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Chapter

Skill Acquisition for
Resource-Constrained Mobile
Robots through Continuous
Exploration

Markus D. Kobelrausch and Axel Jantsch

Abstract

We present a cognitive mobile robot that acquires knowledge, and autonomously
learns higher-level abstract capabilities based on play instincts, inspired by human
behavior. To this end, we (i) model skills, (ii) model the robot ’s sensor and actuator
space based on elementary physical properties, and (iii) propose algorithms
inspired by humans'’ play instincts that allow the robot to autonomously learn the
skills based on its sensor and actuator capabilities. We model general knowledge in
the form of competencies (skills) of the mobile robot based on kinematic properties
using physical quantities. Thus, by design, our approach has the potential to cover
very generic application domains. To connect desired skills to the primitive
capabilities of the robot’s sensors and actuators, it playfully explores the effects of its
actions on its sensory input, thus autonomously learning relations and dependencies
and eventually the desired skill. KnowRob is used for knowledge representation
and reasoning, and the robots operation is based on ROS. In the experiments, we use
a millirobot, sized 2 cm?, equipped with two wheels, motion, and distance sensors.
We show that our cognitive mobile robot can successfully and autonomously
learn elementary motion skills based on a playful exploration of its wheels and
sensors.

Keywords: artificial intelligence, autonomous learning systems, cognitive
architecture, reinforcement learning, knowledge representation and reasoning,
resource-constrained systems, low-energy mobile robots

1. Introduction

Our starting point is a robot with (a) a set of sensors and actuators, (b) tight
resource limitations, (c) access to a database that captures general motion-related
competencies (e.g. moving along a rectangle or navigating to a target location), and
(d) built-in assumptions about physical laws and geometric relations. Our objective is
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to develop methods that allow the robot to autonomously learn competencies stored in
the database.

Initially, the robot does not know the meaning and effect of its sensors and
actuators (e.g. if an actuator controls a LED or a wheel). Therefore, the first activities
are concerned with learning the meaning of its sensors and the effects of its actuators.
Then, basic competencies from the knowledge base are acquired followed by increas-
ingly complex competencies. A priori, the robot only has built-in knowledge of how to
interface its sensors and actuators and basic assumptions about physical laws and
geometric relations, but not what the sensors and actuators mean or how a specific
motion can be accomplished.

Our long term goal is to provide the robot with general methods that allow the
robot to work with any kind of sensors and actuators, in any kind of physical envi-
ronment, and learning any kind of competence, provided it is possible at all (e.qg. if the
robot has only LEDs but no motors, it cannot learn to move).

We consider this a worthwhile vision because this approach to minimize prior
knowledge and assumptions will facilitate very flexible systems that can work with
any kind of sensors and actuators, in wheel-equipped or flying robots, on level plains,
rocky or grassy surfaces, or even in wet environments. It will allow the use of accurate
or inaccurate sensors and actuators, and to adapt to aging and wear-out effects. This
approach is general because the only assumptions we make are the laws of kinematics
and geometry, the availability of and access to sensors and actuators, the availability
of learning methods (e.g., RL), and the availability of a database describing the skills
to be learned.

While this is our vision, in this article , we make the further assumption that the
robot knows the meaning of its sensors and operates in a two-dimensional plane.
Inspired by the play instinct observed in humans and animals we propose
exploratory, hierarchical learning. Simple and elementary tasks are tried out
and learned first, followed by complex and composite tasks. This means the robot
starts by asking if it can move at all, then it tries to learn elementary linear and
angular motions, based upon which it studies moving along rectangles and
similarly simple shapes. For each learmg task, we use Reinforcement Learning
(RL) as it matches well the exploratory nature of the robot’s setting. The learning
tasks are identified based on entries from a knowledge database that describes
the motion skills and the hierarchical relation between skills. Specifically, we use
the KnowRob knowledge processing system [1], which is designed to provide
autonomous robots with the knowledge base for performing motion and
manipulation tasks.

In this paper, we propose and demonstrate the Skill Acquisition Method
(SAM) for the case of a wheel-equipped tiny robot operating on a smooth, level
plain; in future work, we will show that the same techniques generalize to other
settings and environments. We evaluate our approach in a simulation environment
for a two-wheeled and a four-wheeled mobile robot moving in a two-dimensional
space. Experiments show that the system can learn and interpret its basic motion
commands and derive complex motions, and finally, it succeeds in driving a
rectangle (set of basic motion commands). Our contributions are summarized as
follows:

I) We identify a minimal set of prior knowledge mandatory for learning basic
movements.
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i) We propose a cognitive system behavior, the Playful Continuous Competence
Acquisition (PCCA), that enables the learning and development of skills based on
a) the model of generic competencies (skills),
b) and the system's Sensor and Actuator Space (SAS) grounded in elementary
physical properties.

2. Related work

The use of knowledge representation and reasoning in robots has a long tradition,
where the Shakeyobot had already 1984 an internal representation of its environment
[2]. Extensive research has been done in robotics and artificial intelligence in recent
decades, to which this article mainly refers. Since robots have specific demands on
knowledge bases and appropriate methods, e.g., linking abstract knowledge represen-
tation and specific control systems, this can be best solved with frameworks explicitly
designed for this purpose.

