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Abstract — As more computing cores are integrated onto a 

single chip, the effect of network communication latency is 

becoming more and more significant on Multi-core Network-on-

Chips (NoCs). For data-parallel applications, we study the 

model of parallel speedup by including network communication 

latency in Amdahl’s law. The speedup analysis considers the 

effect of network topology, network size, traffic model and 

computation/communication ratio. We also study the speedup 

efficiency. In our Multi-core NoC platform, a real data-parallel 

application, i.e. matrix multiplication, is used to validate the 

analysis. Our theoretical analysis and the application results 

show that the speedup improvement is nonlinear and the 

speedup efficiency decreases as the system size is scaled up. 

Such analysis can be used to guide architects and programmers 

to improve parallel processing efficiency by reducing network 

latency with optimized network design and increasing 

computation proportion in the program.
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I. INTRODUCTION 

We are entering the multi-, many and even thousand core era 

[1] ! The rapid development of integrated circuit and computer 

architecture technology enables to integrate a number of cores 

on a single chip. These computing cores are potential to 

cooperate to obtain powerful performance. In this paper, we 

study the model of parallel speedup and its efficiency on multi-

core Network-on-Chip (NoC) [3][4]. 

As is known, Amdahl’s law [2] provides a simple, yet very 

useful method to analyze the potential speedup of a parallel 

system. We use Amdahl’s law as the basic speedup model and 

add the analysis of network communication latency, since the 

network communication latency is becoming increasingly 

significant for the multi-core system. We consider the network 

communication latency model based on a regular NoC  

infrastructure. As a scalable solution of interconnecting so many 

cores, NoC has attracted significant attention over the last ten 

years since various buses do not scale well with the system size.  

The focus of our analysis is the influence of network 

communication latency on the parallel speedup. We discuss in 

detail how the network topology, network size and traffic 

models (uniform or hotspot) affect the speedup. Our model also 

analyzes the effect of the computation/communication ratio. As 

matrix multiplication is a representative data-parallel application, 
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we implement it on our Multi-core NoC platform to validate our 

speedup analysis. The theoretical analysis and the application 

results tell us that the speedup rises up nonlinearly, its efficiency 

goes down and the network impact is becoming more important 

when the network becomes larger and more complicated. Our 

study exhibits that optimizing network design and increasing 

computation proportion is a viable way to improve the 

performance. 

The rest of the paper is organized as follows. Section II 

discusses related work. In Section III, we present the speedup 

model involving network communication latency and detail the 

analysis. In Section IV, the matrix multiplication is 

implemented on our Multi-core NoC platform and simulation 

results are discussed. Finally, we conclude in Section V. 

II. RELATED WORK 

Many researchers discuss variants of Amdahl’s law for 

different purposes. In [5], Li and Malek discussed the effect of 

communication/computation ratio on the speedup, but their 

communication delay model is simple without considering the 

detail of interconnects. In [6], Paul revisited Amdahl’s law on 

the single chip heterogeneous multiprocessor. In [7], Cho and 

Melhem presented the corollaries to Amdahl’s law to study the 

interaction between parallelization and energy consumption. In 

[8], Hill and Marty offered a corollary of a simple model of 

multi-core hardware resources based on Amdahl’s law but 

omitted the effect of network latency.  

We note that few works discuss the effect of network 

communication latency on the speedup of Multi-core NoCs, 

which is the topic of this paper. 

III. MODELS AND ANALYSIS 

A. Problem Definition 

The problem we consider is the parallel speedup in the 

context of multi-core packet-switched NoCs for data parallel 

applications. We give detailed analysis on communication 

latency. To facilitate constructing the models of communication 

latency and parallel speedup, k-ary-2-mesh/torus homogeneous 

are used and a program running on the multi-core NoCs is 

abstracted as a set of subtasks and communications. The 

communication denotes the interaction between two 

communicating nodes. A communication contains one or more 

packets transmitted in the network. The subtask denotes the 

non-communication processing (e.g. computation, memory 

access, etc.) between two successive communications. The 

models and analysis in this paper is based on the following three 

assumptions. 1) The requirement of computation time and 

communication time of the program assigned to each node is 

equal to the others. That is, the program in each node contains 

the same number of subtasks and communications. 2) The 

computation time of each subtask is also equal to the others. 3) 

The time of each communication is also equal to that of others.  



