly, there are three type of MIP and
PI constructors. These different constructors have a set of attributes that are
used to capture constructor-specific information to construct the corresponding
process. The attribute domain and cname are common to all the constructors
and capture the MoC domain and the constructor name. The domain attribute
enumerates the following: UMoC, SMoC, and TMoC, one of which is selected
by the modeler during the instantiation of the constructor. In the SML-Sys
library, there are many implementations for a process constructor, the mod-
eler uses the cname attribute to specify the implementation of interest, which
is correctly translated to a function call in the appropriate library element.
Note that we only show the attributes for the SIP constructors and not the
others.

The evaluation cycle attribute captures the events per cycle processed by a
constructor. We know that the constructors from the synchronous domain evalu-
ate exactly one event per-cycle and, therefore, there is the synchrony constraint
shown in Table V that enforces this rule.

Consider the Mealy 	Model
 in Figure 6, and the function-based seman-
tics of the mealy-based process in Section 2.3.1. ω0 is captured by the evalua-
tion cycle attribute, g by nextstatefn, f by outputfn, and, finally, γ is captured by
the initial value attribute. These attributes are extracted in the parsing phase
and during translation are used to instantiate and parameterize the correct
target process constructor in the respective framework.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 21

Fig. 7. Entities in our metamodel.

Table VI. MoC mismatch Constraint on a ProcessCombinator

self.parts(“Connector”)->
forall(obj1,obj2: Connector | obj1 <> obj2 && obj1->attachingConnection()->

forall(c1: Link2Connector | obj2->attachingConnection()->
forall(c2: Link2Connector |

c1->connectedFCO(“dst”).domain = c2->connectedFCO(“src”).domain
)

)
)

Figure 7(a) shows that the ProcessConstructor entity is allowed to have one
or more LinkPoint entities. A LinkPoint 	Atom
 represents input and output
ports of a process. Therefore, constraints to enforce that SIPs have exactly two
LinkPoint entities; one each for input and output are part of the metamodel.
Similar constraints exist for MIPs which use the size attribute (Figure 6) to
determine the number of LinkPoint entities allowed.

The 	Connection
s defined for a ProcessConstructor entity are (i)
Link2Signal, (ii) Link2Port, and (iii) Link2Connector. The Link2Signal al-
lows connecting input/output signals to input/output ports of a process. This
	Connection
 includes type constraints for data consistency that enforces
equivalence between the type and struct attributes of a signal and the corre-
sponding port connected to it. The Link2Port 	Connection
 is used to connect a
process to a process network to form a nonelementary PN. The Link2Connector
	Connection
 is used to connect a process to another process, which is only
possible through a combinator captured by the ProcessCombinator entity shown
in Figure 7(b).

Part of the OCL constraint attached to the ProcessCombinator entity that
checks for violations from composing processes across MoCs is shown in
Table VI. This constraint illustrates the composition of two processes that is
checked for a MoC mismatch violation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

22 • D. Mathaikutty et al.

Fig. 8. InterfaceConstructor entity in our metamodel.

Table VII. Interface chk Constraint on a InterfaceConstructor

self.parts(“Junction”)->
forall(obj1,obj2: Junction | obj1 <> obj2 && obj1->attachingConnection()->

forall(d1: Junction2Link | obj2->attachingConnection()->
forall(d2: Junction2Link |

(d1->connectedFCO(“dst”).domain = self.indomain)
&&
(d2->connectedFCO(“src”).domain = self.outdomain)

)
)

)

5.3 InterfaceConstructor Entity

In Figure 8, we show the InterfaceConstructor entity that has four types,
namely, InDup, InDdown, Strip, and Insert, each of which derives from it. These
interface constructors are used to bridge processes/PNs across MoCs or with dif-
ferent timing. Therefore, they should be able to connect with processes through
PointLinks and to PNs through Ports. As a result, an interface is allowed to
contain Junction entities which acts as connectors and enable the interface to
connect with processes through Junction2Link and PNs through Junction2Port.

The indomain attribute captures the MoC name (UMoC, SMoC, TMoC) of the
input process and the outdomain captures the MoC name of the output process.
These attributes are queried to ensure that the correct interface is instantiated
to bridge the processes belonging to different MoCs. Part of the interface chk
constraint which enforces the check when composing processes across domains.
is shown in Table VII.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 23

Fig. 9. The adaptive amplifier as a composition of processes.

Fig. 10. Model of an adaptive amplifier.

5.4 Modeling an Adaptive Amplifier in UMoC

Figure 9 describes the Adaptive Amplifier (AA) as a composition of four pro-
cesses. Process P1 merges the primary input signal with a control signal that
contains the amplifying factor. P2 multiplies the control signal with each ele-
ment in the primary input signal. P3 analyzes the amplified signal and adapts
the control signal accordingly. P3 compares the average of the amplified signal
to a preferred range, and if it is above a certain threshold, the control signal is
lowered. Likewise, if the amplified signal is below the threshold, then the con-
trol signal is increased. The adaptive nature is modeled using a feedback loop
as shown in Figure 10. The initialization of the feedback loop is performed us-
ing the fourth process P4. This process initializes the output O4 with the value
10 so that the amplification is within the threshold. All signals carry integer
values. We model this example in the untimed domain using our multi-MoC
metamodel. We start off by instantiating the UMoC-specific metamodel to cre-
ate a framework for our modeling activity. We model this as follows: process P1
is MIP instantiated as a zip process, which takes two inputs, Sin and Hfactor.
Processes P2 and P3 are SIPs instantiated as map and scan processes. Finally,
P4 is an init process. The black dots represent the ports on the PN and the dia-
monds are the links associated with the processes. The line between a port and
a link represents a Port2Link connection, while the line between two ports rep-
resents a Port2Port connection. The rectangle between the input/output signal
and the port is used to define the Port2Signal connection.

P1 and P2 are composed using the sequential operator C1 to form a process
network PN1 as shown in Figure 11. PN1 is composed using the sequential
operator C2 with P3 to form PN2 as shown in Figure 12. PN2 is composed using
the sequential operator C3 with P4 to form PN3 as shown in Figure 13. PN3 is

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

24 • D. Mathaikutty et al.

Fig. 11. PN1 view.

Fig. 12. PN2 view.

Fig. 13. PN3 view.