In this context, KnowRob was specifically developed to equip autonomous robots
with knowledge and methods (Knowledge Representation and Reasoning (KR&R)) to
perform everyday manipulation tasks and to provide an infrastructure for cognitively
enabled robots [1, 3, 4]. It represents one of the most advanced knowledge processing
systems for robots, which has evolved even further with OPEN-EASE ([5]), which
integrates KNOWROB?2 ([6]), and aims to provide a remote knowledge and reasoning
service that offers unprecedented access to the knowledge of autonomous robotic
agents performing human-scale manipulation tasks. This seems promising for agents
performing such rich human-scale manipulations but also places significant demands
on the systenis resources, which is crucial for systems with limited resources. There-
fore, we use KnowRob as the basis for knowledge processing and representation to
take full advantage, but we target the approaches and methods that allow it to be
deployed in such tiny systems.

A recent work dealing with the generalization of experience into abstract knowl-
edge for novel situations, entitled Socio-Physical Model of Activities (SOMA [7]),
consists of a comprehensive model for connecting physical and social entities that
enable flexible execution by robotic agents. Since this representation seems essential,
we use a similar approach, keeping our model flat in the first line due to resource-
constraints. This limits the flexibility of the application (smaller knowledge base) but
is crucial, and we aim for a reasonable trade-off. In this context, we also discuss a set
of a small amount of prior knowledge.

RoboEarth has similar goals and approaches to our work [8]. Capabilities are also
modeled, where we differ mainly in how they are used. We assume a set of general
prior knowledge and basic methods to acquire skills, while their work accepts more
complex algorithms to derive specific knowledge. Additionally, we further evaluate
and improve skills to achieve continuous development.

Other works also deal with systems that learn semantically from different experi-
ences, taking different approaches [9]. While learning relies on recorded experiences
in semantic structures containing high-level representations. A key difference in our
approach is that we generate skill-specific episodic knowledge through real-time
learning methods, leading to knowledge abstraction at an earlier stage. To further
leverage this, we define a set of prior knowledge that must be present to enable use in
resource-constrained systems.
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3. Skill acquisition

In the following, we present SAM, which starts from a set of general assumptions
(knowledge and methods) to autonomously acquire and develop specific complex
capabilities and aims for generic deployment in resource-constrained systems.

3.1 Overview

SAM (Figure 1) consists of various elements structured in layers. The bottom
layer reflects the physical part, i.e., the robot and its environment. The layer above
hosts the central computational agent, which abstracts the interface to the environ-
ment via the SAS. This general and generic interface is deliberately based on the
fundamental physical properties of sensors and actuators. Thus, by definition, any
environment can be integrated elegantly and efficiently as long as it follows the
matching properties, defined in 3.4. Further, the agent has access to the knowledge
base and reasoners. SAM follows a cognitive-behavioral architecture to autonomously
learn skills using a KR&R methods combined with real-time learning from the phys-
ical environment.

3.1.1 Cognitive model

Cognitive models go beyond traditional behavioral models regarding what an
entity (robot) knows, how that knowledge is acquired, and how it can be used. As a
result, they are becoming increasingly popular in artificial intelligence. They are well
suited for implementing highly autonomous systems that exhibit some intelligence
and are expected to develop over time. There are several approaches to these models
in the literature, particularly in robotics, which attempt to mimic the behavior of
intelligent agents based on human cognition. Recent work on a generic form of this,
such as the Socio-physical Model of Activities (SOMA) consists of a comprehensive
model that combines physical and social entities and allows flexibility of execution by
robotic agents through symbolic reasoning [7].
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Figure 1.

SAM overview with its layered architecture and the distinction between software and hardware. The KnowRob
layer consists of methods for &R, while the computing agent (python) drives the system flow to autonomously
acquire skills. It has access through the SAS to the physical environment and the database. All components are
integrated in ROS.
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Figure 2.

SAMs cognitive system model. The left side shows the distinction between physical and mental entities. The right
side shows their relations, where an agent seeks to acquire and further improve a particular competence using the
PCCA method. RL methods are used to learn a specific skill while interacting when required with SAS to access the
physical environment. The modules in the dashed line show examples of instances.

Since cognitive models, in the broader sense, represent complex processes and
behavior, we focus our modeling on the core elements that we consider essential for
our millirobot to acquire basic skills. In the medium term, we intend to adapt them to
SOMA.

Figure 2 illustrates our proposed cognitive system model, divided into the physical
and mental domains. The SAS depends on the physical properties of the robot. We
divide the mental part into elementary capabilities and behavioral methods. A com-
petence reflects knowledge of a particular skill acquired and applied through the
PCCA behavioral method, while RL is used to learn a specific competence (e.g. motion
commands). We will introduce and discuss these essential elements step by step in
this article.

3.1.2 Use of KR&R and episodic memory

For each activity that SAM performs and observes (physical interaction,
knowledge inference, learning, etc.), it generates skill-specific knowledge as episode
memory and stores it with timestamps. Such episodic memory could include what the
robot saw, reasoned, and did, how it did that, why, and what effects it caused [5]. It
can be used for further conclusions and learning at any time. While the size and scope
of the episodic memory directly relate to the resources required for the particular
system. Many approaches attempt to collect a large amount of extensive detailed
knowledge, which directly impacts computing time. This seems impractical for sys-
tems with limited resources. Therefore, we propose to keep episodic knowledge flat
and small and to store only highly relevant information. In this context, we also
consider a set of general prior knowledge that an intelligent system must have to learn
and exhibit sufficient episodic memory for a given skill. We argue that these two facts
are essential to consider for use in systems with tight resource limitations. Section 3.5.1
outlines an approach to a set of concrete prior knowledge and episodic knowledge
developed by SAM, intended for use in resource-constrained systems.

