
MemGANs: Memory Management for Energy-Efficient
Acceleration of Complex Computations in Hardware
Architectures for Generative Adversarial Networks

Muhammad Abdullah Hanif1,∗, Muhammad Zuhaib Akbar2,∗, Rehan Ahmed2, Semeen Rehman1,
Axel Jantsch1, Muhammad Shafique1

1Technische Universität Wien (TU Wien), Vienna, Austria
2National University of Sciences and Technology (NUST), Islamabad, Pakistan

{muhammad.hanif, semeen.rehman, axel.jantsch, muhammad.shafique}@tuwien.ac.at
{makbar.msee16seecs, rehan.ahmed}@seecs.edu.pk

Abstract—Generative Adversarial Networks (GANs) have gained impor-
tance because of their tremendous unsupervised learning capability and
enormous applications in data generation, for example, text to image
synthesis, synthetic medical data generation, video generation, and artwork
generation. Hardware acceleration for GANs become challenging due to
the intrinsic complex computational phases, which require efficient data
management during the training and inference. In this work, we propose a
distributed on-chip memory architecture, which aims at efficiently handling
the data for complex computations involved in GANs, such as strided
convolution or transposed convolution. We also propose a controller that
improves the computational efficiency by pre-arranging the data from either
the off-chip memory or the computational units before storing it in the on-
chip memory. Our architectural enhancement supports to achieve 3.65x
performance improvement in state-of-the-art.

Index Terms—Generative Adversarial Networks, Hardware Accelerator,
DNN, GAN, DCGAN, Memory Architecture

I. INTRODUCTION

Training and inference are two primary stages of any Deep Neural
Network (DNN), where the training stage tunes the network parameters,
which are then utilized at the inference stage to infer the information
from the test/actual data. Traditionally, supervised learning is used to
train DNNs [1]. However, due to the requirement of extensive labeled
data for supervised learning of neural networks, semi-supervised and
unsupervised learning have gained a lot of interest [2]–[5]. One of
the particular frameworks towards this is a Generative Adversarial
Networks (GANs) [6]; see Figure 1.

In GANs, a generative model competes against a discriminative
model (an adversary) which determines whether a sample generated by
the generator belongs to the data distribution of the training samples or
not [2]. These GANs are capable of generating highly meaningful data
from the latent space and are the state-of-the-art for many applications,
such as text to image synthesis [7], image classifications [8], mobile
robots [9] and video prediction [10].

In contrast to the traditional DNNs, GANs involve relatively more
complex computations such as strided convolution, transposed con-
volution, and four-dimensional convolutions [11]. Although traditional
DNN hardware accelerators can be used to perform these computations,
the computational patterns like zero-inserting (or zero-skipping) in
transposed (or strided convolution) will result in reduced efficiency
for these existing accelerators [11].

Specialized Hardware Accelerator for GANs: Recently, Song et
al. [11] proposed a hardware accelerator which uses a time-multiplexed
design and an efficient dataflow to perform all the different types
of computational phases involved in GANs training and inference.
The accelerator is composed of two different microarchitectures: (1)
Zero Free and Output STationary (ZFOST), which is responsible for

*Muhammad Abdullah Hanif and Muhammad Zuhaib Akbar both are lead
authors, and have equal contributions.

1
0
2
4

Generator

Discriminator

4

4

8

8

16

16

32

32

64

64

4

4

8

8

16

16

32

32

64

64

Fig. 1: Deep Convolutional Generative Adversarial Network

forward data pass and backward error pass; and (2) Zero Free and
Weight STationary (ZFWST), which is responsible for weight update.
The dataflow supported by these microarchitectures is quite similar.
Therefore, for different computational phases, both architectures require
data to be loaded in the similar fashion.