Fig. 14. Snapshot of PN4 and top level.

composed with itself in the feedback mode using C4. Figure 14 illustrates PN4
and a snapshot of the top level of the AA model.

This is one possible approach to modeling the AA. An alternative is to model
the AA as a composition of four processes where the processes are at the same
hierarchical level. The pros and cons of the different modeling approaches are
discussed in Section 8.

6. PARSING PHASE

The multitarget code generation achieved in this phase is through the XML-
based interoperability. In GME, the model and metamodel data are exported

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 25

to an XML representation and saved in a .xme file which needs to be parsed
to extract the model-specific data. Therefore, we parse the .xme file using the
Xerces-C++ [Apache XML], which is a validating XML parser built in C++.

The parsing is done in two stages. In the first stage, called Xme2IML, we
parse the .xme file to extract the relevant information of the system model and
remove all the presentation and visualization information which is more than
50% of the file’s content. This stage is implemented using the SAX (API for
XML) where we build an interface on top of the parser to extract and represent
in our IML description. The output of the Xme2IML stage is an IML description
of the model, which is further parsed in the second stage, called IML2xmlTree,
to yield a populated xmlTree data structure. This is done using another SAX
interface built on top of the parser.

6.1 Interoperable Modeling Langauge (IML)

IML is an XML-based representation for generic MoCs. The model represen-
tation in XML extracted from the output of the MC phase is validated against
the IML, which is a Document Type Definition (DTD) that defines the legal
constructs of the language.

In Section 2.2, we discussed the classification of generic MoCs based on the
abstraction of time, which is captured through the attributes of the different
legal constructs. The IML constructs are generic enough to represent the model
regardless of the underlying MoC. The attributes of the different constructs are
of type CDATA3, and the results of this are that these attributes are skipped
during DTD validation. This brings two advantages: (i) the MoC-specific infor-
mation is embedded in these attributes allowing generic constructs in the IML
and (ii) the behavioral aspect of the model that are SML or Haskell code frag-
ments is embedded in these attributes. However, the synchronous domain is a
specialization of the untimed domain, therefore, it is easy to mimic synchronous
modeling using the untimed modeling constructs. In order to avoid any ambi-
guity, we introduce an attribute domain in the IML constructs which allows
correct interpretation during code generation. Furthermore, the IML enforces
attribute validity for constructs, therefore, attributes defined with a validity
type #REQUIRED need to be specified at all times, otherwise the result is an
incomplete translation during the code generation phase.

We briefly describe some of the IML modeling constructs in Table VIII. It
has a top-level element called MODEL that is used to create the system model
using MoC syntax. The MoC and framework information are specified through
the domain and framework attributes shown in line 5. A MODEL element con-
stitutes PROCESSes, PNs, INPUTs, and OUTPUTs. A PN element is built up
from a set of processes that compose their inputs and outputs with a set of
combinators shown in line 10. A PN can contain one or more instances of itself,
thereby allowing hierarchical PNs. A PROCESS element shown in line 13 is
created through a constructor that consumes a set of input signals and produces
a set of output signals. A constructor is basically instantiated by one of the fol-
lowing: map, scan, mealy, moore, scand, zip, zipWith, unzip, source, sink or,

3Attributes of type CDATA are viewed as non-XML tags.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

26 • D. Mathaikutty et al.

Table VIII. Some Constructs of the IML DTD

1 <!ENTITY % ty cons “Map } Scan } Mealy } Moore } Zip
2 | UnZip | ZipWith | Scand | Init | Source | Sink">

3

4 <!– MODELING CONSTRUCTS FOR GENERIC MOCs –>
5 <!ELEMENT MODEL (PROCESS | PN | INPUT | OUTPUT)* >
6 <!ATTLIST MODEL name CDATA #REQUIRED
7 domain CDATA #REQUIRED
8 framework CDATA #IMPLIED >
9

10 <!ELEMENT PN (PN | INTERFACE | COMBINATOR | PROCESS | INPUT* | OUTPUT*)+ >
11 <!ATTLIST PN name CDATA #REQUIRED domain CDATA #IMPLIED >
12

13 <!ELEMENT PROCESS (INPUT* | OUTPUT* | CONSTRUCTOR)+ >
14 <!ATTLIST PROCESS name CDATA #REQUIRED domain CDATA #IMPLIED >
15

16 <!ELEMENT CONSTRUCTOR (%ty cons;)+ >
17 <!ATTLIST CONSTRUCTOR name CDATA #REQUIRED
18 process CDATA #IMPLIED
19 domain CDATA #IMPLIED >
20

21 <!ELEMENT Mealy EMPTY >
22 <!ATTLIST Mealy Evaluation cycle CDATA #IMPLIED
23 NextStateFn CDATA #REQUIRED
24 OutputFn CDATA #REQUIRED
25 InitialState CDATA #REQUIRED >

init as shown in Table II. In our SML-Sys framework, process, templates are
higher-order functions that support polymorphism. These templates take a set
of functions as argument that are mapped to attributes of elements in the IML.
These attributes are defined as type CDATA so that they facilitate interop-
erability by capturing the behavior of a model, independent of the modeling
framework. In line 21 of Table VIII, we illustrate the Mealy-based constructor
through the XML element Mealy with four attributes that have a one-to-one
correspondence to the function-based definition in Section 2.3.1 and the UML
diagram in Figure 6.

Similarly, the IML contains constructs such as COMBINATOR, INTER-
FACE, INPUT, and OUTPUT, to capture the process combinators, interface
constructors, inputs, and outputs of the model.

6.2 Xme2IML & IML2xmlTree

The first stage of the parsing phase analyzes the output of the MC phase to gen-
erate the IML representation. The model created using EWD is exported to an
XML-based representation that embeds the model and metamodel-specific in-
formation. We extract the model-specific information and initialize the MODEL
construct of the IML. We initialize the IML construct PN by extracting infor-
mation from the ProcessNetwork entity. The inputs and outputs are extracted
from the Port entities within the ProcessNetwork entity and used to initial-
ize the IML constructs INPUT and OUTPUT of the PN construct. We extract
the constructor-specific information such as name, domain, and its arguments
from the SIP, MIP, or PI entities and initialize the PROCESS IML construct.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 27

Fig. 15. The class diagram of the xmlTree structure.