B. Notations 

To facilitate the analysis, we first define a set of symbols. 

i the processor node No. 

N the number of processor nodes, N = k
2
 

k topological ary, k = √N 

s the number of subtasks in the serial part of a program 

p the number of subtasks or communications in the 

parallel part of a program 

τc the computation time of a subtask 

H average hop count of transmitting a packet 

τ1hop  the time of transmitting a packet in one hop 

τt average time of transmitting a packet in the network 

M the number of packets in a communication 

Tt(i) the time of a communication issued by node i 

TT the communication overhead of a program on the multi-

core NoC 

ρ the ratio between computation time and communication 

time, ρ = τc/Tt(i) 

S parallel speedup 

E speedup efficiency 

C. Communication Latency Model 

Communication latency contains two parts: minimal (non-

contention) latency and contention latency.  

The minimal latency is determined by the distance of the two 

communicating subtasks (nodes). We use hop count to calculate 

the latency. Table I lists the calculated hop count. We consider 

two representative traffic models (Uniform and Hotspot) and 

two popular NoC topologies (2D Mesh and 2D Torus). For 

uniform traffic, the two formulas are cited from [9]. For hotspot 

traffic, the corner node 0 is chosen as the hotspot node. 
 

TABLE I 

CALCULATION OF HOP COUNT 

 k-ary-2-mesh k-ary-2-torus 

Uniform H � �2k3                     k even2 �k3�  13k�   k odd � H � �2k4                              k even2 �k4�  14k�            k odd � 
Hotspot H � k�k� 1 H � ���k2� k2�k� � 1�k     k even  k2                            k odd � 

 

The contention latency mainly depends on the routing and 

arbitration mechanism and the communication pattern of real 

applications. In general, it is difficult to quantify it exactly. The 

contention latency is included in τ1hop. The architectural latency 

of τ1hop is 1 cycle (in our experimental platform shown in Fig. 1), 

but τ1hop is usually larger than 1 cycle when contention occurs. 

With packet switching, the average time of transmitting a 

packet in the network is  
 τ� � H · τ����                                      �1
 
 

where H reflects the distance and τ1hop the latency under 

contention. 

In general, a communication contains one or more packets. 

There is at least one packet in a communication, so Tt(i) ≥ τt . 

For the worst case that packets are transmitted sequentially, i.e. 

a packet will not be transmitted until the previous one is 

finished, Tt(i) = M · τt. Since transmissions may exist 

simultaneously in the network, the time will be less. Hence, we 

have,  
 H · τ���� � τ� �  T��i
 � M · τ� � M · H · τ����          �2
 
 

The communication overhead of a program running on the 

multi-core NoCs is determined by Tt(i). The program is 

parallelized on N nodes. If communications issued by each node 

have no dependence between each other, TT = min{p/N · Tt(i)}. 

In contrast, the worst case is that communications of each node 

happens sequentially one by one. So, we can get the inequality 

for T�  below, 
 ��� �pN · T��i
�  �  T�  � p · T��i
                      �3
 

 

Considering (2) and (3), we can get,  
 ����T�� � p ·M · τ� � p ·M · H · τ����              �4
 
 

which is the maximal communication overhead of the program 

for the worst case where all packets are transmitted in the 

network in a sequential way. 

Minimal latency, Tt(i) and TT are affected by the network size, 

network topology and traffic models: a) When the network size 

is scaled up, H, Tt(i) and TT increases due to the longer 

communication distance; b) Because torus has shorter average 

distance than mesh for the same network size, the distance 

latency of torus is less than that of mesh and the difference is 

more obvious when the network size is larger; c) Hotspot traffic 

has higher average hop count, and hence more minimal latency 

than uniform traffic, especially when the network size becomes 

larger. Besides, hotspot traffic causes much contention. 

D. Speedup Model 
 S �  �s � p
 · τ�s · τ� � pN · τ� � T�                           �5
 
 

Equation (5) gives the speedup formula. The last product item 

in the denominator describes the communication overhead. In 

the following, we use two cases to analyze the speedup in detail. 