In this work, we focus on analyzing and accelerating the processing
in the ZFOST microarchitecture [11] (see Figure 2 in Section II) by
efficient data management, the ZFOST is heavily used in most of the
computing phases related to GAN training and all the phases related
to inference. 1

The Memory Challenge in “ZFOST” of GAN Hardware:
The ZFOST microarchitecture is mainly capable of accelerating two
types of non-traditional convolutions, namely strided-convolution and
transposed-convolution. To efficiently perform these convolutions, the
weights are fed to the ZFOST microarchitecture in a type-oriented
format, instead of a sequential form. Here, type-oriented refers to
the alignment of data based on its row and column indexes being
even or odd in its data class. That is, pixels or weights belonging to
even rows and even columns are considered a part of even-even type
and similarly others are placed in even-odd, odd-even, and odd-odd
categories. This type-orientation format of weights requires input to
the PEs in the ZFOST to be loaded in the same format. Moreover, the
effective dataflow defined in [11] requires multiple data pixels (up to 24
pixels) to be loaded simultaneously (in one clock cycle). Since the off-
chip memory contains input feature maps in linear form as illustrated in
Figure 4(c), even with the architecture of [11], fulfilling the requirement
of multiple pixels to be fetched from on-chip memory in one clock
transition and the fetched data to be type-oriented is a challenge in
terms of the design of the on-chip memory and data management.
Thus, a specialized on-chip memory architecture and a control unit
are required for GAN Hardware, which can arrange data according
to its type (i.e. even-even, even-odd, odd-even and odd-odd) and can

1Note: our proposed optimizations can also be used for accelerating the
ZFWST microarchitecture, if required.



provide multiple data pixels to the local register whenever required to
operate it at the full throttle.

Our Novel Contributions: To address the above challenges, we
make the following novel contributions.
1) MemGANs: A Distributed Memory Architecture for GANs: It is

composed of multiple single-port scratchpad memories (SPRAM)2.
The memory space is divided so that it can store elements of input
feature map based on the type of the pixel, i.e., even-even, even-
odd, odd-even or odd-odd, and is capable of providing multiple data
points in a single clock transition, as per the requirement of ZFOST
for the strided and transposed convolution.

2) Re-Packaging Controller for Efficient Data Arrangement: It
computes the required pixels’ placement location in on-chip memory
and thereby arranges the data in the proposed distributed on-
chip memory architecture in a type-oriented format as per the
requirements of the ZFOST microarchitecture for strided/transposed
convolution.

Evaluation and Comparison with State-of-the-Art: We perform
an extensive evaluation for the complete ZFOST microarchitecture
comprising our proposed architectural enhancements. Compared to the
state-of-the-art system in [11], our design achieves an improvement of
(on average) 3.65x in the processing time for images of sizes 16x16
to 1024x1024.

II. BACKGROUND AND STATE-OF-THE-ART

A. Overview of Deep Convolutional GANs

One of the widely used types of GANs is Deep Convolutional
Generative Adversarial Networks (DCGANs) [8]. An example DCGAN
is shown in Figure 1. The DCGANs are composed of two networks:
(1) Generator, and (2) Discriminator. During the training phase, both
the networks are trained as a two-player game where both play with
the objective to outperform the other. The objective of the generator
is to generate samples from the latent space which cannot be de-
tected by the discriminator. The objective of the discriminator is to
accurately distinguish between the generated and the real data. One
of the key differences in DCGANs is that the max-pooling layer in
conventional CNNs is replaced with strided convolution, which is used
in the forward-computation phases of the discriminator. The strided
convolution operation skips output pixel computation as per a defined
stride size (zero-skipping) which thereby corresponds to downsampling.
Similarly, another key operation in DCGANs is transposed convolution
(de-convolution), which is used in the forward-computation phases of
the generator. In transposed convolution, the convolution operation
needs to insert zeros in the input feature map (zero-inserting) and
thereby corresponds to upsampling.