Similarly the interface-related information is extracted from the InterfaceCon-
structor and used to populate the IML construct INTERFACE. The inputs and
outputs to a process are extracted from LinkPoint entities. The combinator-
related information is extracted from the ProcessCombinator entity and used
to initialize the IML construct COMBINATOR.

The second stage of the parsing phase analyzes the IML representation to
populate the xmlTree structure. The IML has a one-to-one correspondence with
the xmlTree structure, therefore, the mapping of the IML representation to the
xmlTree is done with relative ease.

The class diagram for the xmlTree data structure is shown in Figure 15. Using
our xmlTree structure instead of the Document Object Manager (DOM) built in
by the XML parser provides the tool with semantic error-checking capabilities.
It also offers the tool the flexibility to simulate the model in a multitargeted
environment. It can further facilitate a reverse design flow where our structure
generates the IML description of the model from the target framework.

7. CODE GENERATION PHASE

In the code generation phase, the different code generators query the data
structure to perform a complete translation into executable models that can
be simulated in the targeted framework. The algorithm for the SML-Sys code
generators follows:

7.1 SML-Syscode and ForSyDecode

SML-Syscode generator translates the model into SML code that is simulated
in the SML-Sys framework. The translation is based on the following algorithm.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

28 • D. Mathaikutty et al.

SML-Syscode Translation Algorithm

{Given an xmlTree G and i,j = 1}
Step 1 Extract G’s modeling domain, target framework, PN list and its input/
output signals.
Step 2 For pn ∈ PN list, extract pni

Step 2.1 Extract all input/output signals of pni
Step 2.2 Extract the composition operator of pni
Step 2.3 For process p, s.t. p ∈ pni

Step 2.3.1 Extract all input/output signals of pi
Step 2.3.2 Extract constructor type of pi
Step 2.3.3 Match constructor type to the respective function in the

target framework.
Step 2.3.4 Extract the arguments of the constructor

Step 2.4 Extract all domain interfaces
Step 2.5 For PN pn j , s.t. pnj ∈ pni , i �= j Repeat Steps 2.1 to 2.4

Step 2.5.1 i f j �= size of PN list of pn j then j = j + 1 and
Repeat Step 2.4

Step 3 I f i �= size of PN list then i = i + 1 and Repeat Step 2 and 3
else Translation Complete

The SML-Syscode generator uses the top-level structure of the xmlTree to ini-
tialize the skeleton of the model. It further extracts the input and output signals
to the model from the top-level. Once the target framework and the modeling
domain has been identified, the SML-Syscode encounters a list of PNs in the
xmlTree. Translation of a PN structure from the xmlTree results in the appro-
priate definitions of processes, process combinators, PNs, and inputs/outputs
in the SML-Sys framework. Each PN defines a local binding for its components
using the SML let construct. The code generator translates each PN in the
list, one after the other, until it reaches the end of the list. The end of the list
will complete the translation phase. The ForSyDecode generator translates the
model into Haskell executables that is targeted for the ForSyDe methodology.
The implementation details for the code generation is provided in Mathaikutty
[2005].

8. EXPERIENCE WITH EWD AND CASE STUDY

Metamodeling in EWD allows for the creation of multiple MoC-specific meta-
models and attaching them to create a library. Adding the MoC-specific in-
terfaces completes the generation of a multi-MoC modeling framework. We
have demonstrated this through EWD. Modeling in EWD is as follows. A mod-
eler decomposes the system design into smaller components based on their
inherent computational nature. The modeler instantiates the multi-MoC mod-
eling framework and describes the different components using the metamodel
that best describe their computation. If the components are described based on
different metamodels, then the appropriate interfaces need to be instantiated
to integrate and arrive at the complete design. We illustrate the usefulness of
EWD by modeling a nontrivial example of a digital equalizer.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 29

Fig. 16. Digital equalizer system.

8.1 Model of a Multi-MoC Digital Equalizer System (DES)

The task of the equalizer is to modify an audio input signal according to the
position of the buttons for the bass and treble levels and to output the modified
signal. In addition, the equalizer also monitors the output signal in order to
prevent damage to the speakers in case of an extremely high bass level.

The DES consists of a control part and a data part. We model the con-
trol part in the Synchronous MoC and a dataflow part in Untimed MoC.
Figure 16 [Jantsch 2003] shows the two different parts with the appropriate
interfaces to bridge the domains. The specification is decomposed into four com-
ponents. The Button Control subsystem monitors the position of the button in-
puts and the override signal from the subsystem Distortion Control and adjusts
the current bass and treble levels. This information is then passed to the sub-
system Audio Filter, which receives the audio input that filters and amplifies
the signal according to the current bass and treble levels. The output signal of
the equalizer is analyzed by the Audio Analyzer subsystem, which determines
whether the bass exceeds a predefined threshold. The result of this analysis
is passed to the subsystem Distortion Control, which decides if a minor or ma-
jor violation is encountered and issues the necessary commands to the Button
Control subsystem.

The DES has an internal feedback loop and therefore a Delay process has
been introduced between the Audio Analyzer and the Distortion Control in
order to give the system an initializing value. The interface process between the
Analyzer and the Distortion Control is modeled as an Insert-based process that
converts the untimed signal to synchronous signal, and the interface between
the Button Control and the Filter is modeled as a Strip-based process that
converts the synchronous signal to an untimed control signal. While dataflow
signals such as AudioIn and AudioOut have a defined value for each event cycle,
the control signals BassUP, BassDN, TrebleUP, and TrebleDN are aperiodic and
not asserted for most of the time. The interaction of the subsystems is modeled
by means of a set of equations where each equation specifies the input and

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

30 • D. Mathaikutty et al.

Fig. 17. DES topl evel.

output signals of a subsystem. The formal description follows.

Equalizer (BassDN, BassUP, TrebleDN, TrebleUP, AudioIn) = AudioOut
where,

(Bass, Treble) = ButtonControl (BassDN, BassUP, TrebleDN, TrebleUP, Overr)
AudioOut = AudioFilter (Bass, Treble, AudioIn)
Overr = DistortionControl (DistFlag)
DistFlag = AudioAnalyzer (AudioOut)

The specification of each of the four subsystems are shown in Figure 16 and
we systematically illustrate how to model the digital equalizer using EWD4.
The topl evel of the DES modeled in EWD is shown in Figure 17.

