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Abstract—Multispectral images can improve object detection
systems’ performance due to their complementary information,
especially in adverse environmental conditions. To use multispec-
tral image data in deep-learning-based object detectors, a fusion of
the information from the individual spectra, e.g., inside the neural
network, is necessary. This paper compares the impact of general
fusion schemes in the backbone of the YOLOv4 object detector.
We focus on optimizing these fusion approaches for an NVIDIA
Jetson AGX Xavier and elaborating on their impact on the device
in physical metrics. We optimize six different fusion architectures
in the network’s backbone for the TensorRT framework and
compare their inference time, power consumption, and object
detection performance. Our results show that multispectral fusion
approaches with little design effort can benefit resource usage and
object detection metrics compared to individual networks.

Index Terms—multispectral fusion, deep object detection, em-
bedded hardware, NVIDIA Jetson

I. MOTIVATION

Driven by use cases like autonomous driving and surveil-
lance, neural network-based object detection has become an
active research field in recent years. Dealing with safety-
critical use cases makes it mandatory for such object detection
systems to perform as accurately as possible within given time
constraints since a misinterpretation of a scene could cause
potential danger, risk, or injury to human life. Hence, much
research has gone into improving object detection and making
it more robust against real-world environmental influences.

Multispectral input images can improve object detectors by
providing additional information in normal conditions and by
giving alternative information for processing when individual
spectra are disturbed. Although multispectral fusion is a hot
research topic, experiments on embedded hardware are rarely
conducted. Furthermore, state-of-the-art papers in multispectral
fusion architectures often include significant design efforts in
architecture and training.

II. MAIN IDEAS

A recently published comprehensive survey [1] on deep
multi-modal (including multispectral) sensor fusion methods
lists the lack of general design methodologies and the lack of
real-time considerations on standard devices as two challenges
of fusion approaches.
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The question arises whether even simple fusion approaches
can achieve measurable advantages in a real-world application
on an embedded device or if more sophisticated methods are
mandatory. To address the question, we propose six basic fusion
architectures in the backbone of the YOLOv4 [2] architecture
and optimize them for the TensorRT framework and measure
their impact in physical metrics on an NVIDIA Jetson AGX
Xavier.

We deliberately choose architectures that are easy to imple-
ment and do not require excessive design effort. We select six
fusion positions in the backbone of YOLOv4 (three of them
are shown in Fig. 11) and arbitrarily group two of each into
early, mid, and late fusion according to the fusion position
in the backbone. A single fusion operator is sufficient for
early and medium fusion architectures to unify the feature
streams. For the late fusion approaches, additional fusion
operators are required for fusing the streams going to the
neck of the network. Because we focus on the fusion schemes
themselves and eliminate an additional degree of freedom in
our comparison, we choose to select the same fusion operator
for all experiments. We select a relatively simple operator
called Network in Network (NIN) [3]. The fusion is realized
by concatenating the individual feature streams followed by a
1×1 convolutional layer to reduce the dimensions to match the
original ones. After the NIN, the remaining network layers can
be implemented unmodified.

Since our proposed fusion approaches do not explicitly tackle
the problem of spatial shifts between the individual spectra,
we need a dataset with aligned image pairs. The KAIST
multispectral dataset [4] is well-suited for this task. It contains
95 328 image pairs in the visible and infrared spectrum with a
resolution of 640×512 pixels. For evaluation, we measure the
log-average miss rate (LAMR) [5] values by using the definition
of the Reasonable subset: only not heavily occluded pedestrian
instances taller than 55 pixels in height, and the All subset: All
occlusions and sizes [4].

All experiments are implemented in the Darknet framework
[2], which was modified to allow multispectral input images.
We use the TensorRT framework to achieve the maximum
inference performance on the NVIDIA Jetson AGX Xavier. To
convert the networks from the Darknet framework format to
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Fig. 1. YOLOv4: Selection of the investigated backbone fusion architectures: (a) early fusion I; (b) middle fusion II; (c) late fusion II;

TABLE I
FUSION ARCHITECTURE RESULTS: RELATIVE OPERATIONS REFER TO DARKNET, LAMR AND POWER CONSUMPTION TO TENSORRT

Fusion Relative Inference Time LAMR (Reasonable) LAMR (All) Power Consumption
Architecture Operations Darknet TensorRT (relative) All Day Night All Day Night GPU System

RGB Reference 1.00 128 ms 32.29 ms (1.00) 0.189 0.151 0.266 0.439 0.392 0.549 28.074 W 39.706 W
IR Reference 1.00 129 ms 32.50 ms (1.01) 0.192 0.244 0.080 0.380 0.435 0.257 27.191 W 38.908 W

Early Fusion I 1.02 145 ms 36.06 ms (1.12) 0.106 0.133 0.057 0.315 0.339 0.262 27.523 W 39.329 W
Early Fusion II 1.10 170 ms 41.18 ms (1.28) 0.108 0.130 0.065 0.311 0.334 0.254 27.986 W 40.240 W
Mid Fusion I 1.17 181 ms 43.48 ms (1.35) 0.104 0.132 0.050 0.295 0.326 0.209 27.861 W 40.448 W
Mid Fusion II 1.33 198 ms 48.18 ms (1.49) 0.091 0.109 0.053 0.285 0.307 0.235 28.062 W 40.875 W
Late Fusion I 1.50 214 ms 52.82 ms (1.64) 0.090 0.114 0.044 0.284 0.309 0.228 27.820 W 41.246 W
Late Fusion II 1.61 226 ms 55.49 ms (1.72) 0.105 0.134 0.052 0.291 0.321 0.219 27.831 W 41.406 W

TensorRT, we utilize the tkDNN library [6]. To further improve
the performance of the Jetson, we instruct TensorRT to use
FP16 calculations whenever possible.

III. RESULTS

The results in Tab. I show that all fusion architectures
perform significantly better than the reference networks in
LAMR evaluated on the All score in both subsets. Also, in
the more detailed evaluation with day and night distinction,
almost all architectures achieve better results than the reference
networks.

The measured inference times in Tab. I show that the increase
for the optimized TensorRT engine is nearly proportional to the
network’s operations. The optimized TensorRT engines are four
times as fast as the corresponding Darknet models.

The power consumption is measured by averaging the current
values over 10 minutes with the Jetson-specific tegrastats utility
using onboard sensors. Results in Tab. I indicate no evident
trend in the power values of the GPU, which likely indicates
that the GPU utilization is maxed out for every architecture.
The minor uptrend in overall system power can be explained
by enhanced memory activity caused by the increasing number
of operations.

Our experiments show that almost all tested fusion architec-
tures achieve better object detection results than the reference
networks trained on individual spectra. In our evaluation, the
Early Fusion I approach can reduce the LAMR in the reason-
able setting by 44 % while increasing the inference time by
only 12 %. We conclude that a fusion architecture can improve

an object detection system on an embedded device even with
little design effort.
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