
Speedup Analysis of Data-parallel Applications

on Multi-core NoCs
Xiaowen Chen

1,2,*
, Zhonghai Lu

2
, Axel Jantsch

2
 and Shuming Chen

1

Abstract — As more computing cores are integrated onto a

single chip, the effect of network communication latency is

becoming more and more significant on Multi-core Network-on-

Chips (NoCs). For data-parallel applications, we study the

model of parallel speedup by including network communication

latency in Amdahl’s law. The speedup analysis considers the

effect of network topology, network size, traffic model and

computation/communication ratio. We also study the speedup

efficiency. In our Multi-core NoC platform, a real data-parallel

application, i.e. matrix multiplication, is used to validate the

analysis. Our theoretical analysis and the application results

show that the speedup improvement is nonlinear and the

speedup efficiency decreases as the system size is scaled up.

Such analysis can be used to guide architects and programmers

to improve parallel processing efficiency by reducing network

latency with optimized network design and increasing

computation proportion in the program.
1

Index Terms — speedup, communication, multi-core, NoC

I. INTRODUCTION

We are entering the multi-, many and even thousand core era

[1] ! The rapid development of integrated circuit and computer

architecture technology enables to integrate a number of cores

on a single chip. These computing cores are potential to

cooperate to obtain powerful performance. In this paper, we

study the model of parallel speedup and its efficiency on multi-

core Network-on-Chip (NoC) [3][4].

As is known, Amdahl’s law [2] provides a simple, yet very

useful method to analyze the potential speedup of a parallel

system. We use Amdahl’s law as the basic speedup model and

add the analysis of network communication latency, since the

network communication latency is becoming increasingly

significant for the multi-core system. We consider the network

communication latency model based on a regular NoC

infrastructure. As a scalable solution of interconnecting so many

cores, NoC has attracted significant attention over the last ten

years since various buses do not scale well with the system size.

The focus of our analysis is the influence of network

communication latency on the parallel speedup. We discuss in

detail how the network topology, network size and traffic

models (uniform or hotspot) affect the speedup. Our model also

analyzes the effect of the computation/communication ratio. As

matrix multiplication is a representative data-parallel application,

1This work has been supported partially by the FP7 EU project MOSART

under contract number IST-215244 and the National 863 Program of China

under Grant No. 2007AA01Z108.
1the authors are with the Microelectronics Institute, School of Computer

Science, National University of Defense Technology, 410073, Changsha,

P.R.China (email: xwchen@nudt.edu.cn; smchen@nudt.edu.cn).
2the authors are with the Department of Electronic, Computer, and Software

Systems, KTH-Royal Institute of Technology, SE100-44, Stockholm, Sweden

(email: xiaowenc@kth.se; zhonghai@kth.se; axel@kth.se).
*To whom correspondence should be addressed. Email: xiaowenc@kth.se

we implement it on our Multi-core NoC platform to validate our

speedup analysis. The theoretical analysis and the application

results tell us that the speedup rises up nonlinearly, its efficiency

goes down and the network impact is becoming more important

when the network becomes larger and more complicated. Our

study exhibits that optimizing network design and increasing

computation proportion is a viable way to improve the

performance.

The rest of the paper is organized as follows. Section II

discusses related work. In Section III, we present the speedup

model involving network communication latency and detail the

analysis. In Section IV, the matrix multiplication is

implemented on our Multi-core NoC platform and simulation

results are discussed. Finally, we conclude in Section V.

II. RELATED WORK

Many researchers discuss variants of Amdahl’s law for

different purposes. In [5], Li and Malek discussed the effect of

communication/computation ratio on the speedup, but their

communication delay model is simple without considering the

detail of interconnects. In [6], Paul revisited Amdahl’s law on

the single chip heterogeneous multiprocessor. In [7], Cho and

Melhem presented the corollaries to Amdahl’s law to study the

interaction between parallelization and energy consumption. In

[8], Hill and Marty offered a corollary of a simple model of

multi-core hardware resources based on Amdahl’s law but

omitted the effect of network latency.