DES internals. The internals of this block are as follows. First, we have the
PN AudioFilter (AF), sequentially composed with IB 1 where in IB 1 is an en-
capsulation of the remaining subsystems of the DES as shown in Figure 18. The
AF has two inputs and one output. The AudioIn input signal is user-defined and
the other input is the output from the Button Control subsystem which comes
from IB 1. The output of the AF is given as input to the IB 1 PN through a
sequential composition. Furthermore, since IB 1 embeds all the other subcom-
ponents of the system, the inputs to these components are given as input to
IB 1. These inputs are BassUP, BassDN, TrebleUP, and TrebleDN, which are
given through ports I1, I2, I3, and I4.

IB 1 internals. Figure 19 shows the AudioAnalyzer (AA) being sequentially
composed with the IB 2 PN, which is the rest of the subsystems of the DES
equalizer besides the AF and the AA. The input to the AA is the output of the
AF which is also the output of the DES namely AudioOut.

IB 2 internals. A sequential composition of the init-based process and the
IB 3 PN in needed to bridge the domains. All the subsystems modeled so far
were untimed by nature and since the remaining components of the DES,

4The interfaces between the untimed and synchronous subsystems are abstracted in Figure 16.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 31

Fig. 18. Audio filter subsystem.

Fig. 19. Audio analyzer subsystem.

Fig. 20. Bridging MoCs untimed to synchronous.

namely, the Distortion Control and the Button Control, are synchronous, we
need to bridge the domain before the output of the untimed domain can be given
as input to the components in the synchronous domain. P1 (init-based process),
which is the initU-based process, models the delay element shown in Figure 20.
The IB 3 PN is basically the remaining synchronous component. The interface
to bridge the domains is modeled as an insert-based process (insertU2S), which
is the Insert IF 1 element in Figure 20.

IB 3 & IB 4 internals. The DistortionControl (DC) subsystem modeled as
a state machine is sequentially composed to the IB 4 PN, which contains the
ButtonControl (BC) subsystem as shown in Figure 21.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

32 • D. Mathaikutty et al.

Fig. 21. Distortion control subsystem.

Fig. 22. Button control subsystem and MoC interfacing.

The BC which is composed through a feedback operator to the AF must com-
municate through interfaces since the BC is modeled within the synchronous
domain and the output is given as input to the AF that is untimed. We need
the appropriate interface process to bridge these PN, across different domains.
The interface process is modeled as a strip-based process (stripS2U), which
is the Strip IF 2 element in Figure 22. We discuss the functionality of the But-
ton Control subsystem and illustrate how we model it using EWD targeting
SML-Sys-based code generation.

BC subsystem. The BC works as a user-interface of the DES system. It
receives the four inputs BassDN, BassUP, TrebleDN, TrebleUP and the over-
ride signal Overr from the DC and calculates the new bass and treble val-
ues for the outputs Bass and Treble. The subsystem contains the main pro-
cesses ButtonInterface (BI) and LevelControl (LC). The BI process monitors
the four input buttons and outputs the value of the pressed button or an ab-
sent value if no button is pressed during an evaluation cycle. The LC process
keeps track of the current bass and treble levels and adjusts them if either
an event from the signal Button or Overr is present. In this case, the pro-
cess outputs the current levels, otherwise the output value is absent. The pro-
cess network from Figure 23 is expressed as a set of equations in the formal
notation.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 33

Fig. 23. Schematic of the Button control subsystem.

BC(Overr, BassDN, BassUP, TrebleDN, TrebleUP) = Levels
where,

(Bass, Treble) = unzipS(Levels)
Levels = LC(Button, Overr)
Button = BI(BassDN, BassUP, TrebleDN, TrebleUP)

Button interface (BI). If two or more buttons are pressed, the conflict is
resolved by the priority order of the buttons. If no button is pressed, the output
is absent. Since the process is purely combinational and has four inputs, it
is modeled by means of a process that is based on the zipWith synchronous
constructor as shown.

BI(BassUP, BassDN, TrebleUP, TrebleDN) = zipWithS(condf)(BassUP, BassDN,
TrebleUP, TrebleDN)
where,
condf (BassUP, BassDN, TrebleUP, TrebleDN) =

if (bassUp = Active) then BassUP
else if (bassUp = * ∧ bassDn = Active) then BassDN
else if (bassUp = * ∧ bassDn = * ∧ trebleUp = Active) then TrebleUP
else if (bassUp = * ∧ bassDn = * ∧ trebleUp = * ∧ trebleDn = ACTIVE)

then TrebleDN
else

Observe that the use of process constructors simplifies the task for the
designer. Since the process constructor (here zipWithS) belongs to the syn-
chronous MoC, the designer has only to formulate the combinational function
(f), which will be applied by the process constructor to all values of the incoming
signal. The BI is modeled with help of pattern matching.

Level control (LC). The process has a local state expressing the current
values for the bass b and treble t. The LC has two modes. In the mode Operating,
the bass and treble values are stepwise changed in steps of 0.2. However, there
exists a maximum and a minimum value of +5.0 and −5.0, respectively. The
process enters the mode Locked when the Overr has the value Lock. In this
mode, an additional increase of the bass level is prohibited and even decreased
by 1.0 in case the signal Overr has the value CutBass. The subsystem returns
to the mode Operating on the Overr value Release. The output of the process is
an absent extended signal of tuples with the current bass and treble levels.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

34 • D. Mathaikutty et al.

LC(Button, Overr) = mealyS(nextState, output, (s0, b0, t0))(Button, Overr)
where,

s0 = Operating
b0 = 0
t0 = 0
nextState((s, b, t), btn, ov) = (s1, b1, t1) with,

s1 =
{

Locked if (s = Operating ∧ ov = Lock) ∨ (s = Locked ∧ ov �= Release)
Operating if (s = Operating ∧ ov �= Lock) ∨ (s = Locked ∧ ov = Release)

b1 =
⎧⎨
⎩

incL(b, Step) if (s = Operating ∧ btn = BassUP) ∧ (ov �= CutBass)
decL(b, Step) if (btn = BassDN) ∧ (ov �= CutBass)
decL(b, cutStep) if (ov = CutBass)

t1 =
{

incL(t, Step) if btn = TrebleUP
decL(t, Step) if btn = TrebleDN

Step = 0.2
CutStep = 1.0

MaxLevel = 5.0
MinLevel = −5.0

incL(x, step) =
{

MaxLevel if (x + step) ≥ MaxLevel
x + step otherwise

decL(x, step) =
{

MinLevel if (x − step) ≥ MinLevel
x − step otherwise

output((s1, b1, t1), btn, ov) =
{ � if btn = � ∧ ov = �

(b1, t1) otherwise

The process is described by means of the process constructor mealyS, which
has a next-state function nextState, an output function output and an initial
state as arguments. Since the process constructor belongs to the MoC, the de-
signer has only to formulate the initial state, the next-state and, the output
function. The state is divided into a mode (with the initial value s0 = Operat-
ing), a bass value (b0 = 0), and a treble value (t0 = 0). The next-state function
can be extracted from the state diagram. The output function selects the bass
and treble values from the state in case of a present value of either Button or
Overr. Otherwise, the output event has an absent value.