Our long-term vision is that all relevant parts of the proposed SAM are hosted on
such a system, e.g., a tiny millirobot powered by a micro-controller. We are aware of
the challenges of migrating databases and logical reasoning to resource-constrained
systems. As an intermediate step, we propose separating the acquisition and exploita-
tion phases, where the system has access to KR&R in the first phase. Once the skill has
been successfully acquired (sufficient episodic memory) to some degree, the system
may be able to master it independently. Then it exploits the acquired skill with
appropriate methods on the tiny millirobot. Whenever the system detects significant
changes or decides to search for new capabilities, it contacts the database again. In this
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way, we can elaborate a similar knowledge acquisition behavior for resource-
constrained systems compared to those with fewer constraints that host KR&R
directly.

3.2 Competence

A central core element of SAM is competence, generally understood as mental
property. The focus of this work is on the modeling of competencies that, when
defined, lead to physical actions of the system through the SAS. However, competence
in itself does not always have to be related to the physical facts of the system. It could
also be a purely mental ability, such as spatial awareness, concentration, attention,
reasoning, logic, and so forth. To model capabilities in an intelligent system, essential
basic elements of those capabilities must be considered to grant an appropriate devel-
opmental progression. In a nutshell, a system should learn a skill independently and
reason with appropriate knowledge about how good that skill is. Moreover, the eval-
uation of skills is of particular interest, used to continuously improve the respective
skills. In this way, a cognitive system that also has an interest in developing itself
further can become better over time.

In this context, two fundamental elements of competence have been attributed.
These are (i) fitnesswhich is a statement of how well system masters the skill, and (ii)
learnability, which indicates a skill that can be learned by the agent.

Figure 3 illustrates the general concept of competence modeled in the knowledge
base. Thefitnesss represented with a numeric value and thelearnability with a
boolean value. Thelearnability is fulfilled if (a) all properties for learning the skill are
satisfied, and (b) the system provides methods to learn this competence. The proper-
ties of (a) can be determined either by inference knowledge from the database or, if
they depend on the physical space, directly by physical interaction. For instance, in
the case of the movement skill, we determine the physical ageri$ ability to move
through physical interactions (Section 3.5.1). For (b), certain methods must be in
place to learn specific skill knowledge. Such knowledge could be, for example, a set of
specific actions and their command values. We use RL to learn specific motion com-
mands executed via SAS. Other learning methods such as Deep RL or supervised/
unsupervised methods could also be utilized. However, the goal is to acquire a subset
of episodic memory sufficient to exhibit a particular skill. The fitnesss used to
evaluate how well the skill is mastered and is represented by a number from 0 to 100,
with 100 being the maximum achievable. For example, we directly assign the RL
method reward to fithessof a basic motion competence (Section 3.5.4). In addition to
the general properties of competence, a corresponding instance may also store specific

V- @ owk:Thing ) hasFitness exactly 1 xsd:double
Y- >
- v Move isLearnable exactly 1 xsd:boolean

v BodyMovement
e Angular
e Linear
Navigate

Figure 3.
The competence entity with its two fundamental properties (learnability and fithess), modeled in the knowledge
base using ontologies.
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knowledge relevant to the execution of skill in a particular system. In our case, we
memorize the action commands, their fitness, and the timestamp, as discussed in
Section 3.5.5.

3.3 Playful continuous competence acquisition

Another key core element is behavior, which ensures continuous development by
learning new skills and further improving existing ones. Generally, a system that
acquires specific skills should not consider them finally learned after the first success.
Instead, the goal is to evaluate what has been learned and, if necessary, to develop
further and improve it. In this way, a system can evolve autonomously and continu-
ously adapt to certain changes in its environment. To this end, we consider the
following key behavioral elements crucial: (a) the striving for new skills and (b) the
continuous improvement of already learned skills.

Figure 4 illustrates our proposed PCCA method, focusing on knowledge acquisi-
tion and skill development. An interpretation of the learned skills in terms of possible
application scenarios and their combinations in specific contexts, i.e., for which pur-
pose skill could be used, is future work and not considered here. Further, to generalize
the high-level system flow, a promising approach would be to model it directly in the
knowledge base in tasks and actions. For that, KnowRob offers a promising approach
that might also be applicable to our system [1, 7].

However, SAM’s high-level behavioral process is determined using the PCCA
reasoner, directly queried by the computing agent. We define two different high-
level-behavioral phases acting on the competence model propertiedifnessand
learnability), shown in Figure 4: (i) seeking for new competencisd (ii) improving
known competencieBhase(i) and (ii) are general cognitive-behavioral patterns based
on the competence model (presented in Section 3.2) that are independent of the skill
being learned. Whereas skill-specific learning methods (dashed lines irrigure 4),

Search for unknown
Competence

eeking for new
competence?

no

Unknown
Competence
found?

no yes

Reason about
competence properties

Search for known
Competence

< learnability==true?

yes

97 Competence

yes

finess < threshold? Learn/mprove

competence

Figure 4.

