Goal-Driven Autonomy for Efficient On-chip Resource
Management: Transforming Objectives to Goals

Elham Shamsa!, Anil Kanduri!, Amir M. Rahmani®3, Pasi Liljeberg!, Axel Jantsch?, and Nikil Dutt?

'Department of Future Technologies, University of Turku, Turku, Finland
2Department of Computer Science, University of California, Irvine, USA
3Institute of Computer Technology, TU Wien, Vienna, Austria
{elsham, spakan, pakrli} @utu.fi, {a.rahmani, dutt} @uci.edu, axel.jantsch@tuwien.ac.at

Abstract—Run-time resource allocation of heterogeneous
multi-core systems is challenging with varying workloads and
limited power and energy budgets. User interaction within these
systems changes the performance requirements, often conflicting
with concurrent applications’ objective and system constraints.
Current resource allocation approaches focus on optimizing fixed
objective, ignoring the variation in system and applications’
objective at run-time. For an efficient resource allocation, the
system has to operate autonomously by formulating a hier-
archy of goals. We present goal-driven autonomy (GDA) for
on-chip resource allocation decisions, which allows systems to
generate and prioritize goals in response to the workload and
system dynamic variation. We implemented a proof-of-concept
resource management framework that integrates the proposed
goal management control to meet power, performance and user
requirements simultaneously. Experimental results on an Exynos
platform containing ARM’s big.LITTLE-based heterogeneous
multi-processor (HMP) show the effectiveness of GDA in efficient
resource allocation in comparison with existing fixed objective
policies.

Index Terms—Goal-Driven Autonomy, Autonomous and Self-
Aware Systems, On-chip Resource allocation, Heterogeneous
Multi-core Systems

I. INTRODUCTION

Mobile heterogeneous multi-core processors (HMPs) re-
quire intelligent run-time strategies in order to match applica-
tions’ requirements with hardware capabilities to maximize re-
source efficiency [1]. Adapting to varying concurrent workload
characteristics and user requirements under stringent power,
energy, and thermal budgets makes run-time resource man-
agement more challenging [2]. Considering user, application,
and processor as three major levels of abstraction, each layer
presents a diverse set of demands [3]. For example, these may
include (but not limited to) quality of experience (QoE) at
user-level, minimum performance guarantees at application-
level, and honoring thermal safety at processor-level. Demands
expressed at each layer can be transformed into quantifiable
entities, which we refer to as constraints. Resource manage-
ment policies form objective which could be expressed as a
linear cost function that fits one or more constraints. Single-
objective indicates having a cost function with one constraint,
however, fixed objective refers to a cost function with one or
more fixed constraints.

State-of-the-art run-time management approaches have used
dynamic policies for application mapping [4], thread-to-core
binding [5], task migration [2], power budget allocation [1],
power density and thermal management. Each policy typically
has fixed objective such as maximizing performance, mini-
mizing power consumption, honoring power budgets, ensuring

thermal safety etc. These policies largely focus on satisfying
the fixed objective, leaving the possibility of being agnostic to
other objectives. Some of the policies however have considered
multiple objectives simultaneously, deliberately making known
compromises. Unpredictability in user activity pattern and
workload intensity affects the power, energy, and thermal
budget available. This changes the constraints at each layer
which could be formed into a new objective, while objectives
from different layers could be overlapping, conflicting or or-
thogonal. Fixed objective resource management policies, both
single and multi-objective, are oblivious to such scenarios.
This restricts their resource efficiency to only a fixed set of
workload conditions and system state.

A robust and efficient way for adapting to varying con-
straints and objectives is to abstract away such behavior into
hierarchical entities that can embed multiple objectives and
their significance. We refer to the abstracted information as
goals, which would drive the resource allocation decisions.
Goal can be formulated as a weighted combination of differ-
ent objectives. Multiple conflicting objectives can be unified
through goal formulation, forming a hierarchy of goals with
different priorities [6]. Goal driven resource allocation thus
identifies the importance of different objectives and makes
suitable decisions. As workload characteristics and system
dynamics vary, goals and their priorities also can vary [7].
Resource allocation decisions can be automatically adapted
to fulfill the hierarchy of goals by arbitrating among varying
priorities of goals.