The visual model of the Button Control subsystem and embedding behav-
ior for the Button Interface modeled as a zipWith-based process is illustrated
in Figure 24. The other two untimed subsystems, AudioFilter and AudioAna-
lyzer, and the synchronous DistortionControl subsystem have been modeled in
a similar fashion [Mathaikutty 2005].

After the model was complete, conforming to all constraints, we began the
parsing phase. During this phase, the model-specific information of DES’s four
subsystems are extracted and described in IML where the structure of the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 35

Fig. 24. Button control subsystem modeled in EWD.

model is built by instantiating the corresponding IML constructs and the be-
havior is embedded into the attributes of these constructs. The IML description
of the DES is further parsed to populate the xmltree structure which serves as
input for the code generation phase. The translation of the DES model into an
executable in the SML-Sys framework was achieved through the SML-Syscode
generator. The ForDySecode generator cannot be run on the multi-MoC DES
model created in EWD because ForSyDe [Sander and Jantsch 2004] is a single
MoC-based synchronous framework. In the multi-MoC DES, the AudioFilter
and AudioAnalyzer subsystems are modeled as untimed components, there-
fore, we remodeled these using the synchronous constructs in EWD. The new
synchronous DES model was run through the ForDySecode generator to create
a simulation model in the ForSyDe framework.

Design experience. From our role as a modeler in EWD, we realized that
the usage of our MoC-specific metamodel resulted in highly nested models.
This is attributed to the containment relation among the entities. Creating
such highly nested models comeswith the tediousness of attaching port-level
	Atom
s to each 	Model
 entity (LinkPoint to ProcessConstructor, Port to
ProcessNetwork, etc) that allows for communication across the containment
levels. A good amount of the modeling time and effort is spent in correctly
constructing these boundaries between the different containment levels, which
renders the modeling activity highly prone to errors. The errors were associated

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

36 • D. Mathaikutty et al.

with connecting entities incorrectly, which map to type mismatches in the func-
tion signatures generated from the translation to an executable model in the
SML-Sys/ForSyDe framework. The OCL constraints on the port entities check
that the data communicated is consistent at the datatype level. Many of the
modeling errors were caught by these constraints. The uncaught errors tend to
mask their error by being consistent at the datatype level. For example, con-
sider ports p11 and p12 in process P1 of datatype t and ports p21 and p22 in P2
also of datatype t. The modeler connects p11 to p22 instead of p21 making an
error, but the identical datatypes mask the error from a type constraint.

The nesting is avoided considerably by creating a flat model where the model
is a big PN of many processes composed at the same level. This requires the
modeler to disable the well-formedness constraint during model construction.
From our case study of creating flat models, we observed that there is a savings
in the modeling time, but the translation into an executable was more difficult
with new errors that occurred from a flat form representation of the model.
Most of the errors were due to overriding of global definitions by local bindings.
In a functional language, variable assignment is not allowed since an integral
part of the programming paradigm is the absence of the notion of a state. How-
ever, a similar idea is provided through name bindings. In SML, the construct
let is used to create a local environment within a function in which function
instances, values, etc, are bound to names that allow reusability. Translation
from a nested model resulted in the creation of functions with their own local
environments and local bindings. However, the result of translation from a flat
model was that the functions were specified at the same level, and this led to
the overriding of the global binding by new bindings that were meant to be
local. These errors were frequentl, because the function names are overloaded
in practice for modeling ease, taking advantage of local bindings.

From our role as a metamodeler in EWD, the following observations were
noted. (i) If the MoC metamodel was created to include a lot of modeling
details, then the user-interface increases the modeling effort through the
tediousness associated with the instantiation and characterization of the en-
tities to create a model that conforms to all constraints. However, one of the
advantages of such a metamodel is the large number of constraints that can be
specified to enforce a correct construction. (ii) If a generic MoC metamodel was
created, then the time necessary for model construction is reduced. However,
the number of checks that can be performed is also reduced and the code
generators implemented for the translation are more difficult and prone to
errors. Therefore, the creation of an MoC metamodel requires attaining the
right level of expressiveness where the metamodel is sufficiently rich to allow
a wide range of static-MoC checks, and it does not cause the modeling activity
to be tedious and time-consuming. Having a metamodeling-driven design
environment such as EWD facilitates such an exploration by allowing the
metamodeler to create MoC metamodels of varying expressiveness so as to
quickly arrive at the desired one with relative ease.

A problem noticed during the implementation of the code generators is the
missing notion of sequentiality among the instantiated entities in the visual
editor of the modeling framework. When the model is exported into XML, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 37

entities are collected in the order in which they were instantiated and exported
into XML. This forces a sequentiality that is inherent to the exporting tool.
This predetermined ordering is often not the correct ordering because the vi-
sual framework does not restrict the modeler from throwing the entities onto
the editor in any random order and connecting them. Translating such a model
would instantiate function definitions in the wrong order which results in ille-
gal function definitions at compile time. Our approach to this problem was to
provide constructs in the form of 	Connection
s that explicitly specified an or-
dering and enforced that the modeler use these constructs during modeling. The
code generators are implemented to follow the sequential constructs and per-
form the translation, which is independent of the way the model was exported.
However, this approach increases the modeling effort on the part of the user.