The PCCA flow is divided into two high-level-behavioral phases, (i) and (ii). It acts based on the competence
properties (fitness and learnability). It covers key behavioral elements (a) and (b) by utilizing phases (i) seeking
for new competencies and (ii) improving known competencies, in an incremental fashion. The elements marked by
dashed lines represent skill-specific learning methods.
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triggered by the PCCA, acquire the respective competence-specific knowledge (e.g. an
RL element for a navigation skill). It switches playfully between these two phases and
can thus develop and improve over time.

3.3.1 Seeking new competencies

SAM searches for new capabilities based on the instances available in the knowl-
edge base. Currently, these still need to be instantiated manually, with the long-term
goal being to create them automatically. If one is present, the system uses the compe-
tences fithnessproperty to determine if it is already known and learned. If not, the
learnability property is used to determine if it can be learned. If yes, it enters the skill-
specific learning phase, and otherwise, it continues searching.

3.3.2 Improving known competencies

The system decides whether a competence can still be improved based on the
fitnesgproperty. When the fitnessvalue is below a certain threshold, SAM relearns the
skill by re-running the RL method exploration phase. If a better solution is found, it
memorizes it as the best for further use. Moreover, it operates on an incremental basis,
ensuring that the best solution is found after a certain period of time. It further allows
to react to changes in the environment and thus make immediate adaptations.

3.3.3 Skill-specific learning methods

A specific competence is explored, learned, and exploited using appropriate learn-
ing methods (RL, supervised/unsupervised learning). These methods are competence
specific and must be designed according to the particular skill. In principle, it is
possible to integrate highly optimized learning algorithms for the respective functions.
However, our goal is to use basic algorithms and execute them using general knowl-
edge modeled in the knowledge base. In this way, we expect even more flexible usage,
where only the primary parameters in the database need to be adjusted while the
algorithm remains the same. When needed, the skill-specific learning method is
triggered by the PCCA. In Section 3.5.4, we further discuss this approach and propose
an RL basic algorithm that we extend with methods from KR&R to achieve generali-
zation.

3.4 Sensor and actuator space

The sensor and actuator space (SAS) represents a generic interface to the robot
environment, solely based on physical quantities. For example, consider an Inertial
Measurement Unit (IMU), an odometry sensing unit as sensors, and two motors as
actuators. SAMs matchingcapabilitiesely on the physical quantities of those sensors
and actuators that the robotic-system must provide.Figure 5 illustrates the resulting
abstracted interfaces for sensors (, x andy) and actuators (m; and my), with their
physical quantities shown in Table 1.

We assume that these interfaces abstract the robot-specific sensor data and actua-
tor commands. For example, how the respective motor of the robot is controlled
(using a motor controller that takes the acceleration properties into account) needs to
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Example of a sensor and actuator space (SAS) consisting of two motors, an IMU, and an odometry sensing unit.
The respective datapre- and post-processing is robotic-system-dependent and must be addressed individually.
Thus, SAS must abstract the low-level data appropriately to meet SAfhatching capabilities.

Data Description Physical Quantity Unit

Sensor space

Yaw rotation Angle
X Horizontal cartesian coordinate Length
y Vertical cartesian coordinate Length
Actuator space
ms Wheel torque Torque Nm
m; Wheel torque Torque N m

Table 1.
Matching capabilities: SAS with its physical quantities.

be modeled robotic-system-dependent. In our case, the respective sensor data pre-
processing layer and the actuator data post-processing layer take care of this.

This approach is generic, and we argue that the system initially does not need to
know which actuators or sensors it is dealing with. A long-term goal is to employ
appropriate methods and knowledge to identify and learn its capabilities. The Seman-
tic Sensor Web follows this approach, annotating sensor data with various semantic
metadata (including physical quantities) [10]. Further, there is promising work in
automatic semantic knowledge acquisition for sensor data, which aims to annotate
raw data with semantic knowledge [11]. Thus, our approach aims to leverage generic
interfaces to integrate those methods seamlessly in future work.

However, the specific experimental setup is illustrated in Figure 5 for a two-
wheeled mobile robot. It is equipped with two motors (for a 4-wheeled robot,
extended by two additional motors), each driving a wheel, an inertial measurement
unit (IMU), and an odometry sensing unit (obtained from the simulation environ-
ment) that is used to reduce the drift error of the IMU over time using a Kalman filter
[12]. We are well aware of the challenges to the precision of these sensor measure-
ments required for stable localization, which is extensively discussed in many publi-
cations [13, 14]. However, we do not further discuss this and assume that the problem
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is well understood. In conclusion, with this generic design, any robot environment can
interact with SAM as long as the required physicalmatchingcapabilitiesre supported.

3.5 Motion skills

As mentioned earlier, this work focuses on modeling competencies that lead to
physical actions of the system through SAS. Considering this fact and the physical
characteristics of a wheeled robot, specifically the actuators in the form of wheels,
potential movement possibilities can be assumed. For that, we consider basic move-
ments, which in turn are subdivided into atomic and more complex movements. In a
broader sense, for atomic actions, the robot is assumed to always be stationary,
moving by applying torque to the actuators and stopping when it is removed. Such an
atomic motion thus represents a sub-element of a more complex motion. It is not
claimed that those movements are the most efficient in terms of smoothness and
speed. However, they still allow the robot to approach all positions in a given space.
Figure 6 illustrates a set of motion skills where atomic movements such as angular and
linear movements ground complex movement patterns such as rectangles, cycles, or
even more generally, a navigation path. The acquisition of these skills occurs in the
same hierarchical manner that enhances the physical learning methods discussed in
the next section.