B. Hardware Accelerator for DCGAN [11]

An efficient dataflow and a hardware accelerator to handle complex
computation in DCGAN are proposed in [11] using a zero-free output
stationary (ZFOST) microarchitecture, as illustrated in Figure 2. The
microarchitecture is composed of a 4x4 PE array and an input register
array. The PE array is responsible for processing the output, and the
input register array is for feeding the inputs neurons (i.e., the pixels
of an input feature map) to the PEs. The registers shown with gray
color in the register array are directly linked with corresponding PEs
in the PE array, while the additional registers are to allow input data
reuse of the fetched input data by shifting the content of the registers.
The weights are spatially shared by the PEs and are fed one at a
time. The size of the PE array is kept to be 4x4 to match the size

2Note: single-ported memories incur less area compared to the multi-ported
designs, and being distributed allows for parallel access with the specialized
design and access control

Input Register Array

R(0,0) R(0,1) R(0,2) R(0,3)

R(1,0) R(1,1) R(1,2) R(1,3)

R(2,0) R(2,1) R(2,2) R(2,3)

R(3,0) R(3,1) R(3,2) R(3,3)

R(0,4)

R(1,4)

R(2,4)

R(3,4)

R(0,5)

R(1,5)

R(2,5)

R(3,5)

PE ARRAY

PE(0,0) PE(0,1) PE(0,2) PE(0,3)

K

PE(1,0) PE(1,1) PE(1,2) PE(1,3)

PE(2,0) PE(2,1) PE(2,2) PE(2,3)

PE(3,0) PE(3,1) PE(3,2) PE(3,3)
x R

K

Out +

Fig. 2: Architecture of zero-free output stationary(ZFOST) Architecture

R(0,0)

I(0,0)

PE(0,0)

R(0,1)

I(0,2)

PE(0,1)

R(0,2)

I(0,4)

PE(0,2)

R(0,3)

I(0,6)

PE(0,3)

R(0,4)

I(0,8)

R(0,5)

I(0,10)

R(1,0)

I(2,0)

PE(1,0)

R(1,1)

I(2,2)

PE(1,1)

R(1,2)

I(2,4)

PE(1,2)

R(1,3)

I(2,6)

PE(1,3)

R(1,4)

I(2,8)

R(1,5)

I(2,10)
K(Even,Even)

K(0,0)

CLK

1

I(0,2) I(0,4) I(0,6) I(0,8) I(0,10) I(0,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10) I(2,0)K(0,2)2

I(0,4) I(0,6) I(0,8) I(0,10) I(0,0) I(0,2) I(2,4) I(2,6) I(2,8) I(2,10) I(2,0) I(2,2)K(0,4)3

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10) I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)K(2,0)4

K(Even,Odd)

K(Odd,Even)
K(Odd,Odd)

O(0,0) O(0,1) O(0,2) O(0,3) O(1,0) O(1,1) O(1,2) O(1,3)

Fig. 3: Dataflow of strided convolution using ZFOST Architecture

of the minimum output feature map in DCGANs. For computations in
this microarchitecture, the output neurons (i.e., the pixels of an output
feature map) are unrolled, and the spatially neighboring neurons are
mapped on the PE array where one output neuron is mapped to one
PE and is kept there throughout its computation. The kernel weights
are broadcasted one at a time and are spatially shared by the PEs in
the PE array.

To avoid bubbles in the computation flow of the strided and trans-
posed convolution performed by ZFOST, an efficient data flow has
also been proposed in [11]. In this, the kernel/filter weights, instead of
being fetched in sequential order, are loaded into ZFOST through input
register array in a type-oriented format (i.e. even-even, even-odd, odd-
even and odd-odd). As illustrated by Figure 3, first even-even weights
(i.e., weights with even row and even column indexes) are processed
followed by even-odd kernel weights then odd-even kernel weights, and
at the end odd-odd kernel weights are processed by ZFOST.

Since each PE is linked to an output O(ox,oy), its required input for
kernel weight K(kx,ky) can be computed as I(kx+2ox,ky+2oy). Initially,
all the inputs marked with “Red” in Figure 3 are loaded into the input
register array. In the next clock cycles data is shifted in input register
array for temporal reuse. As an example, when the kernel weight K(0,0)

is provided to all PEs at the first clock cycle for processing, Figure 4(a)
highlights the required input pixels to be loaded into the input register
array. The data is then shifted within the input register array for the
next two clock transitions to perform the processing on kernel weights
K(0,2) and K(0,4), as defined in the dataflow of Figure 3. For the
fourth clock transition when the next even-even kernel weight K(2,0)

is broadcasted to all PEs, six new data pixels are required in the last
row of the input register array, as illustrated in Figure 4(b).