Our process constructors are implemented as higher-order functions where
a constructor takes secondary functions as parameters. For example, γ , g , f of
the Mealy-based constructor are functions specified by the modeler and passed
as arguments to the constructor mealyU. In our MoC-specific metamodel, these
secondary functions are captured through attributes of the ProcessConstructor
type entities. We have noticed that these attributes are a source for some of
the errors during translation, especially since they are not subjected to any
datatype-level checking during modeling. Furthermore, they cannot be sub-
jected to any checks because they are specified as plain attributes making it
difficult to separate the structure of the function from its actual behavior. The
reason for specifying these functions as attributes is that they are code snippets
in either SML or Haskell which describes the behavior of the process to be con-
structed. A solution to this problem is to provide UML constructs to capture the
structure separately and allow the behavior to be an attribute. Furthermore,
the metamodeler should provide composability checks at the structural level
based on how the constructor composes the secondary functions. This would
catch most of the errors from the mismatch in the function signature of the
secondary functions which are composed by the model at compile time in the
SML-Sys/ForSyDe framework.

The constructors provided through our MoCs are sufficient to express varying
computations, however it is a common practice to add new constructors which
ease the modeling aspect in functional frameworks. These new constructors fa-
cilitate specialized computations by extending basic constructors or represent
the composition of a set of constructors that is repeatedly employed. This tradi-
tion is also possible through EWD and the effort required is minimal due to the
ease of customizability. For example, during the development of the DES, one
of the new constructors added in SMoC is the groupSn constructor (Definition
8.1) that was used to model the FIR core in the AudioFilter subsystem.

Definition 8.1. The process group Sn (k) is defined as group Sn(k) = p,
where

p(s1, . . ., sn) = ś and p = mooreSn (f , g , ω0) s.t.

f ((x1, . . . , xn), ω0) =
{

(x1, . . . , xn) if |ω0| = k ∨ |ω0| = 0
ω0 ⊕ (x1,. . . , xn) otherwise

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

38 • D. Mathaikutty et al.

Fig. 25. Addition of Group constructor in our metamodel.

g (ω0) =
{

[ω0] if |ω0| = k
� otherwise

ω0 = 〈 〉
⊕ is the concatenation operator.

The Group constructor creates a multiple input Moore-based process which
computes the next state based on k events from each of its inputs and the previ-
ous state. The metamodel is extended to provide a group-based process creation
construct by adding a 	Model
 entity that derives from MultipleInputProcess
and has the same attributes as a Moore entity derived from SingleInputPro-
cess as shown in Figure 25. The new attribute grpsize captures the number of
events from each input that needs to be grouped (k). Note that, all the available
constraints apply to this new constructor. The metamodeler is also allowed to in-
sert new specialized constraints based on groupSn constructor’s compositional
properties. Note that at this point, the modeler plays the role of a metamodeler
by customizing the MoC metamodel to suit the modeling needs of the system
at hand.

The IML is also extended to capture the new constructor and the new IML
construct as shown in Table IX. The extraction and code generation APIs for the
Moore-based constructor is reused to extract all attributes of the Group entity.
The grpsize attribute is an integer field in the metamodel similar to the evalu-
ation cycle attribute and therefore is replaced during the usage of the APIs.

Certain observations from our design experience are that the MoC customiz-
ability is mostly provided through the addition of new constructors, which are
extensions of the basic constructors provided in Table I. However, the addition

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 39

Table IX. IML Construct for the Group Constructor

1 <!ELEMENT Group EMPTY >
2 <!ATTLIST Group GroupSize CDATA #IMPLIED
2 NextStateFn CDATA #REQUIRED
4 OutputFn CDATA #REQUIRED
5 InitialState CDATA #REQUIRED >

of support for a new MoC capability would require defining the metamodel,
IML, necessary extraction, and code generation APIs. The creation of the MoC
metamodel is easily provided through EWD’s meta-metamodel. The IML would
be defined in a similar manner using ELEMENTs and ATTLISTs, which is a di-
rect translation from the metamodel. The new APIs would also be very similar
to our current APIs since we believe formulating a function-based semantics for
an MoC would have similar notions of process constructors, combinators and
interfaces.

9. CONCLUSION

Our work in creating the EWD environment has been mainly motivated by the
concise denotational semantic of the underlying frameworks such as SML-Sys
and ForSyDe. They allow functional design and subsequent formal analysis and
transformations towards implementation but require textual programming for
system design. The associated tediousness leaves the designers with the need
for visualization in such a framework, which not only eases the complete design
process but also makes the existing formal semantics a part of the environment
through metamodeling.

The metamodeling tool GME motivated us to fulfill this need for visualization
on top of a functional modeling framework, and also allowed us to rigorously en-
force the metamodel of untimed, synchronous, clocked synchronous, and timed
MoCs, together with various static semantic constraints through attributes of
these models. GME also helps designers to store executable behaviors in the
attributes in the form of code fragments which can later be used in the body of
the generated executable models in SML or Haskell. Using GME, we have im-
plemented a metamodel for the generic MoCs with the corresponding interfaces
to facilitate a true multi-MoC modeling framework.

Since we already have a generic SML-based environment [Mathaikutty et al.
2004a] for modeling embedded systems, which also has transformation libraries
for refinement [Mathaikutty et al. 2004b], and can be subjected to all sorts of
static semantic analysis, we have enhanced the visual EWD environment with
code generation capabilities. However, to facilitate other functional frameworks
such as ForSyDe to use our tool and design flow, we have created an inter-
mediate XML-based language for system description which we call IML. IML
parsing and storage in an intermediate data structure and subsequent code
generation into SML or Haskell executable models are also described. Finally,
EWD requires installation of GME and either the SML multi-MoC libraries or
the ForSyDe framework.

Currently, we are developing an imperative programming framework for
the function-based semantics of the generic MoCs [Mathaikutty et al. 2005].

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

40 • D. Mathaikutty et al.

The IML language will be used to capture the model representation for inter-
operability, which is possible since the actual behaviors are captured as code
snippets from the modeling language into which the model will be translated
for simulation. However, the code generator will be very different from the
SML-Syscode or ForSyDecode generator.