3.5.1 Hierarchical knowledge acquisition

Let us first consider the knowledge we can gain about a movement, which we draw
from a small set of prior knowledge. Assuming the system has not yet acquired any
specific knowledge about motion, it has first to find out whether it can move at all
with its given actuators: d BAm | able to move?To answer this question, the system
initiates random actions and observes their consequences. In our case of a two-
wheeled robot, both actuators are moved randomly, and the physical effects are
evaluated based on a spatial position change. At the levél Ethe question is only about
the possibility of any movement, as depicted inFigure 7. If the system has an actuator
that controls only a LED, it would be recognized as irrelevant for movements. Next, at
level dI Bwe can start asking for basic movement patterns without specific lengths or
angles.dl P'Am | able to turn forward/backward/left/right?” The actuators are triggered
again, and SAM searches for angular (left/right) and linear (forward/backward)
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Figure 6.
Competence graph (modeled in the database), with a set of motion skills, sub-divided into atomic and complex.
Where the atomic movements form the basis for more complex patterns.
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The development of hierarchical knowledge over time. The motion skill acquisition starts with the fundamental
questiord BAm | able to move?, followed byd I1B'Am | able to turn forward/backward/left/right?’, dll B'‘Am |
able to move a specific length/andgle®d 1V B'Am | able to follow a specific rectangular pathaVhile SAM

draws associations directly from actions performed in the physical environment to answer these questions.

movement patterns. Turning left/right may be caused by a two-wheeled robot turning
one wheel forward while the other wheel is moving backward, where forward/back-
ward patterns may result from driving both actuators simultaneously. Hence, the
system learns general natural language-based motion patterns. At the next levéll b
these rules are used to learn a specific distance, say 1 cm, and angle, say.JRurther
building on this, more complex movements are learned at level (V), which in turn
consist of a series of specific movements. For example, for a rectangle with lengths of
3 cm and 2 cm, the following sequence of commands would be constructed: three
times straight 1 cm, then 9 times left with 10 , two times straight with 1 cm, and so on
until the rectangle is closed. Following this hierarchical knowledge acquisition
approach, we can significantly limit the search space and thus bootstrap the learning
performancel llII.

3.5.2 Basic motions

For an atomic, basic motion, we refer to the basic kinematic and dynamic proper-
ties of a system, where kinematics describes the relationship between coordinates in
motion space. Dynamics correlates the torque and force in each joint (wheels of the
robot) with the acceleration of the joint and the velocity over time. When the wheels
touch the ground, these forces act indirectly on the overall system and thus cause it to
move. With the aid of the kinematic properties, inferences about this resulting motion
can be drawn. Motion control for mobile robots is extensively covered in the litera-
ture. To navigate accurately, kinematic or dynamic models are used to generate
accurate motion commands, considering all effects, including the resulting tracking
error [15-19]. We are aware of the challenges of designing or even learning motion
controls that lead to accurate robot movements. Thus, our work demonstrates the
possibility of a generic approach to learning movements with general knowledge, even
if the movements are still subject to certain errors. We will address minimizing this
error by following the same general approach in future work.

However, based on universal laws of physics, we derive atomic base motions,
illustrated in Figure 8. The robot’s position is represented by a vector with a pair of
numerical coordinatesxd band yét Bfrom the cares coordinate system and orientation

& P The robot is indirectly set in motion with constant acceleration by applying an
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Basic commands and observations for atomic motions. The left image shows a linear motion, while the middle
shows an angular turn. The illustration on the right shows the respective action times and the velocity progression
over time.

arbitrary torque m; and m; of the robot’s actuators for a specific timet¢. As soon as
this torque is removed, the system brakes with the same constant negative accelera-
tion until it stops after some time t,s. Thus, the atomic motion time is expressed by the
total action time of t, ¥at; p t,¢, as depicted on the right in Figure 8. The resulting
spatial movement (distanced and yaw angle ) for the respective actuator torques is
determined by the change in position over time t, using an inverse kinematic rea-
soner. Using RL, we search for the best actions (actuator torques and action timéy)
for a given spatial position change. This applies to all atomic actions, while more
complex movements are simply composed of a series of atomic actions.

3.5.3 Kinematic reasoner

KnowRob ([1]) provides a kinematic reasoner, which we adapt to our SAM's
needs. It derives motion-specific competence knowledge based on general kinematic
laws and is utilized during hierarchical knowledge acquisition levelll V. We dis-
tinguish two types of motion knowledge, (i) basic movement patterns and (ii) specific
motion distances. To reason about (i), we define the following logical rules:

is_basic_linear_motion_pattern(X 0, Y0, YAW,
X1, Y1, YAW1], Distance)

DX is X1 - )0,

DYisY1-9,

Angle is wrap(YAVQ, YAW1),

Distance is sqrt((DX*DX) + (DY*DY)),

Distance ! = 0.0, abs(Angle) ==0.0.
is_basic_angular_motion_pattern(X 0, YO, YAW,
X1, Y1, YAW], Angle): -.

DX is X1 - )0,

DYisY1-9,

Angle is wrap(YAVQ, YAW1),

Distance is sqrt((DX*DX) + (DY*DY)),

Distance == 0.0, Angle!=0.0.

A basic linear motion pattern is detected when the robots angle does not change
during an action, but the distance does. Further, we can restrict it to aforward motion
pattern if the position change has a positive value andackwardif it is negative.
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For an angular movement, the same rules apply. To detect angular motion patterns
(left, right), we use an angle wrap function that calculates the angle moved and the
direction of rotation.