Case 1: The network is k-ary-2-mesh and the traffic model is 

uniform. We adopt the maximum of Tt(i) and the minimum of 

TT in (5). Tt(i) of each node is the same due to the three 

assumptions. Then we have  
  S � �s � p
 · τ�s · τ� � pN · τ� ���� �pN · T��i
�                            � �s� p
 · τ�s · τ� � pN · τ� � pN · T��i
                                  �6
 � �s � p
 · τ�s · τ� � pN · τ� � pN ·M · H · τ����                           �  �s� p
 · τ�s · τ� � pN · τ� � p√N ·M · 23 · τ����                �7
 
 

When N increases, S increases. However, when M increases, 

S decreases yet, because the communication latency rises up. 

More contention results in the increase of τ1hop and hence the 

decrease of S. 

We define Speedup efficiency as speedup S divided by the 



number of nodes, N. We have 
 E � SN �  �s � p
 · τ�s · τ� · N � p · τ� � p ·M · 23√N · τ����        �8
 
 

As the network size N increases, the speedup efficiency is 

slowing down. The communication latency deepens the 

decrease of the speedup efficiency. 

We also refine Equation (6) to reflect the impact of the 

computation/communication ratio as follows: 
 S �  �s � p
 · ρs · ρ� pN · ρ� pN �  s� ps� pN� pN · �1

ρ

              �9
 

 

The speedup increases as the computation takes more 

proportion in the program when the system size is fixed. When ρ & ∞, the effect of communication becomes insignificant. 

Case 2: The network is k-ary-2-torus (k is odd) and the traffic 

model is hotspot. We adopt the maximum of Tt(i) and the 

maximum of TT in (5). Then we have 
 S � �s � p
 · τ�s · τ� � pN · τ� � p · T��i
                         �10
 � �s� p
 · τ�s · τ� � pN · τ� � p ·M · H · τ����                     � �s � p
 · τ�s · τ� � pN · τ� � p ·M · √N2 · τ����       �11
 
 

Let 
�	�
 � 0, we can get N �  )* �·��·����+��

. Because N ≥ 2 for 

the multi-core NoCs, we can obtain two results. i) When �·��·���� � 2√2 , S decreases with the increase of N. 

Parallelization degrades the performance rather than improve it. 

ii) When 
�·��·���� , 2√2 , S increases with the increase of N 

when N is smaller. However, S achieves its maximum when N �  )* �·��·����+��
. As N continues becoming larger, S yet 

decreases. In (11), we also can get that more contention results 

in the increase of τ1hop and hence the decrease of S. Improving 

the computation time and reducing the communication time can 

make the maximum of S larger. 

The speedup efficiency in this case is 
 E � �s � p
 · τ�s · τ� · N� p · τ� � p ·M · N · √N2 · τ����      �12
 
 

If the communication delay is ignored, E ~ O(N
-1

). However, 

(12) suggests that E ~ O(N
-3/2

). The communication latency 

deepens the decrease of the speedup efficiency. 

Refine Equation (10) to Equation (13) below: 
 S �  �s � p
 · ρs · ρ� pN · ρ� p �  s� ps� pN� p · �1

ρ

              �13
 

 

As with Case 1, augmenting the computation part in the 

program can improve the speedup. 

IV. EXPERIMENTS AND RESULTS 

A. Experimental Platform 

To validate our analysis, we constructed a Multi-core NoC 

experimental platform as shown in Fig. 1. The Multi-core NoC 

has a 2-mesh/torus topology and its size is configurable. Each 

Processor-Memory (PM) node has a LEON3 processor, an 

enhanced memory controller plus a local memory. The 

enhanced memory controller extends the function of LEON3’s 

own memory control model to support memory accesses from 

remote nodes via the network. The network performs 

dimension-order XY routing, and provides best-effort service. 

Moving one hop in the network takes one cycle.  
 

 
 

Fig. 1. The Multi-core NoC experimental platform 

B. Application Example 

We use matrix multiplication as the application example and 

perform experiments on various instances of the application 

described as follows:  

1) Two types of data partition are realized to reflect the two 

traffic models. The one is “Uniform” meaning that the 

matrix data are equally separated into all nodes. The other is 

“Hotspot” meaning that the matrix data are only located in 

the corner node 0. 

2) Both integer matrix and floating point matrix are 

implemented to vary the computation/communication ratio, 

ρ. For the same problem size and algorithm, floating point 

computation needs more time than integer computation and 

hence has bigger ρ. 