We note that few works discuss the effect of network

communication latency on the speedup of Multi-core NoCs,

which is the topic of this paper.

III. MODELS AND ANALYSIS

A. Problem Definition

The problem we consider is the parallel speedup in the

context of multi-core packet-switched NoCs for data parallel

applications. We give detailed analysis on communication

latency. To facilitate constructing the models of communication

latency and parallel speedup, k-ary-2-mesh/torus homogeneous

are used and a program running on the multi-core NoCs is

abstracted as a set of subtasks and communications. The

communication denotes the interaction between two

communicating nodes. A communication contains one or more

packets transmitted in the network. The subtask denotes the

non-communication processing (e.g. computation, memory

access, etc.) between two successive communications. The

models and analysis in this paper is based on the following three

assumptions. 1) The requirement of computation time and

communication time of the program assigned to each node is

equal to the others. That is, the program in each node contains

the same number of subtasks and communications. 2) The

computation time of each subtask is also equal to the others. 3)

The time of each communication is also equal to that of others.

B. Notations

To facilitate the analysis, we first define a set of symbols.

i the processor node No.

N the number of processor nodes, N = k
2

k topological ary, k = √N

s the number of subtasks in the serial part of a program

p the number of subtasks or communications in the

parallel part of a program

τc the computation time of a subtask

H average hop count of transmitting a packet

τ1hop the time of transmitting a packet in one hop

τt average time of transmitting a packet in the network

M the number of packets in a communication

Tt(i) the time of a communication issued by node i

TT the communication overhead of a program on the multi-

core NoC

ρ the ratio between computation time and communication

time, ρ = τc/Tt(i)

S parallel speedup

E speedup efficiency

C. Communication Latency Model

Communication latency contains two parts: minimal (non-

contention) latency and contention latency.

The minimal latency is determined by the distance of the two

communicating subtasks (nodes). We use hop count to calculate

the latency. Table I lists the calculated hop count. We consider

two representative traffic models (Uniform and Hotspot) and

two popular NoC topologies (2D Mesh and 2D Torus). For

uniform traffic, the two formulas are cited from [9]. For hotspot

traffic, the corner node 0 is chosen as the hotspot node.

TABLE I

CALCULATION OF HOP COUNT

 k-ary-2-mesh k-ary-2-torus

Uniform H � �2k3 k even2 �k3� 13k� k odd � H � �2k4 k even2 �k4� 14k� k odd �
Hotspot H � k�k� 1 H � ���k2� k2�k� � 1�k k even k2 k odd �

The contention latency mainly depends on the routing and

arbitration mechanism and the communication pattern of real

applications. In general, it is difficult to quantify it exactly. The

contention latency is included in τ1hop. The architectural latency

of τ1hop is 1 cycle (in our experimental platform shown in Fig. 1),

but τ1hop is usually larger than 1 cycle when contention occurs.

With packet switching, the average time of transmitting a

packet in the network is
 τ� � H · τ���� �1

where H reflects the distance and τ1hop the latency under

contention.

In general, a communication contains one or more packets.

There is at least one packet in a communication, so Tt(i) ≥ τt .

For the worst case that packets are transmitted sequentially, i.e.

a packet will not be transmitted until the previous one is

finished, Tt(i) = M · τt. Since transmissions may exist

simultaneously in the network, the time will be less. Hence, we

have,
 H · τ���� � τ� � T��i
 � M · τ� � M · H · τ���� �2

The communication overhead of a program running on the

multi-core NoCs is determined by Tt(i). The program is

parallelized on N nodes. If communications issued by each node

have no dependence between each other, TT = min{p/N · Tt(i)}.

In contrast, the worst case is that communications of each node

happens sequentially one by one. So, we can get the inequality

for T� below,
 ��� �pN · T��i
� � T� � p · T��i
 �3

Considering (2) and (3), we can get,
 ����T�� � p ·M · τ� � p ·M · H · τ���� �4

which is the maximal communication overhead of the program

for the worst case where all packets are transmitted in the

network in a sequential way.