For (ii), we define the following reasoner to argue about specific distances and
angles used in levelll of hierarchical knowledge acquisition.

is_spatial_motion(X 0, YO, YAW, X1, Y1, YAW1],
Distance, Angle): -.

DXis X1 -0,

DYisY1-9,

Angle is wrap(YAW1, YAW),

Distance is sqrt(((DX*DX) + (DY*DY)) .

These rules represent a general knowledge of the kinematic properties of a two-
dimensional system, where we argue that SAM can be easily extended to three-
dimensional systems by adding appropriate kinematic reasoners.

3.5.4 Skill specific learning methods

A specific competence is explored, learned, and exploited using appropriate skill-
specific learning methods. Since SAM primarily focuses on acquiring skills that lead to
physical actions, the respective atomic motion commands have to be learned in real-
time by interacting with the environment. An appropriate learning procedure is
required, whereas reinforcement learning methods achieve good results in this
domain. The method dates back to the early 1990s when Q-learning was already used
to learn specific, mostly robotic, tasks. However, many works solve various tasks with
RL, whereby these are primarily designed in a context-specific, goal-directed manner
and without explicit general prior knowledge, which significantly limits the learning
of complex skills. We attempt to overcome this with our approach by using generally
formulated prior knowledge to learn skill-specific, in our case, atomic motion com-
mands.

In the following, we introduce our RL-based approach, which we extend with
KR&R methods. In RL, an agent interacts with its environment over periods of
discrete time stepst. An action a; is taken following a policy based on the observed
state s and the reward r¢, as shown inFigure 9. The main difference from traditional
RL methods is that we use KR&R to infer the reward and the state. More specifically,
the kinematic reasoner is applied to argue with the general kinematic knowledge
about the newly observed statesy 1, which in turn is defined as the distance and angle
traveled during a time step t. Where the reward ry, 1 is computed with an RL Reward
Reasoner, following Eg. (2) and Eq. (3).

We chose a model-free approach for the specific RL algorithm based on a simple
Q-Table RL method ([20]) for resource reasons. Keeping the required resources low
seems to be the most intuitive first step for tackling our long-term vision, where all
relevant parts of SAM, including RL, are hosted on a resource-constrained system.
Q-Learning is a value-based method, where the Q-value is computed from the action-
sate value function (Eq. (1)). It seeks to find the optimal Q-value for pairs of states
and admissible actions. During exploration, the agent computes and stores them in a
Table (Q-Table), where the Q-value indirectly represents the optimal policy . Once
the agent performs exploitation, it simply selects its actions from the Q-Table. This
method performs well in systems with limited resources since it scales with the size of
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Figure 9.
RL flow with an extension of using K&R to compute to state and reward using general knowledge.

the Q-Table in terms of resources. One significant challenge is to define the search
space well, which directly affects the size of the table. We address this with our
hierarchical learning approach, which constrains the respective search space quite
well and thus achieves good results with Q-learning.

The Q-value function is defined according to the Bellman equation and notated as:

Q &, aP4Qdg, ap Yas, aH maxQdsp1, a1 P (1)

Where s the learning rate, and is the discount rate for the expected future
reward. The action space consists of the motor forcen;, m,, and the applied time t;.
The state space is represented by the distance covereli, and the angle  as well as
the time required ts,.

The design of the reward function is formulated to learn specific basic motion
distances and angles, while the angular and linear motion skills are learned separately
and denoted as:

Minear®&, 8 P74100 1 abs darget d:, (2)

rangu|ar$, at bl'/4 100 1 abS target ta (3)

In principle, they each reflect a simple assumption: the closer a performed basic
movement is to the desired distance, the higher the reward for that action. Thus, these
rewards can also be considered a piece of specific general knowledge and are assessed by
the RL Reward Reasoner. The resulting extended Q-Learning algorithm (Algorithm 1)
follows a traditional flow, where the reward r; and the statesy, 1 are computed by the
Kinematic- and RL Reward Reasoners. Their computation time is essential for systems
that learn from the physical environment in real-time. In particular, these decisions
must be made in a specific period, especially for tasks requiring a time-dependent
control cycle, e.g., the robot is in motion and must receive its commands in time to
navigate accurately. In the current work, we have solved this problem by using atomic
motions that result in the robot being stationary, eliminating the time-dependent
requirements during KR&R. In future work, we will investigate these considerations on
real hardware that learns various skills from its environment in real-time.
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Figure 10.
A set of prior knowledge, including semantic knowledge, about competencies, SAS, PCCA, kinematic properties,
and skill-specific learning methods (dashed lines) to acquire motion-related episodic memory.

Algorithm 1 : Q-Learning with KR&R interactions.

1:Init Q Tablewith random data.

2: Observe initial states,.

3:for episode = 1, Ndo.

4: Select an random action actiondj b

5. Executea;.

6: Observe new statesy 1 ¥4 Kinematic Reasonéb
7: Observe rewardr; ¥2 RL_Reward Reasoné

8: Calculate Q-valueQ .

9: UpdateQ Table.

10: end for.

3.5.5 Prior knowledge and episodic memory

As discussed in Section 3.1.2, we propose to keep episodic memory flat and small
and to store only highly relevant information. Further, we seek a set of general prior
knowledge (semantic knowledge and general methods) that needs to be provided to
learn and exhibit sufficient episodic memory for a given skill. We argue that these two
facts are essential to consider for use in systems with limited resources. The following
outlines how this might be addressed specifically in the case of SAM.