APPENDIX

TAGGED SIGNAL MODEL (TSM)

The TSM by Lee and Sangiovanni-Vincentelli [1998] is a denotational frame-
work aimed at analyzing and comparing different MoCs. It is a description that
explicitly does not want to provide any execution mechanism for individual pro-
cesses. Process behavior is exclusively defined by the possible values of their
inputs and outputs. Since all processes can have an internal state, the entire
history of all inputs and outputs is relevant and called a signal. To give the
events in a signal an order of occurrence and to map it onto a global time, a
tag system is used such that every event is associated with a tag. If the tags
form a partially ordered set with an order relation, events can be related to
each other and one event occurs either before, at the same time, or after an-
other event. If the tags of two events are not related with respect to this order
relation, it cannot be determined if one event occurs before or after the other.
MoCs with a partially ordered tag system are categorized as untimed MoCs and
the partial order of events is due to a causality dependence, that is one event
triggers the generation of another event, thus it has to occur before the second
event.

If the tag system corresponds to a totally ordered set, it can be interpreted
as time stamps on a one-dimensional time axis. Then, every event is timewise
related to every other event in the system in the sense that the two time tags
of two arbitrary events unambiguously determine if one event occurs before, at
the same time, or after the other event. If the tags are drawn from a discrete,
totally ordered set, for example the set of integers, we have a discrete-time
MoC; if the tags are drawn from a continuous, totally ordered set, we have a
continuous-time system.

Thus, different structures and properties of the tag system lead to different
MoCs (untimed, discrete-time, continuous time). The tag system can further be
used to express specific communication properties of processes. For instance,
the rendezvous communication mechanism of CSP [Hoare 1978] and CCS
[Milner 1989] can be enforced by requiring that there are internal events in
two communicating processes that have identical tags when the two processes
communicate. This ensures that the two processes are in a well-defined state
when they communicate, that is they have a rendezvous.

In summary, TSM provides a complete theoretical framework to express
the representation of time in different MoCs; it allows the formulation of con-
straints on the tag system that captures certain important properties of commu-
nication between processes, but it does not deal with execution mechanisms of
individual processes because it foremost wants to be a denotational framework
that abstracts from concrete process operations.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 41

SML-Sys follows the TSM in that it uses the representation of time as the
main criteria to distinguish between MoCs5. However, a main motivation for our
framework is that it should be of practical use as well as a device for theoretical
studies. Consequently, SML-Sys (a) also regulates the execution semantics of
processes, (b) is restricted to deterministic processes and process networks,
and (c) provides a reasonably practical means to represent global time in timed
MoCs.

The execution semantics of processes is defined by process constructors (see
Section 2.3.1). It is inspired by the firing mechanism for actors in dataflow
process networks [Dennis 1974; Lee and Parks 1995; Lee 1997]. A process is
invoked when a sufficient number of events appears on its inputs. We general-
ized this mechanism also for timed MoCs by allowing absent events to trigger
process invocation. This allows a process to be invoked after a specific time
period has elapsed, essentially modeling time-outs.

We believe it is beneficial to restrict the framework to deterministic pro-
cesses and process networks. Formal analysis, verification, and synthesis is
simpler and more tractable for deterministic models. For instance, the verifi-
cation of complex systems is already extremely challenging for fully determin-
istic models. It is even harder for nondeterministic models because then all
nondeterministically possible execution sequences have to be considered even
if most of them will not be realized by a concrete implementation or allowed
by a realistic system environment. We advocate that nondeterminism should
be avoided by choosing the right abstraction level. However, stochastic models
can be used to capture unknown delays of communication channels. The pros
and cons of deterministic and nondeterministic models are elaborated in more
details in Jantsch et al. [2001], but it is worth pointing out that the general
metamodeling approach of EWD is not restricted to deterministic models even
though the current MoC framework is fully deterministic but includes stochas-
tic processes.

In the TSM, global time is represented by associating a tag with each event.
For untimed MoCs, the set of tags is partially ordered, for timed models it is
totally ordered. We have opted not to use explicit time tags in our framework
for practical reasons. For timed MoCs, the time tag approach does not blend
well with our invocation semantics based on firing rules. If a process does not
receive any event for some time, it has no means to know how much time has
elapsed. Thus, a time-out cannot be modeled where a process is activated if no
events are received after a specific time period. However, to be able to model a
time-out is essential in a timed MoC. To rectify this problem, a process needs
access to global time in some other way, essentially through a global, shared
variable. This leads to two other problems. One is the question of how the value
of the global variable is distributed to all processes synchronously. The second
is that process invocation triggered by a global, shared, variable violates our
invocation semantics and leads to nondeterminism.

5We treat the untimed model, where causality relations are the only mechanism to order events,
as a particular and abstract way to represent time. In the UMoC, time is represented as a partially
ordered set. With this convention, we follow Ecker and Hofmeister [1992] and Jantsch et al. [1999]

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

42 • D. Mathaikutty et al.

In summary, since it is nontrivial to maintain a consistent global time in
distributed systems [Lamport 1978] and for a deterministic process network
model, we opted for embedding the time information into each and every signal
such that all signals in the system are synchronous. Absent events are used to
maintain synchronicity at time instants when no other event is produced. Note
that absent events are a modeling technique that need not be implemented.
For the implementation, the synchronicity requirements can be relaxed and a
synchronization algorithm for distributed systems, for example as proposed by
Lamport Lamport [1978] can be implemented with the help of the occasional
emitting of absent events.

To summarize the comparison of the SML-Sys framework with the TSM,
we can note the following differences. For untimed MoCs, there is virtually no
difference, both models assume a partial order of all events. For synchronous
and discrete-time MoCs, our framework embeds the timing information in the
structure of the signals, while the TSM associates a global time tag with each
event. Both models lead to a global order of time. Our approach matches better
with process invocation based on firing rules, is fully deterministic, and does
not require implicit access of processes to global time. The TSM easily extends
to a continuous-time model, while ours does not. We consider continuous-time
MoCs beyond the scope of our current framework, but they may be a subject for
a future extension.

REFERENCES

APACHE XML. Xerces-C++ Website. http://xml.apache.org/xerces-c/.
BALARIN, F., WATANABE, Y., HSIEH, H., LAVAGNO, L., PASSERONE, C., AND SANGIOVANNI-VINCENTELLI, A. L.

2003. Metropolis: An integrated electronic system design environment. In Proceedings of the
IEEE Computer Society 36, 4 (April), 45–52.

BORGER, E. AND STRK, R. 2003. Abstract State Machines: A Method for High-Level System Design
and Analysis. Springer-Verlag, Berlin, Germany .

BROOKS, C., LEE, E. A., LIU, X., NEUENDORFFER, S., ZHAO, Y., AND ZHENG, H. 2005. Heterogeneous
concurrent modeling and design in java. Memorandum from University of California Berkely
Microlab, No. UCB/ERL M05/21.