Minimal latency, Tt(i) and TT are affected by the network size,

network topology and traffic models: a) When the network size

is scaled up, H, Tt(i) and TT increases due to the longer

communication distance; b) Because torus has shorter average

distance than mesh for the same network size, the distance

latency of torus is less than that of mesh and the difference is

more obvious when the network size is larger; c) Hotspot traffic

has higher average hop count, and hence more minimal latency

than uniform traffic, especially when the network size becomes

larger. Besides, hotspot traffic causes much contention.

D. Speedup Model
 S � �s � p
 · τ�s · τ� � pN · τ� � T� �5

Equation (5) gives the speedup formula. The last product item

in the denominator describes the communication overhead. In

the following, we use two cases to analyze the speedup in detail.

Case 1: The network is k-ary-2-mesh and the traffic model is

uniform. We adopt the maximum of Tt(i) and the minimum of

TT in (5). Tt(i) of each node is the same due to the three

assumptions. Then we have
 S � �s � p
 · τ�s · τ� � pN · τ� ���� �pN · T��i
� � �s� p
 · τ�s · τ� � pN · τ� � pN · T��i
 �6
 � �s � p
 · τ�s · τ� � pN · τ� � pN ·M · H · τ���� � �s� p
 · τ�s · τ� � pN · τ� � p√N ·M · 23 · τ���� �7

When N increases, S increases. However, when M increases,

S decreases yet, because the communication latency rises up.

More contention results in the increase of τ1hop and hence the

decrease of S.

We define Speedup efficiency as speedup S divided by the

number of nodes, N. We have
 E � SN � �s � p
 · τ�s · τ� · N � p · τ� � p ·M · 23√N · τ���� �8

As the network size N increases, the speedup efficiency is

slowing down. The communication latency deepens the

decrease of the speedup efficiency.

We also refine Equation (6) to reflect the impact of the

computation/communication ratio as follows:
 S � �s � p
 · ρs · ρ� pN · ρ� pN � s� ps� pN� pN · �1

ρ

 �9

The speedup increases as the computation takes more

proportion in the program when the system size is fixed. When ρ & ∞, the effect of communication becomes insignificant.

Case 2: The network is k-ary-2-torus (k is odd) and the traffic

model is hotspot. We adopt the maximum of Tt(i) and the

maximum of TT in (5). Then we have
 S � �s � p
 · τ�s · τ� � pN · τ� � p · T��i
 �10
 � �s� p
 · τ�s · τ� � pN · τ� � p ·M · H · τ���� � �s � p
 · τ�s · τ� � pN · τ� � p ·M · √N2 · τ���� �11

Let
�	�
 � 0, we can get N �)* �·��·����+��

. Because N ≥ 2 for

the multi-core NoCs, we can obtain two results. i) When �·��·���� � 2√2 , S decreases with the increase of N.

Parallelization degrades the performance rather than improve it.

ii) When
�·��·���� , 2√2 , S increases with the increase of N

when N is smaller. However, S achieves its maximum when N �)* �·��·����+��
. As N continues becoming larger, S yet

decreases. In (11), we also can get that more contention results

in the increase of τ1hop and hence the decrease of S. Improving

the computation time and reducing the communication time can

make the maximum of S larger.

The speedup efficiency in this case is
 E � �s � p
 · τ�s · τ� · N� p · τ� � p ·M · N · √N2 · τ���� �12

If the communication delay is ignored, E ~ O(N
-1

). However,

(12) suggests that E ~ O(N
-3/2

). The communication latency

deepens the decrease of the speedup efficiency.

Refine Equation (10) to Equation (13) below:
 S � �s � p
 · ρs · ρ� pN · ρ� p � s� ps� pN� p · �1

ρ

 �13

As with Case 1, augmenting the computation part in the

program can improve the speedup.

IV. EXPERIMENTS AND RESULTS

A. Experimental Platform

To validate our analysis, we constructed a Multi-core NoC

experimental platform as shown in Fig. 1. The Multi-core NoC

has a 2-mesh/torus topology and its size is configurable. Each

Processor-Memory (PM) node has a LEON3 processor, an

enhanced memory controller plus a local memory. The

enhanced memory controller extends the function of LEON3’s

own memory control model to support memory accesses from

remote nodes via the network. The network performs

dimension-order XY routing, and provides best-effort service.