Figure 10 illustrates a set of prior assumptions, including semantic knowledge and
general methods for acquiring motion-related episodic knowledge. The KR&R part
might be provided by an edge device during the acquisition phase, while for the
motion-specific learning, we deliberately propose Q-Table RL that requires few
resources and thus can be hosted directly on the tiny millirobot. Further, we memo-
rize only the motion commands learned by the RL with a timestamp andfithesso
continuously evaluate their performance. In the case of SAM, this amount of episodic
memory is sufficient to develop and improve motion skills over time. With this hybrid
system flow and the conscious design of a set of generic prior and episodic knowledge,
we argue that movement skills can be learned and used even on a system with limited
resources. While these are general considerations, we will specifically address this
subject on real hardware to consider all implications and requirements in future work.

4. Experiments

To evaluate the proposed SAM, we base our experiments on a simulation of a
millirobot. Based on ROS, we use Gaezbo as a simulation environment, a Python ROS
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node for the computing agent, and KnowRob for the knowledge base and reasoning
methods. We show the development phase$ IV (Section 3.5.1), starting with
evaluating a principle movement possibility up to the execution of a rectangular path.
Moreover, we study two different robot models, i) a two-wheeled model and ii) a
four-wheeled model.

The primary experimental question is whether SAM can a) autonomously learn a
motion skill based on a small set of prior knowledge, b) evaluate and continuously
improve it, ¢) exhibit reasonably good time performance, and d) cover a generic
application on various robot models.

4.1 Two-wheeled model

In the first experiments, a two-wheeled robot with dimensions of 2 cm? and a mass
of 100 g is used. The action space of the wheelsnf;, m;), which expects a torque, was
selected with 0.01 N m to 0.3 N m. The action period (t) was set to 50 ms to 1000 ms
and the fithesshas a range from 0 to 100, directly computed from the reward. In the
following context, the term stepindicates a basic movement over timet,, while an
episodés a set of five steps.

For the initial fundamental question, d BAm | able to move? SAM succeeds in the
very first step and computes thelearnability to TRUE. This is not surprising since as
long as the two-wheeled robot is in contact with the ground, it can initiate a move-
ment. SAM then begins learning a basic movement by randomly exploring movement
patterns and reasoning about them with prior kinematic knowledge. Figure 11 illus-
trates the results of levelll, in which all patterns ( forward=backward=left=right) were
successfully found in only 50 steps, taking a total of 65 s. For a model with two
actuators (wheels), the search space is manageable and works relatively fast, but the
performance decreases as the number of actuators increases, which we will observe
with the four-wheeled model. However, this can be addressed with suitable heuristics.

(II) "Am 1 able to turn forward/backward/left/right?”

[ [ [ [
- A A |

./b/‘@qfd

4
tzc(a@gfd
/% - PN n

"o |- * ¢ ¢ y

11;7%
770@
i | | | | | |

0 10 20 30 40 50
step

Figure 11.

Acquisition of basic motion patterns (level Il - section 3.5.1). The red markers represent the respective patterns

(forward = triangle, backward = square, left = pentagon, right = diamond) argued and identified in a particular
step (physical interaction) with kinematic knowledge.
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"Am I able to turn 10° left?
”Am I able to move 20 mm forward?”
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Figure 12.

Acquisition of specific motion distance and angle (level Il - section 3.5.1). The left illustration shows the successful
learned specific motions (green: 10 and red: 20 mm). The right image depicts the accumulated reward from the Q-
table RL per episode, where an episode consists of five steps.

At the next level dll Bthese rules are used to learn a forward liner movement
ainffwg f 20mnyg with a specific distance of 20 mm and a left turn angular movement
aangf g f 10g with an angle of 10 . The RL Q-Table learning is applied for each motion
action, where the reward (0—100) directly represents the fithessof each.Figure 12
depicts the learning performance ofaandf ltg f 10g (green) and a, f fwg f 20mny (red).
The reward settles at episode 35, with the total time of the 50 episodes averaging 4 min
30 s. The respective learned motion commands are:

aangf I9f10g : my % 0:15Nm, my ¥4 0:15Nm, t; ¥ 35571 ms, fitness? 83, and:
ainftwgf20mng : my %2 0:26Nm, my %2 0:26 Nm, t¢ ¥ 450:71ms, fithess?4 80:

(4)

In the first attempt, we achieve relatively good results in an early phase, after only a
few minutes. This is promising for use in resource-constrained systems, as it meets the
resource requirements for migration mentioned earlier. The acquired competence
knowledge is further used in level IV to accomplish a more complex skill.Figure 13 shows
the execution of a complex motion(rectangular path), where the continuous improve-
ment of the respective motion commands is investigated. The blue reangular path
shows the first attempt using the learned angular and linear motions
(aangf Ity : fitnessys 83 anday, f fwg : fitnessys 80). Clearly visible, the fitness is not yet
sufficiently developed to follow a reasonably good rectangular pah. In the following,
SAM tries to improve those (using PCCA) over several iterations until a sufficient fithess
(thresholdv4 99) is learned. After about 60 min it has improved its capabilities and
successfully navigates the red rectangular path significantly better than the green (after
25 min) one. When performing complex actions, it is also ckarly visible (red path) the
effects of a small movement error, which accunulates over further steps. This is due to
the non-consideration of the actual respective error of action. In this work, we con-
sciously accept this fact, but we will attempt to reduce it in a general way in further work.
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Figure 13.