3) The product of two matrix, A[64,1] and B[1,64], results in a 

C[64,64] matrix, on the Multi-core NoC with the network 

size varying from 1x1 (1), 2x2 (4), 4x4 (16), to 8x8 (64) and 

with both the mesh and torus topology. The total problem 

size is fixed and the problem size assigned to each node 

varies from A[64,1]*B[1,64], A[16,1]*B[1,64], 

A[4,1]*B[1,64] and A[1,1]*B[1,64]. 

C. Simulation Results 

Effect of network size 

Fig. 2 ~ Fig. 4 shows that the speedup increases and the 

speedup efficiency decreases, as the network size is scaled up. 

Effect of traffic models 

Fig. 2 plots the speedup and the speedup efficiency of the 

integer matrix multiplication for uniform and hotspot traffic 

versus the size of the 2-mesh Multi-core NoC from 1x1 (1), 2x2 

(4), 4x4 (16) to 8x8 (64). The speedup for hotspot traffic on 4x4 

(16) is only slightly bigger than that on 2x2 (4) and that on 8x8 

(64) is even smaller. It’s because larger network size, e.g. 8x8 



(64), leads to heavy traffic load for the hotspot. For both 

uniform and hotspot traffic, the speedup efficiency slows down 

as the increase of the network size. Moreover, the speedup 

efficiency for hotspot traffic goes down very quickly, resulting 

in very small E with only 0.05 for hotspot on 8x8 (64).  

We also estimate the theoretical speedup and its efficiency 

plotted in Fig. 2. The program of matrix multiplication can fully 

be parallelized, thus s = 0. The computation subtask on each 

node is c(i,j) = c(i,j) + a(i,k)*b(k,j). The computation time of 

such subtask is collected in our experiment. For “Uniform” data 

partition, a(i,k) and c(i,j) are located on the local node but b(k,j) 

is on the remote node, so M = 1. For “Hotspot” data partition, 

a(i,k), b(k,j) and c(i,j) are all located on the node(0,0), hence M 

= 4. It’s difficult to statically estimate the contention latency, so 

we set τ1hop to be 1 meaning that there is no contention latency 

in our theoretical speedup. Then, using the speedup formula (5) 

estimates the theoretical speedup. Fig. 2 shows that the real 

speedup and its efficiency are consistent as to the trend of the 

theoretical speedup and its efficiency. The real one is less than 

the theoretical one and the difference between them increases 

with the network size, because more contention is incurred. 

Effect of network topology 

Fig. 3 plots the speedup and the speedup efficiency of the 

integer matrix multiplication for k-ary-2-mesh topology and k-

ary-2-torus topology versus the size of the Multi-core NoC with 

the uniform traffic from 1x1 (1), 2x2 (4), 4x4 (16) to 8x8 (64). 

As shown in the figure, the speedup increases but the speedup 

efficiency decreases, when the network size increases. The 

difference between the speedup for k-ary-2-mesh and that for k-

ary-2-torus is becoming larger along with the increase of the 

network size, so is the difference for the speedup efficiency. For 

instance, S for k-ary-2-mesh and k-ary-2-torus is the same, 3.94, 

due to the equivalence of 2x2 mesh and 2x2 torus, while S for 

8x8 mesh is 36.57 and S for 8x8 torus is 41.08. This is because 

the 8x8 torus has shorter communication distance than the 8x8 

mesh. 

Effect of computation/communication ratio 

Fig. 4 plots the speedup and the speedup efficiency of both 

integer and floating point matrix multiplication versus the size 

of the mesh Multi-core NoC with the uniform traffic from 1x1 

(1), 2x2 (4), 4x4 (16) to 8x8 (64). For the same network factors, 

the speedup and its efficiency for the floating point 

multiplication is higher than those for the integer multiplication. 

This is as expected because when the computation time 

increases, the portion of communication latency becomes less 

significant and thus achieving higher speedup.  

V. CONCLUSION 

In the paper, we built up the abstract model for speedup 

analysis of data-parallel applications on Multi-core NoCs by 

including detailed network communication factors into the 

speedup formulas. Our theoretical analysis and the real 

application results show the effect of network topology, network 

size, traffic models, and computation/communication ratio. Such 

results signify that optimizing network parameters and 

increasing computation proportion in the program can achieve 

higher performance.  
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Fig. 2. Effect of traffic models 
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Fig. 3. Effect of network topology 
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Fig. 4. Effect of computation/communication ratio 
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