Moving one hop in the network takes one cycle.

Fig. 1. The Multi-core NoC experimental platform

B. Application Example

We use matrix multiplication as the application example and

perform experiments on various instances of the application

described as follows:

1) Two types of data partition are realized to reflect the two

traffic models. The one is “Uniform” meaning that the

matrix data are equally separated into all nodes. The other is

“Hotspot” meaning that the matrix data are only located in

the corner node 0.

2) Both integer matrix and floating point matrix are

implemented to vary the computation/communication ratio,

ρ. For the same problem size and algorithm, floating point

computation needs more time than integer computation and

hence has bigger ρ.

3) The product of two matrix, A[64,1] and B[1,64], results in a

C[64,64] matrix, on the Multi-core NoC with the network

size varying from 1x1 (1), 2x2 (4), 4x4 (16), to 8x8 (64) and

with both the mesh and torus topology. The total problem

size is fixed and the problem size assigned to each node

varies from A[64,1]*B[1,64], A[16,1]*B[1,64],

A[4,1]*B[1,64] and A[1,1]*B[1,64].

C. Simulation Results

Effect of network size

Fig. 2 ~ Fig. 4 shows that the speedup increases and the

speedup efficiency decreases, as the network size is scaled up.

Effect of traffic models

Fig. 2 plots the speedup and the speedup efficiency of the

integer matrix multiplication for uniform and hotspot traffic

versus the size of the 2-mesh Multi-core NoC from 1x1 (1), 2x2

(4), 4x4 (16) to 8x8 (64). The speedup for hotspot traffic on 4x4

(16) is only slightly bigger than that on 2x2 (4) and that on 8x8

(64) is even smaller. It’s because larger network size, e.g. 8x8

(64), leads to heavy traffic load for the hotspot. For both

uniform and hotspot traffic, the speedup efficiency slows down

as the increase of the network size. Moreover, the speedup

efficiency for hotspot traffic goes down very quickly, resulting

in very small E with only 0.05 for hotspot on 8x8 (64).

We also estimate the theoretical speedup and its efficiency

plotted in Fig. 2. The program of matrix multiplication can fully

be parallelized, thus s = 0. The computation subtask on each

node is c(i,j) = c(i,j) + a(i,k)*b(k,j). The computation time of

such subtask is collected in our experiment. For “Uniform” data

partition, a(i,k) and c(i,j) are located on the local node but b(k,j)

is on the remote node, so M = 1. For “Hotspot” data partition,

a(i,k), b(k,j) and c(i,j) are all located on the node(0,0), hence M

= 4. It’s difficult to statically estimate the contention latency, so

we set τ1hop to be 1 meaning that there is no contention latency

in our theoretical speedup. Then, using the speedup formula (5)

estimates the theoretical speedup. Fig. 2 shows that the real

speedup and its efficiency are consistent as to the trend of the

theoretical speedup and its efficiency. The real one is less than

the theoretical one and the difference between them increases

with the network size, because more contention is incurred.

Effect of network topology

Fig. 3 plots the speedup and the speedup efficiency of the

integer matrix multiplication for k-ary-2-mesh topology and k-

ary-2-torus topology versus the size of the Multi-core NoC with

the uniform traffic from 1x1 (1), 2x2 (4), 4x4 (16) to 8x8 (64).

As shown in the figure, the speedup increases but the speedup

efficiency decreases, when the network size increases. The

difference between the speedup for k-ary-2-mesh and that for k-

ary-2-torus is becoming larger along with the increase of the

network size, so is the difference for the speedup efficiency. For

instance, S for k-ary-2-mesh and k-ary-2-torus is the same, 3.94,

due to the equivalence of 2x2 mesh and 2x2 torus, while S for

8x8 mesh is 36.57 and S for 8x8 torus is 41.08. This is because

the 8x8 torus has shorter communication distance than the 8x8

mesh.