CHEN, K., SZTIPANOVITS, J., NEEMA, S., EMERSON, M., AND ABDELWAHED, S. 2005. Toward a semantic
anchoring infrastructure for domain-specific modeling languages. In proceedings of the 50 ACM
International Conference on Embedded Software (EMSOFT’05).

MATHAIKUTTY, D. A. 2005. Functional programming and metamodeling frameworks for system
design. Master’s thesis, Virginia Tech, Blacksburg, VA.

MATHAIKUTTY, D., PATEL, H., SHUKLA, S., AND JANTSCH, A. 2004a. Correctness preserving design
refinements in a functional programming framework for concurrent reactive system design. Tech.
rep. 2004-23, FERMAT Lab.

DENNIS, J. B. 1974. First version of a data flow procedure language. Springer Verlag, ed by G.
Goos and J. Hartmanis Vol. 19, 362–376.

ECKER, W. AND HOFMEISTER, M. 1992. The design cube—a new model for vhdl designflow repre-
sentation. In Proceedings of the European Design Automation Conference. 752–757.

EKER, J., JANNECK, J. W., LEE, E. A., LIU, J., LIU, X., LUDVIG, J., NEUENDORFFER, S., SACHS, S., AND XIONG,
Y. 2003. Taming heterogeneity—the Ptolemy approach. In Proceedings of the IEEE Special
Issue on Modeling and Design of Embedded Software 91, 1, 127–144.

GLASSER, U. AND KARGES, R. 1997. Abstract state machines semantics of SDL. J. Found. Comput.
Sci. 3, 12, 1382–1414.

GUREVICH, Y. 1995. Evolving Algebras 1993: Lipari Guide, Specification and Validation Methods.
Oxford University Press.

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

A Metamodeling Driven Customizable Multi-MoC System Modeling Framework • 43

HOARE, C. A. R. 1978. Communicating sequential processes. Comm. ACM 21, 8, 666–676.
JANTSCH, A. 2003. Modeling Embedded Systems and SOC’s Concurrency and Time in Models of

Computation. Morgan Kaufmann Publishers.
JANTSCH, A., KUMAR, S., AND HEMANI, A. 1999. The rugby model: A framework for the study of

modelling. In Proceedings of Design Automation and Test in Europe (DATE).
JANTSCH, A., SANDER, I., AND WU, W. 2001. The usage of stochastic processes in embedded system

specifications. In Proceedings of 9th International Symposium on Hardware/Software Codesign.
LAMPORT, L. 1978. Time, clocks and the ordering of events in a distributed system. Comm.

ACM 21, 7.
LAVAGNO, L., SANGIOVANNI-VINCENTELLI, A., AND SENTOVICH, E. 1998. Models of computation for

embedded system design. NATO ASI Proceedings on System Synthesis Il.
LEDECZI, A., MAROTI, M., BAKAY, A., AND KARSAI, G. 2001. The generic modeling environment.

Institute for Software Integrated Systems, Vanderbilt University, Nashville, TN.
LEE, E. A. 1997. A denotational semantics for dataflow with firing. Tech. rep. UCB/ERL M97/3,

Department of Electrical Engineering and Computer Science, University of California, Berkeley,
CA.

LEE, E. A. AND PARKS, T. 1995. Dataflow process networks. In Proceedings of the IEEE 83, 5,
773–801.

LEE, E. A. AND SANGIOVANNI-VINCENTELLI, A. L. 1998. A framework for comparing models of com-
putation. IEEE Trans. Comput.-Aid. Design Integ. Circuits Syst. 17, 1217–1229.

LI, Y. AND LEESER, M. 2000. HML, a novel hardware description language and its translation to
VHDL. IEEE Trans. VLSI Systems 8, (Feb.). 1.

MATHAIKUTTY, D., PATEL, H., SHUKLA, S., AND JANTSCH, A. 2005. UMoC++: Modeling environment
for heterogeneous systems based on generic MoCs. In Proceedings of the Forum on Specification
and Design Languages Conference (FDL). Lussanne, Switzerland.

MATHAIKUTTY, D. A., PATEL, H. D., AND SHUKLA, S. K. 2004b. A functional programming frame-
work of heterogeneous model of computations for system design. In Proceedings of the Forum on
Specification and Design Languages (FDL). Lille, France.

MILNER, R. 1989. Communication and Concurrency. Prentice Hall.
MILNER, R., TOFTE, M., HARPER, R., AND MACQUEEN, D. 1997. The Definition of Standard ML (Re-

vised). MIT Press, Cambridge, MA.
MODELING A DIGITAL EQUALIZER IN THE EWD ENVIRONMENT. 2005. http://fermat.ece.vt.edu/ewd/

digital equalizer.htm.
NORDSTROM, G., SZTIPANOVITS, J., KARSAI, G., AND LEDECZI, A. 1999. Metamodeling—rapid design

and evolution of domain-specific modeling environment In Proceedings of the IEEE.
PATEL, H. D. AND SHUKLA, S. K. 2005. Towards a heterogeneous simulation kernel for system level

models: A systemc kernel for synchronous data flow models. IEEE Trans. Comput.-Aid. Design
24.

SANDER, I. AND JANTSCH, A. 2004. System modeling and transformational design refinement in
ForSyDe. IEEE Trans. Comput.-Aid. Design Integr. Circuits Syst. 23, 1, 17–32.

STEPHEN NEUENDORFFER. 2005. Actor-oriented metaprogramming. Tech. rep. UCB/ERL M05/1.
THE METROPOLIS PROJECT TEAM. 2004. The metropolis metamodel version 0.4. Tech. rep. UCB/ERL

M04/38, Department of Electrical Engineering and Computer Science, University of California,
Berkeley, CA.

THOMPSON, S. 1999. Haskell—The Craft of Functional Programming, 2nd ed. Addison-Wesley.
VANGHELUWE, H. AND LARA, J. D. 2003. Computer automated multi-paradigm modelling: Meta-

modelling and graph transformation. In Proceedings of Winter Simulation Conference. 249–258.

Received February 2006; revised November 2006, January 2007; accepted February 2007

ACM Transactions on Design Automation of Electronic Systems, Vol. 12, No. 3, Article 33, Publication date: August 2007.