This requirement of dataflow, where multiple data points (up to 24
data points) need to be loaded in the input register array in a type-
oriented format, brings challenges in fetching data from the on-chip
memory. The key scientific challenges to achieve a highly optimized
memory design and management are discussed next.

III. SCIENTIFIC CHALLENGES

1) The dataflow requirement makes traditional on-chip buffer
inefficient: Data in the traditional on-chip memory is stored in a
linear format which limits the design to provide multiple data points
to ZFOST in one clock cycle. Figure 4c represents the structure of an
on-chip memory which has the data width of 64 bits. Therefore, for a
16-bit fixed-point system, each location of the on-chip memory will
store 4 data point in a cascaded form. Due to the linear arrangement



Input Register Array 

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)

I(6,0) I(6,2) I(6,4) I(6,6) I(6,8) I(6,10)

Input Register Array 

I(4,0) I(4,2) I(4,4) I(4,6) I(4,8) I(4,10)

I(6,0) I(6,2) I(6,4) I(6,6) I(6,8) I(6,10)

I(8,0) I(8,2) I(8,4) I(8,6) I(8,8) I(8,10)

(a)

(b)

I(0,0) I(0,2) I(0,4) I(0,6) I(0,8) I(0,10)

I(2,0) I(2,2) I(2,4) I(2,6) I(2,8) I(2,10)

I(0,0) I(0,1) I(0,2) I(0,3)

I(0,4) I(0,5) I(0,6) I(0,7)

I(0,8) I(0,9) I(0,10) I(0,11)

64 Bits

0

1

2

I(63,52) I(63,53) I(63,54) I(63,55)

I(63,56) I(63,57) I(63,58) I(63,59)

I(63,60) I(63,61) I(63,62) I(63,63)

1021

1022

1023

(c)

Fig. 4: Data to be loaded in local register of ZFOST a) during processing
of K(0,0), b) during processing of K(2,0) and c) Linear data arrangement
in on-chip/off-chip memory.

of pixels stored in on-chip memory, in order to load required 24 data
point in the input register array of the ZFOST during the first clock
iteration that have to be multiplied with the kernel weight K(0,0), we
need 12 read cycles to extract the relevant data from the on-chip
memory. Moreover, since only even-even data is required during
this computation, half of the read data will be wasted. Therefore,
to implement the data flow of Figure 3, a specialized memory
architecture is needed, which can provide multiple data points of
input feature map from the on-chip memory in one clock cycle
without any data wastage as per the requirements of strided and
transposed convolution.

2) Requirement of type-orientation of input feature map: Since the
kernel weights are loaded in the ZFOST in type-oriented form, the
corresponding input data must also be fetched based on their type as
illustrated in Figure 4(a) and Figure 4(b). To support the specialized
memory architecture that can provide multiple data points of input
feature map stored in the on-chip memory in one clock cycle, a
controller is also needed in order to arrange the data prior to
storing it in the on-chip memory on the basis of the type of the
pixels.

IV. MEMGANS: SPECIALIZED MEMORY ARCHITECTURE AND
MANAGEMENT FOR GANS ACCELERATORS

Figure 5 provides an overview of the complete system consisting
of our energy-efficient memory architecture for performing efficient
processing of strided and transposed convolutions using the ZFOST
microarchitecture. The proposed memory design can provide multiple
required data points to the ZFOST microarchitecture in a single clock
cycle. The memory architecture is supported with re-packaging units
which arrange the data in a type-oriented format before storing it
in the on-chip memory. This data can either be the inputs fetched
from the off-chip memory (DRAM) or the outputs coming out of the
ZFOST microarchitecture. The type-orientation removes the unuseful
data-fetches by providing only a particular type of data required for
processing, as per the dataflow described in Section II-B.

The on-chip memory is designed to have two IO-buffers such that,
one is used to hold the inputs while, in the meantime, the other can be
used to store the outputs. Once the processing of a layer is complete, the
functionality of IO-buffers is switched for the cases where the output of
one layer is input of the next. The main controller, shown in Figure 5,
controls the overall processing. Initially, it gives a command to read
the input feature map from the off-chip memory then it provides a
command to the dataflow controller to start performing the convolution.