With this motivation, we propose goal-driven autonomy
(GDA) for on-chip resource allocation and management. Our
approach is inspired by the rich literature on GDA in the
fields of artificial intelligent and robotics [8], [9]. We design
a hierarchical goal manager which considers user, application,
and system’s objectives, dynamically formulates goals by
identifying the importance of each of the objectives. The
goal manager arbitrates among different goals to classify
them as per their urgency and enforce resource allocation
policy that is suitable to meet the current goal hierarchy.
Resource allocation decisions made are evaluated at run-time
by assigning weighted rewards to quantify the efficiency of
a specific policy, which will guide the subsequent decisions.
Our contributions to this end are:

o A resource management framework with a hierarchical
goal manager that abstracts distinct user, application, and
system’s demands into goals.

¢ A dynamic goal formulation in lieu of multiple conflicting

Low power Policy Low power Policy

High perf. policy Low power Policy
>
z A Lovponer oy A APl : :
2 = é Ve H g User High perf. Low Power
L g] B aE— £ 3 Battery High Low
=] & » & » & Il » - - . -
© Ll A N — ‘\ > IApplicationHigh Intensive|Low Intensive|
5 g A g Y ey R
-g g . e amamann g TDP violation HBref_App0 ---- TDP ————
£ R & : -~ o : _ o HBref_App1 ==== Power —
= TO tat U = T1 Ll ¢ {31 U ¥ 14 15 it U » HB_App0O — Req. met =
state rgency state Urgency state rgency state rgency HE_App1 Req. not met
System v = v = v = v
User H = L = H = H = High urgency W
Battery H =] H = H = L = Low urgency
Application L = L+H 4 53] L+H [H = Nourgency M
. . N . . TO: Low intensive app. arrived
A Low power Policy A Low power Policy A Low power Policy A High perf. policy T Hi;‘;wlintens%e a%F:). an"}lved
= g g oo 8 fm————— oo 3 [oaoamesmmsesssasess T2: switch policy in without autonomy
E a2 sl v s s - . T3: TDP violation in without autonomy
2 sf==== Sfpot===cccomsssoeemnnnas S fpo==========zzzcszono=. § o o o o T4: switch policy in without autonomy
o ¢] » &] o T5: Low intensive app. ended
> = - o > ¥" T6: Switch policy in with autonom
: A A) A policy y
E & 2l - 8 4
> - » > PR »
TO gl T = gl T4 T5 16 Lad
state Urgency state Urgency state Urgency state Urgency
System v = v = v = v =
User H = L = H H =
Battery H = H = H = H =
Application L = L+H [3] L+H FIx H =4

Fig. 1: Motivation example demonstrating goal driven autonomy

user, application, and system demands and objectives

« An on-line learning for evaluating and prioritizing among
goals to provide goal driven autonomy for efficient re-
source allocation.

« A middleware to enforce resource allocation decisions
guided by the goal manager and an evaluation on a real
heterogeneous hardware testbed of Exynos-based Odroid
XU3 over varying workload conditions.

We provide background and motivation for using GDA
based resource allocation in Section II. Our proposed approach
is described in Section III. We evaluate resource allocations
strategies with and without GDA over micro-kernels on real
hardware testbed, as presented in Section IV. Section V
summarizes relevant related works and Section VI concludes
with possible future works.