The exploitation of complex motion following a rectangle path (level IV - section 3.5.1). The respective color shows
the development (improvement) over time, starting with the blue path (accomplished with the commands learned
from the first few attempts), followed by the green, and finally the red, representing the best movement competence.

4.2 Four-wheeled model

Further, we extend our experiments to a four-wheeled robot model as a first step
to verify the general applicability of SAM. The basic assumptions and
implementations of the robot model remain the same, except for two additional
wheels. Due to these two further actuators, the search space increases, which leads to
significant differences in the learning phase (levell) of the motion patterns
(forward=backward=eft=right), depicted in Figure 14. Unlike the two-wheeled model,
SAM requires significantly more time, i.e., 200 steps (four-wheeled model) instead of
the previous 50 steps (two-wheeled model). However, this was expected and will
become even more complex with other systems, such as drones (acting in three-
dimensional space). Once this phase is overcome, SAM can achieve the same good RL

(II) "Am 1 able to turn forward/backward/left/right?”

T T T T T
/(}ngqrd - A A A —
éq@fzgqfd — ] ] —
/Lj? - * * —
Loty | .
”’7/67050/7 | |
\ \ \ \ \
0 50 100 150 200
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Figure 14.

Acquisition of basic motion patterns (level Il - section 3.5.1) of the four-wheeled robot. The green markers
represent the respective patterns (forward = triangle, backward = square, left = pentagon, right = diamond) argued
and identified in a particular step (physical interaction) with kinematic knowledge. In contrast to the two-step
model, SAM requires significantly more time, i.e. 200 steps instead of the previous 50 steps (two-wheeled model).
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Figure 15.

Exploitation of complex motion following a rectangle path (level IV - section 3.5.1) or the four-wheeled robot. The
respective color shows the development (improvement) over time, starting with the blue path (accomplished with
the commands learned from the first few attempts), followed by the green, and finally the red, representing the best
movement competence. No significant differences to the two-wheeled model can be identified in this skill level due to
the hierarchical learning approach.

results (level IIl') with the four-wheeled as with the two-wheeled model. We did not
experience any significant difference in terms of learning performance.

The reason for this is the hierarchical learning approach, where the level above is
abstracted from the level below in terms of performance. This gives us confidence that
SAM is well suited for generalization. The last image of our experiments shows the
development of the rectangular path by the four-wheeled robot with SAM, which was
successfully mastered in 50 min (sedrigure 15).

In summary, we have demonstrated with our experiments that SAM can learn
autonomously complex motion skills based on a small set of prior knowledge and can
further develop them with reasonable good time performance. We showed the first
step for a generic application to various robot models by demonstrating the different
wheel-based models.

5. Conclusions

In this article, we introduced SAM, which starts with a set of general prior knowl-
edge and appropriate methods to autonomously acquire and develop specific complex
skills. It combines methods of KR&R with methods of learning from the physical
environment and aims to be applied in resource-constrained systems. We proposed a
cognitive behavior (PCCA), which enables the continuous acquisition of skills, their
evaluation, and the further development and adaptation of already learned skills. To
this end, we modeled generic competencies using ontologies and formulated SAS
based on elementary physical quantities to build a generic interface to the physical
environment. Specifically, we demonstrated SAM based on motion skills learned
through a general knowledge of kinematics laws and geometry. Further, we applied
hierarchical knowledge acquisition with RL to acquire basic and more complex move-
ments. We argue that this approach is general because the only assumptions we make
are the laws of kinematics and geometry, the availability of and access to sensors and
actuators, and the availability of a database describing the skills to be learned. Based
on this generic knowledge, we demonstrated the acquisition of basic motion and a
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complex movement where the robot successfully moved along a rectangular path. To
prove the generic approach, we evaluated it through experiments with a two-wheeled
and four-wheeled millirobot. Where the acquisition performance in terms of
resources delivers promising results for further deployment of the method in
resource-constrained systems.

Thus, in the first step, we have demonstrated a cognitive system that develops
more complex behaviors with a set of general prior knowledge and appropriate
methods to function in arbitrary environments. In this work, we still assume that the
robot knows the meaning of the actuators and sensors, although these do not neces-
sarily have to be present a priori. In the next step, we want to remove this assumption.
There is promising work in automatic semantic knowledge acquisition for sensor and
actuator data that could help address this problem in a meaningful manner, which we
will investigate further. Moreover, we will continue to develop an even more general
approach, where an exhilarating challenge in this context could be the applicability of
our method in a three-dimensional system. In addition, there are still limitations to the
use of KR&R methods in resource-constrained systems, which we discussed in this
work. Another medium-term goal is to study SAM in resource-constrained systems.
Therefore, we will specifically address the transition to a real resource-constrained
system in the form of a millirobot. In summary, our first results indicate that the use
of SAM has an advantage for generic applicability, and we will continue to try to
advance this approach.

Abbreviations

RL Reinforcement Learning

SAM Skill Acquisition Method

PCCA Playful Continuous Competence Acquisition
SAS Sensor and Actuator Space

KR&R Knowledge Representation and Reasoning
SOMA Socio-physical Model of Activities
IMU Inertial Measurement Unit
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