In the following subsections, details of our memory architecture, re-
packaging unit and the other blocks shown in Figure 5 are presented.
For the ease of readability, the variables used in the equations and the
pseudo-codes in these subsections are described in Table I.

IO-Buffer IO-Buffer

Main Controller Dataflow Controller

Re-Packagging 

Unit

Re-Packagging 

Unit

D
R

A
M

MemGANs

Distributed On-Chip Memory
ZFOST

Input Register 

Array
R R R R

R R R R

R R R R

R R R R

R R

R R

R R

R R

Input Register 

Array
R R R R

R R R R

R R R R

R R R R

R R

R R

R R

R R

PE Array
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE Array
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Input Register 

Array
R R R R

R R R R

R R R R

R R R R

R R

R R

R R

R R

PE Array
PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Fig. 5: Integration of our MemGANs architecture in GAN Hardware

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

S
P

 R
A

M
 0

S
P

 R
A

M
 1

S
P

 R
A

M
 2

S
P

 R
A

M
 3

S
P

 R
A

M
 4

S
P

 R
A

M
 5

RAM Channel 0 RAM Channel 1 RAM Channel 2 RAM Channel 3

R
A

M
 B

lo
c
k

 0
R

A
M

 B
lo

c
k

 1
R

A
M

 B
lo

c
k

 2
R

A
M

 B
lo

c
k

 3

Fig. 6: Design of distributed on-chip IO-Buffer

A. IO-Buffer Design: Distributed On-chip Memory Architecture

The proposed on-chip memory design is composed of multiple small
sized SRAMs linked together in a grid formation. The grid is divided
based on two major axes named, RAM-Block, and RAM-Channel where
each block of the grid is composed of six SPRAMs, as illustrated in
Figure 6. Each memory slice stores data following the requirement of
the dataflow for processing the transposed/strided convolution. There
are four RAM-Blocks in the design, based on the number of types in
which input data is divided. For example, input pixels with even-even
indexes (i.e., I(even,even)) are stored in RAM-Block 0 and, similarly,
pixels with even-odd, odd-even, and odd-odd types are stored in RAM-
Blocks 1, 2 and 3, respectively. Each RAM-Block is divided into four
RAM-Channels, where each channel stores data required by each row
of the input register array in the ZFOST micro-architecture. Each RAM-
Channel is divided into six SPRAMs based on the number of columns
in the input register array. Therefore, each SPRAM in a RAM-Block is
responsible for feeding data to one register of the input register array
when all the registers have to be loaded simultaneously. For example,
for the first computation with K(0,0) kernel weight, 24 points have to
be loaded to the input register array, as illustrated in Figure 4(a). Six
data points for the first row of the input register array are available in
address 0 of the six SPRAMs at RAM-Channel 0 and RAM-Block 0, and
the data points for the last row of the input register array are available
in address 0 of the six SPRAMs at RAM-Channel 3 and RAM-Block 0.

The required size of the SPRAM depends upon the maximum
input/output feature map size of the network and can be computed
using Eq. 1.

SizeSPRAM =
Dimimage × Dimimage × N

NRams × NChannels × NBlocks
(1)

B. Data Re-Packaging Unit

It computes the address in IO-buffer for each pixel. The data of the
first input feature map and the results of the output feature maps are



DRAM ADDRESS BUS

Data Re-PackagingData (0)

Data (1)

Data (2)

D
R

A
M

 D
A

T
A

 B
U

S

Data (3)

Data Re-Packaging

Data Re-Packaging

Pixel Row Computation

Pixel Column Computation

RAM-Block Computation

RAM-Channel Computation

RAM-Index Computation

SPRAM-Address Computation

Data Re-Packaging

Data Re-Packaging

Fig. 7: Re-Packaging Unit

in a linear format as illustrated in Figure 4(c). However, to implement
the dataflow illustrated in Figure 3 effectively, we need to re-arrange
the data before storing it in the on-chip memory. The proposed re-
packaging unit computes the placement location of each pixel in the
distributed on-chip memory in terms of RAM-Block, RAM-Channel,
RAM-Index (index of an SPRAM inside a block of the grid), and address
of the SPRAM.