II. BACKGROUND AND MOTIVATION

State-of-the-art run-time management policies focus on
fixed objectives and there has been no prior work in applying
goal-driven autonomy for computing systems resource man-
agement. A naive policy switching might satisfy more than
one objective, where each policy is more suitable for specific
objectives. However, the reactive nature of such decisions only
leads to an oscillation among different policies for different
target objectives [3]. The system must monitor its environ-
ment during run-time to formulate goals and autonomously
prioritize among different goals that satisfies the most impor-
tant objective at any given instance [7]. We demonstrate the
effect of autonomous goal formulation in the multi-objective
resource allocation through an example in Figure 1. The
figure illustrates the power consumption and corresponding
performance for two applications in two different scenarios
- with and without autonomy. We consider four entities viz.,
system, user, battery, and application in decreasing order when
evaluating their priorities during resource allocation. Each
entity has a state i.e., current scenario in which they are
operating, and urgency i.e., the extent of their priority. For the
system, we use two states indicating operating under power
budgets (shown in v) and violating power budget (shown in

X). The user’s state are confined to two commands - high
performance (shown in H) and power saving (shown in L).
The battery’s states are high-level and low-level while the
applications’ states show high and low performance require-
ments. At 70, a low intensive application, App0, arrives while
the user command is for high performance. In this scenario,
a policy that suits less intensive workloads is selected. This
policy is modeled similar to the approach presented in [2].
Since the application is less intensive, the user command
for high performance is satisfied within the power budget,
using the low-power policy itself. At T/, a high intensive
application Appl arrives, resulting in an increase in the power
consumption. While the power consumption is below TDP,
performance requirements of Appl are not met with the low-
power policy. The system without autonomy identifies the
performance requirement (shown in red under urgency) and
assigns the highest priority to application requirements. The
resource allocation policy is thus switched to high performance
at T2 to satisfy AppI’s performance requirements. The high
performance policy is modeled based on the strategy presented
in [5]. Although the application requirements are now met,
a TDP violation occurs at 73 with the higher performance,
as shown under urgency. At 74, the system becomes the
most prioritized entity and a decision to switch the policy
back to low power mode is taken. Consequently, at 75, the
power consumption is lowered below the TDP, although the
performance of Appl is not met, which is again prioritized.
Such switching between low-power and high-performance
policies is relatively adaptable to varying workload conditions,
however with constant oscillations between the two policies.
For the similar scenario, a more autonomous approach would
be able to differentiate between priorities of different entities
while making policy switching decisions. In the example
presented with autonomy, the system is prioritized already
at T, since the power consumption is closer to the TDP
with a likeliness of potential violation. This is shown in
red tick under the urgency column, since power has not yet
been violated. At the same time, the performance requirement

of Appl is not met. In this case, the autonomous resource
management approach still prioritizes the system (shown in red
under urgency) over the application (shown in orange under
urgency) i.e., a potential system violation has higher priority
than an instantaneous performance violation. Based on the
priorities identified, execution continues with the low-power
policy which suits the required low-power operation. In the
same scenario, conventional resource management approaches
would not switch between any policies being oblivious to
changing workload scenarios, while a naive goal management
system would reactively switch between policies. At T4, App0O
leaves the system, leaving enough power headroom. The
system’s state and urgency are updated accordingly. With the
system no longer being in urgency and the performance of
Appl not met, application becomes the priority. As a result,
at 76, the manager switches the policy to high-performance in
order to meet the performance requirements of Appl. As such,
goal driven autonomy for resource allocation can improve
the overall efficiency, making justifiable compromises when
needed.

III. GDA FOR ON-CHIP RESOURCE MANAGEMENT

In this section, we present our proposed approach and
framework for GDA based on-chip resource allocation. Cogni-
tively, humans pursue number of concurrent goals - spawning,
terminating, (re-)prioritizing them dynamically by arranging
them in hierarchical structures [10]. Researchers have studied
the origin of goals and cognitive architectures to handle the
goals of artificial agents. GDA is a goal reasoning model which
allows agents to dynamically generate their goals in response
to environmental changes [7].