Effect of computation/communication ratio

Fig. 4 plots the speedup and the speedup efficiency of both

integer and floating point matrix multiplication versus the size

of the mesh Multi-core NoC with the uniform traffic from 1x1

(1), 2x2 (4), 4x4 (16) to 8x8 (64). For the same network factors,

the speedup and its efficiency for the floating point

multiplication is higher than those for the integer multiplication.

This is as expected because when the computation time

increases, the portion of communication latency becomes less

significant and thus achieving higher speedup.

V. CONCLUSION

In the paper, we built up the abstract model for speedup

analysis of data-parallel applications on Multi-core NoCs by

including detailed network communication factors into the

speedup formulas. Our theoretical analysis and the real

application results show the effect of network topology, network

size, traffic models, and computation/communication ratio. Such

results signify that optimizing network parameters and

increasing computation proportion in the program can achieve

higher performance.

0

5

10

15

20

25

30

35

40

45

50

55

60

1

3.94

10.34

36.47

1
3.36 3.88 3.01

1

3.95

15.62

61.04

1

3.41
5.59

3.65

1 0.98

0.65

0.57

1

0.84

0.24

0.05

1 0.99 0.98
0.95

1

0.84

0.35

0.06

S S for uniform traffic

 S for hotspot traffic

 Theoretical S for uniform traffic

 Theoretical S for hotspot traffic

E

1x1(1) 2x2(4) 4x4(16) 8x8(64)

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

 E for uniform traffic

 E for hotspot traffic

 Theoretical E for uniform traffic

 Theoretical E for hotspot traffic

Fig. 2. Effect of traffic models

0

5

10

15

20

25

30

35

40

1

3.94

10.34

36.47

1

3.94

11.43

41.08

1
0.98

0.65

0.57

1
0.98

0.71

0.64

S S for 2-mesh

 S for 2-torus E

1x1(1) 2x2(4) 4x4(16) 8x8(64)

0.0

0.2

0.4

0.6

0.8

1.0

 E for 2-mesh

 E for2-torus

Fig. 3. Effect of network topology

0

5

10

15

20

25

30

35

40

45

50

1

3.94

10.34

36.47

1

3.97

13.78

48.19

1
0.98

0.65

0.57

1 0.99

0.86

0.75

S S for integer

 S for floating point E

1x1(1) 2x2(4) 4x4(16) 8x8(64)

0.0

0.2

0.4

0.6

0.8

1.0

 E for integer

 E for floating point

Fig. 4. Effect of computation/communication ratio

REFERENCES

[1] S. Borkar, "Thousand core chips -- a technology perspective," Proc.

ACM/IEEE 44th Design Automation Conf.(DAC), 2007, pp. 746-749.

[2] G. M. Amdahl, "Validity of the single-processor approach to achieving

large-scale computing capabilities," Proc. Am. Federation of Information

Processing Societies Conf., AFIS Press, 1967, pp. 483-385.

[3] A. Jantsch and H. Tenhunen, “Networks on chip”, Kluwer Academic

Publishers, 2003.

[4] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of

network-on-chip”, ACM Computing Surveys, vol. 38, no. 1, pp. 1-51, Mar.

2006.

[5] X. Li and M. Malek, “Analysis of speedup and communication/

computation ratio in multiprocessor systems”, Proc. Real-Time Systems

Symposium, 1988, pp. 282-288.

[6] J. M. Paul, "Amdahl's law revisited for single chip systems," Int’l J.

Prarallel Programming, vol. 35, no. 2, pp. 101-123, Apr. 2007.

[7] S. Cho and R. Melhem, "Corollaries to Amdahl's law for energy,"

Computer Architecture Letters, vol. 7, no. 1, pp. 25-28, Jan.-Jun. 2008.

[8] M. D. Hill and M. R. Marty, "Amdahl's law in the multicore era," IEEE

Computer, vol. 41, no.7, pp. 33-38, Jul. 2008.

[9] W. J. Dally and B. Towles, “Principles and practices of interconnection

networks”, Morgan Kaufmann Publishers, 2004