Figure 7 illustrates that four data points, each of which is 16-
bits, are extracted from a single location of the DRAM (64-bits) and
are provided to four data re-packaging units. Each unit computes the
placement information of the provided pixel. The data re-packaging unit
is composed of six computational stages, as illustrated in Figure 7, each
of which computes a piece of specific information required to store
a pixel into the on-chip memory. The following subsections provide
details of each stage.

1) Image Pixel Row Computation: The first stage of the re-
packaging unit computes the row index of the pixel in the input feature
map. This computation is performed using the DRAM address from
which the data is fetched along with the information of the number of
pixels that can be stored in one location of the DRAM, the dimension
of the input image, and the index of the pixel in the DRAM location
to compute the row address, as given in Eq. 2.

Prow =
(AddDRAM ×NPDRAM )

Dimimage
+

dpx
Dimimage

(2)

TABLE I: Notation used in the explanation of Re-Packaging phases
Symbols Description
SizeSPRAM Size of a SPRAM in distributed memory architecture
NRAMs Number of SPRAMs in one channel of distributed memory architecture
NChannels Number of Channels in one block of distributed memory architecture
NBlocks Number of Blocks in distributed memory architecture
N Number of bits of one input pixel
Prow Row index of input pixel
Pcol Column index of input pixel
AddDRAM Address of DRAM access
NPDRAM Number of data point in one DRAM location
dpx Data point index out of total number of data point from one DRAM location
Dimimage Feature map dimension (rows/columns where number of rows and columns are same)
BlobkIndex Block-Index of IO-Buffer
ISODD(x) Results 1 if x is odd number
ISEVEN(x) Results 1 if x is even number
ChannelIndex Channel-Index of IO-Buffer
TempRAMIndex Local temporary variable used in computation of RAM-Index of IO-Buffer
X (mod Y) Remainder when X is divided by Y
X [B1:B2] Bit wise selection of X with B1 as MSB and B2 as LSB
X [B1] Bit wise selection of bit B1 of X
RAMIndex RAM-Index
RAMAddress SPRAM Address

2) Image Pixel Column Computation: Pixel column index is com-
puted using the information of pixel row index (as computed in the
previous stage) along with the information of the DRAM address,
the total number of data points in one DRAM location, input image
dimension and index of the data point in the DRAM location. Eq. 3
represents the computation of column index of a pixel.

Pcol = (AddDRAM ×NPDRAM )− (Prow ×Dimimage)+ dpx (3)

3) RAM-Block Index Computation: After computing the input row
and column indexes of a data point, we compute the RAM-Block index

based on the type of the pixel (i.e., even-even, even-odd, odd-even,
and odd-odd). The index can be computed using Eq. 4. However, it
is implemented using the least significant bits of the row and column
indexes computed in the previous stages.

BlockIndex = ISODD(Pcol) + 2× ISODD(Prow) (4)

4) RAM-Channel Index Computation: As mentioned in Sec-
tion IV-A, the data points which have to be loaded in the same row of
the input register array are placed in the same RAM-Channel. Algorithm
1 uses the type of pixel and the least significant three bits of the row
index of the data point to compute the RAM-Channel index.

Algorithm 1 On-Chip Buffer‘s Channel Index Computation

1: if Prow[0]XOR BlockIndex[1] then
2: ChannelIndex ← 3
3: else
4: ChannelIndex ← Prow[2 : 1]
5: end if

Example: Consider that the first row of the input register array in
Figure 4(a) contains starting six even-even pixels of the very first row
(row index 0) of an input feature map. Since the type of pixels is
even-even, Block-Index computed for these pixels is 0. Also, the least
significant three bits of the row index being (000)2 will result in the
RAM-Channel index to output 0 as well. On the other hand, row 3 of
the input register array in Figure 4(a) contains starting six even-even
pixels of the seventh row (row index 6) of the input feature map and the
least significant three bits of the row index of the pixels being (110)2
will result in the RAM-Channel index to be 3.