Our GDA conceptual model has a controller which interacts
with the execution environment. The controller is responsible
for monitoring the state of each entity viz., system, user,
and application, and make appropriate resource allocation
decisions. The controller includes a state detector, priority
re-assignor, and goal enforcer. The state detector monitors
critical system parameters i.e., power consumption and per-
formance metrics from the execution environment in order to
determine the state. The priority re-assigner generates one or
more goals in response to the new state. The goal enforcer
enforces resource allocation decisions to meet the new goal.
We designed the GDA model for HMP architectures due to
the higher complexity of resources and knobs available in
such platforms. Figure 2 illustrates a hierarchical view of the
proposed GDA based resource management framework. The
details of each component within this framework are described
in the following.

A. State Detector

As mentioned in the previous sections, we consider system,
user, and application as the major entities that affect resource
management. To dynamically scale the resources proportional
to each of these entities, we monitor their state at run-time.
We model the state as a vector of Power, User Cmd, and
Performance, representing the system, user and applications’
requirements, respectively. Within the state vector, Power
represents the instantaneous power consumption (P) of the
chip in comparison with a fixed upper bound on power (TDP).

Applications

(State Detector)

Priority Goal
Re-assigner Enforcer
W0, W1 . Wn
Reward

D)

(Reward Calculation

m

C Operating System

Aoljod pejosjes

IAiSIAlSIAlSIAlS” A7IA7|A7IA7I

big cluster LITTLE cluster

Fig. 2: Goal management system architecture

The three possible states are violation (P > T'D P), potential
violation (I'DP > P > 0.8 x T DP), and no violation
(P < 0.8xTDP). The User Cmd represents interactive input
request made by the user, which includes high-performance
and power-saving. Such modes are often available in battery-
powered systems such as smartphones. The Performance rep-
resents the extent of performance requirements being met
for all the currently running applications. Each application is
modeled to have a specific range of performance requirements.
We monitor the performance of each application at run-
time and compare it against the pre-defined requirements
to determine performance violation. Thus, the state detector
identifies the state of each of these entities, representing
power, performance, and user requirements under the current
workload scenario.

B. Priority Re-assigner

We define a hierarchy of primary, secondary, and tertiary
goals with decreasing order of priorities, as shown in Fig-
ure 3. In our proposed approach, we map system, user,
and application entities to primary, secondary, and tertiary
goals, respectively. This emphasizes on the importance of
thermal safety, followed by user satisfaction and applications
performance. Our generic model for goal hierarchy can support
several levels of goals and sub-goals. We define urgency as the
extent of the violation of a measured parameter, i.e., power
consumption and performance. The urgency is calculated as
shown in Equation (1)

_ perfma;v - perfcurr (1)
perfmam - perfref
where Upo, and Upe,y are the urgency of power and per-
formance, P, is the instantaneous power consumption, and
P.cy is the fixed upper bound on power (TDP). When the
power consumption exceeds TDP (P, > P,.y), the urgency
Upow > 1, indicating a high urgency. per fcy is the measured
performance, per fy,q. is the maximum required performance,
and when user Cmd is high-performance per f.y is:

_ pe’rfma;c + perfmi'n,

Perfref - 2 (2)
and when user command is power saving:
Pe'rfref = perfmin (3)

We use Application heartbeats API [11] for measuring per-
formance of each application. Applications periodically issue
heartbeats where the number of heartbeats per epoch indicates
the application performance. If the heartbeats are within the
specified minimum and maximum requirement the urgency of

performance is low. Similar to the power urgency, Uperp > 1
when performance requirements are not met. An urgency
which is higher than 1 indicates a high priority objective, while
lower than 1 lowers the priority. The priority reassignment
receives the state vector from the state detector and calculates
the corresponding urgencies. These urgencies will be poten-
tially used to determine the priorities of the next set of goal(s).
We arbitrate and re-assign priorities of multiple goals in a
weighted manner considering the goal hierarchy. Within the
same level of hierarchy, the goal with the highest urgency will
be prioritized among multiple goals. Among goals belonging
to different levels, the urgency of the goal is weighted with the
level of hierarchy to determine the eventual priority. Finally,
the re-assigned priorities are evaluated to determine the new

goal(s).
C. Goal Enforcer

Once the new set of goals are determined at the priority
re-assignment stage, we enforce the goals through choosing
appropriate action. In our framework, an action corresponds
to invocation of a specific resource allocation policy. From the
available set of actions, the goal enforcer module selects the
best action that is more likely to satisfy the highest priority
goal. In the initial case at time ¢ = Os where the system starts
execution for the first time, a random action is selected. After
this initial selection, all the subsequent enforcement decisions
are based on reward function that is calculated by learning
from the system dynamics from the previous cycles. The
enforcer selects the action with the highest reward. Details
on reward function calculation are explained as follows.

D. Reward Calculator

The Reward Calculator module estimates the efficacy of a
chosen action for a target goal using a reward function. The
reward function is dynamically changed based on the priority
that is assigned to each goal by the Priority Re-assigner. The
goals with higher priority have higher weights in the reward
function. The reward function is expressed in Equation (4).

Reward = Wox Ry+Wi X Ri+Wox Ro+...+W, xR, (4)
where W, is the weight of 4, goal as determined by the
Priority Re-assigner and R; is the reward that calculated
for each goal after choosing an action (policy execution).
The rewards for power and performance objectives in our

framework are expressed as:
Prot — Poyrr
RPower = ref L (5)
Pref
where Rpgoyer 1S the reward for power goal.

Perfi—Perfmin

Z/ﬁ: Bt _—Pornf
RPerf = i=1 Perfmae—Perfmin (6)

where Rpe,y is the reward for peﬁformance goal, Perf; is
the measured performance of the ¢;; application and n is the
total number of applications running. For instance, considering
two different types of objectives which lead to two goals viz.,
power and performance, the reward function is:
Reward = WPower X RPower + WPerf X RPerf (7)
In Equation (7), Rpower and Rpers can be calculated
by (5) and (6) and Wpower and Wpe,; are determined by
Priority Re-assigner module. A relatively higher reward indi-
cates fulfilling the target goals, such that eventually multiple

Primary goals: Thermal safety

/
(ON©)

Fig. 3: Goal hierarchy.

Secondary goals: User experience

J

objectives are satisfied. Over the run-time, the outcome of
the reward keeps varying with varying workload conditions
and user requests. However, higher overall reward represents a
higher percentage of prioritized objectives (goals) being met.
The reward for each action under a specific state vector is
saved into a look up table. After every set of goal enforcer’s
decisions, the reward estimates are updated.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

We perform our evaluations on the Hardkernel Odroid XU3
board [12], which contains an HMP with two clusters (4 big
(A15) and 4 little (A7) CPU cores). The big cores provide
high-performance, while the LITTLE cores are power efficient.
Memory is shared across all cores. We implement the GDA as
a part of Mars framework [13]. A Linux user-space daecmon
process invokes the GDA every parameterizable epoch. In
our experiments, we set the epoch to 1s. For thermal safety,
we set the power reference to 4W. We use the on-board
power sensors of Odroid XU-3 to monitor per-cluster power
consumption. We use the Application Heartbeats API [11]
to monitor each application’s performance. The applications
periodically issue heartbeats and inform the system about
their performance. To evaluate our proposed approach, we
use a set of synthetic micro-benchmarks with attributes that
reflect interactive and I/O dependent nature of applications [4]
[14]. These micro-benchmarks have configurable active and
idle periods to emulate a wide range of workload distribution
patterns.

B. Experimental Results

For the evaluation purpose, we used 7 applications form the
micro-kernel benchmarks, with a mix of high and low intensive
workloads. We compare our proposed solution with two poli-
cies which are adapted to our framework based on state-of-the-
art approaches [2], [5] as the low-power and high-performance
policies. These approaches have fixed objectives of minimiz-
ing power consumption and maximizing performance within
power caps, respectively. For power and performance deci-
sions, we used per-cluster DVFS and task migration. The
sequence of incoming applications follows the trend of high
intensity at the beginning, followed by low intensity - which is
kept constant for all the approaches under evaluation. Table I
lists the objective, consideration of user commands, power and
performance violation, and average power consumption (in W)
with each approach. The low power policy (LP) is efficient
in honoring power budgets at the expense of performance
degradation, while the high performance policy (HP) meets

TABLE I: Comparison of proposed solution with existing approaches

Tech. Obj Cmd | Pwr viol. | Perf. viol. | Avg. pwr
LP policy Power X 3% 65% 2.99
HP policy Perf. X 67% 0% 3.8

GDA Dynamic v 20% 34% 32

the performance requirements always, compromising thermal
safety in a form of over-boosting. Each of these policies cater
their fixed objectives better, yet they are oblivious to other
objectives with changing workload scenarios. Further, they do
not consider user commands, limiting their efficiency to fixed
conditions. The colored cells show the efficiency of our GDA
approach in managing conflicts when the goals are competing
(e.g., HP policy results in a significant power violations when
the system is highly loaded). The GDA approach balances
both the power and performance objectives, satisfying a higher
percentage of goals.

Figure 4 presents the power consumption of the system
using two fixed objective policies and the proposed GDA
approach. At the beginning, workload intensity, application
arrival rate, and user’s performance requests are high. The
high performance policy aggressively scales the resources and
violates power budget, while the low power policy operates
within the power budgets. Under such intense workload sce-
narios, GDA approach violates power budget to an extent. This
is due to the fact that both applications’ and user command’s
urgency outweigh the urgency of the system within the goal
hierarchy. At ¢ = 20s, the user command is changed back to
power saving, prompting a change in urgencies. The GDA
approach identifies this change and responds by switching the
policy to low power (LP). This is reflected in reduced power
consumption at around 7 = 22s. High intensive workloads
leave the system starting from ¢ = 30s. A steep reduction in
power consumption can be seen with each approach. The user
command is updated back to high performance at t = 60s.
However, the workload intensity at this phase is relatively
low in a way that the high performance request can be
already met with the low power policy itself. This shows
that GDA can also intelligently detect such scenarios and
avoid unnecessary energy dissipation. In this case, if we use
naive policy switching, it identifies the user command change
and responds by switching the policy to high performance
which leads to more power consumption. However, the GDA
controller monitors the state vector, evaluates the urgencies of
different goals and aptly chooses to remain with the low power
policy.

Performance of each individual application over the ex-
ecution time using the three different strategies is shown
in Figure 5. In all sub-graphs, the x-axis shows time (s)
and the y-axis shows the measured heartbeats per 100 ms.
The red dotted line is the performance requirement for each
application, calculated as the average of maximum and mini-
mum requirements specified. With AppI and App2 being high
intensive, their performance requirements are thoroughly met
with the high performance policy, whereas the low power
policy violates these requirements for longer periods. GDA
approach delivers the required performance during the phases
where user command and applications’ dominate the urgency.

Power Ref. =====-
—_ High perf.
s -
=
)
) |
o
(a)
0
6
Power Ref ======-

— Low power
o S L Rt e st aEE L LR e P LR
=
[
g2
o fyr————

0

6

HP- High Performance
— PS: Power Saving
g e
=
[}
52
o
User Cmd : HP! User Cmd : PS (¢) User Cmd : HP

o

0 20 80 100

* Time (s) ®
Fig. 4: Power consumption measures. (a) high performance policy,
(b) low power policy, (c) GDA.

At t = 20s, as the user command is no longer requesting
high performance, the applications’ urgency is reduced. Con-
sequently, the GDA prioritized system goal of low power
operation, which is thus reflected in performance violation for
a shorter duration, as shown in Figure 5 (c). The performance
for App3, App4, AppS, and App7 are similar for major periods
of execution with all three approaches. Since they are of
lower intensity, each approach is able to provide enough
resources within the power budgets to meet both power and
performance criteria. Specifically, the low power policy is
much more efficient than the high performance policy with
its suitability to this workload scenario. Performance of App6
is also met with each of these strategies - despite being high
intensive, App6 executes largely in combination with other
low intensive applications. The GDA uses the benefits of
these two policies opportunistically to satisfy both power and
performance requirements during the run-time. The GDA 1)
generates new goals based on the requirements, ii) switches
between different goals as per justifiable priorities, and iii) to
satisfy the goal with the highest priority. The average power
consumption with GDA is 3.2W, while the low power policy
and high performance policies stay on either side of GDA at
2.9W and 3.8W, respectively. Similarly, the overall execution
time of the set of applications with GDA is 89s, whereas low
power policy and high performance policies finish execution
within 96s and 86s respectively.

V. RELATED WORK

Resource Management Several works on run-time re-
source management targeted meeting performance require-
ments while optimizing power consumption [1], [2], [4], [5],
[14]. The HPM scheduler presented in [2] deployed several
proportional-integral-derivative (PID) controllers for resource
sharing, DVFS and task migration decisions. The primary
objective of each of these controllers is to minimize power
consumption with graceful degradation of performance. A
resource management framework for many-core systems to
maximize performance under power caps is proposed in [5].

PS: Power Saving HP: High Performance Perf Req
App4: Low intensive

App1: High intensive App2: High infensive App3: Low intensive

Performance

App5: Low intensive App8: High intensive AppT7: High intensive

§ 1100 "'"1_-____!_ 1100 —1____-'_ 25 25 25 1100 25
=
TEm [r—— o ———
ST
=<
o
800 800 10 10 10 800 10
§ 1100 1100 25 25 25 1100 —1 25
5‘ EE L J'_
= | —— orTeTTTTTTTITom l-- T
S2
]
o
800 800 10 10 10 800 10
8
£
=@ 1100 1100 25 25 25 1100 25
SE=m | e L — —
%l—‘, e e [DrooT DT TOTTwT| T OO - e — fmmm—mm——m=—====1
o
200 Cmd: HP1Cmd: PS| 800 10 10 10 Cmd: PSi Cmd: HP| 200 10
0 20 30 5 25 45 5 15 25 5 15 25 40 60 80 45 65 85 50 70 90
Time (s)

Fig. 5: Performance of running applications in order of arriving. (a) high performance policy, (b) low power policy, (c) GDA.

The authors use software approximation as another knob to
address performance degradation in power actuation. A similar
idea using approximation for run-time management of hetero-
geneous architectures is presented in [1]. The authors use a
coordinated actuation of approximation, DVFS, CPU quota
scaling, and task migration with the objective of maximizing
performance within minimal power consumption. Machine
learning methods have recently applied for resource manage-
ment. A reinforcement learning-based approach is proposed
in [15]. The authors using online reinforcement learning to
achieve energy saving. Another learning-based approach in
[16] is proposed a modular Q-learning based DVFS control
to optimize the CPU frequency for multi-core processors.

To summarize, existing resource allocation approaches are
confined to fixed objectives whereas QoS requirements and
workload conditions in which they operate are variable.

Goal Driven Autonomy GDA is a conceptual model for
online planning in autonomous systems. As presented in [7],
GDA starts with an initial goal, generates necessary action
to achieve the current goal by observing and interacting with
the environment. New goals are generated when there is any
discrepancy between the expected state and the current state
using a goal formulator. While GDA has not previously used
for on-chip resource management, there are several investi-
gations on GDA and goal management [8], [9], [17]. The
authors of [10] use a reactive goal management procedure
to create and prioritize new goals in long-term goal memory.
LGDA (Learning GDA) in [8] learns its goal selection function
using Q-learning. Further, GDA has been used for controlling
unexpected events in gaming scenarios [8]-[10].

VI. CONCLUSIONS

We proposed the idea of abstracting multiple conflicting
objectives at run-time into goals that reflect overall system
dynamics including power consumption, performance and user
experience. We presented a resource management framework
which embeds a hierarchical goal manager - to identify sys-
tem dynamics, formulate goals and prioritize among different
goals. We implemented a control strategy for resource alloca-
tion decisions that are driven by the autonomous goal manager.
We evaluated the proposed GDA approach on a heterogeneous
mutli-core platform against state-of-the-art resource manage-
ment policies without autonomy. GDA provides a higher suc-

cess rate in meeting different objectives by making reasonable
trade-offs wherever necessary. Fine grained multiple sub-goal
arbitration and reflective autonomy for resource management
are planned for future works.

ACKNOWLEDGMENT

We acknowledge financial support by the Marie Curie
Actions of the European Union’s H2020 Program, NSF In-
formation Processing Factory grant and Academy of Finland
project ACTER.

REFERENCES

Coordinated
Multi-cores,”

[11 A. Kanduri et al, “Approximation-aware
Power/performance Management for Heterogeneous
in Proc. of DAC, 2018.

[2] T. S. Muthukaruppan et al., “Hierarchical power management for
asymmetric multi-core in dark silicon era,” in Proc. of DAC, 2013.

[3] A.Rahmani et al., “HDGM: Hierarchical dynamic goal management for
many-core resource allocation,” IEEE Embedded Systems letters, 2017.

[4] B. Donyanavard et al., “Sparta: Runtime task allocation for energy
efficient heterogeneous manycores,” in Proce. of CODES+ISSS, 2016.

[5] A. Kanduri et al., “Approximation knob: Power capping meets energy
efficiency,” in Proc. of ICCAD, 2016.

[6] E. Shamsa et al., “Goal Formulation: Abstracting Dynamic Objectives
for Efficient On-chip Resource Allocation,” in Proc. of NorCAS, 2018.

[71 M. Klenk et al., “Goal-Driven Autonomy For Responding To Unex-
pected Events In Strategy Simulations,” Computational Intelligence,
2013.

[8] U. Jaidee et al., “Integrated learning for goal-driven autonomy,” in Proc.
Int. Joint Conference on Artificial Intelligence, 2011.

[9]1 B. Weber et al., “Learning from Demonstration for Goal-Driven Auton-
omy.” in AAAI 2012.

[10] D. Choi, “Reactive goal management in a cognitive architecture,”
Cognitive Systems Research, 2011.

[11] H. Hoffmann et al., “Application heartbeats: a generic interface for
specifying program performance and goals in autonomous computing
environments,” in Proc. of conference on Autonomic computing, 2010.

[12] Hardkernel. ODROID-XU. [Online]. Available:
http://www.hardkernel.com/main/main.php

[13] T. Muck et al., “Adaptive-Reflective Middleware for Power and Energy
Management in Many-Core Heterogeneous Systems.” in Many Core
Computing: Hardware and Software, IET, 2019.

[14] A. Rahmani et al., “SPECTR: Formal Supervisory Control and Coor-
dination for Many-core Systems Resource Management,” in Proc. of
ASPLOS, 2018.

[15] R. A. Shafik et al., “Learning transfer-based adaptive energy minimiza-
tion in embedded systems,” 2016.

[16] Z. Wang et al., “Modular reinforcement learning for self-adaptive energy
efficiency optimization in multicore system,” in Proc. of ASP-DAC,
2017.

[17] J. Powell et al., “Active and interactive learning of goal selection
knowledge,” in Proc. of AAAI, 2011.