5) RAM-Index Computation: The RAM-Index represents the index
of the SPRAM inside a RAM-Channel in which a particular data point
has to be stored. Algorithm 2 presents the pseudocode for computing
the RAM-Index for an input pixel/data point where the range of the
RAM-Index is between 0 to 5 based on the number of SPRAMs in a
channel.

Algorithm 2 On-Chip Buffer‘s RAM-Index Computation

1: TempRamIndex ← Pcol[3 : 1] + 1
2: if TempRamIndex > 6 then
3: if TempRamIndex(mod 6) == 0 then
4: RamIndex ← 5
5: else
6: RamIndex ← (TempRamIndex(mod 6))− 1
7: end if
8: else
9: RamIndex ← TempRamIndex − 1

10: end if

Example: Consider the input pixel I(0, 6) in row 0 and column 3
in the input register array; see Figure 4(a). Bits [3:1] in (0110)2 give
(011)2 = 3. Thus, the input pixel I(0, 6) will be stored in RAM-Index
3.

6) SPRAM Address Computation: Given the size of input feature
map and column index of the input pixel, Algorithm 3 is used to
compute the address of a particular SPRAM selected by BlockAdd,
ChannelAdd and RAMIndex. Two address offsets are computed
before the computation of the RAM address. For a single row of input
feature map there exist only two types of pixels which reduces the size
of a row to be stored in a RAM-Channel to half. Furthermore, each
RAM-Channel consists of six SPRAMs and the complete row is folded
accordingly to be stored in six RAMs of a RAM-Channel. The starting
address (base address) of the next row of input feature map within a
RAM-Channel is determined by Address−Offset−1. For example,
if the input feature map is of dimension 32x32 then one row of pixels



will be stored in 3 locations of a SPRAM (from address 0 to address
2). Therefore, when a particular SPRAM is selected again to store a
data value, its address must start from address 3. If the input feature
map is greater than 12 pixels, the same SPRAM will contain multiple
data values of the sample row. Therefore, Address − Offset − 2 is
the address computed on the basis of the column index of the input
pixels.

Algorithm 3 On-Chip Buffer‘s SPRAM Address Computation

1: RamAddress-Offset-1 ← (Dimimage/(2 ∗ 6)) + 1
2: RamAddress-Offset-2 ← (Pcol/(2 ∗ 6))
3: RamAddress ← RamAddress-Offset-1 + RamAddress-Offset-2

C. Data Flow Controller
Since each PE of the ZFOST microarchitecture is linked with output

O(ox,oy), its required input pixels for kernel weight K(x,y) can be
computed using I(kx,2ox,ky+2oy) for strided convolution and using
I(kx,ox,ky+oy) for transposed convolution. Data flow controller loads
the kernel weight in a type-oriented format, as illustrated in Figure 3,
and generates addresses for data to be fetched from the on-chip memory
in the form of RAM-Block, RAM-Channel, RAM-Index and SPRAM-
Address using the same operations defined in Section IV-B. The main
controller reads the data from distributed on-chip memory and provides
it to the dataflow controller which loads the data into local registers of
the ZFOST microarchitecture.

D. Main Controller
Initially, the main controller fetches data from the off-chip memory

and provides it to the data re-packaging units which compute the
destination address of each pixel in the on-chip memory. Once the first
layer is fetched, the main controller provides a signal to the dataflow
controller to start performing the desired operation on the available
input feature map. The main controller receives addresses from data
flow controller in the form of RAM-Block, RAM-Channel, RAM-Index
and SPRAM-Address for the required data and reads the data from the
on-chip memory and provides it to the dataflow controller.

V. RESULTS AND DISCUSSION

A. Experimental Setup
Our MemGANs architecture (as shown in Figure 5) is designed in

Verilog HDL. For functional validation, we synthesized the complete
design using Xilinx Vivado Design Tool 2017.4, for the traget device
Xilinx Kintex-7 “xc7k325tffg900-2” FPGA with the clock speed of
200MHz. The size of an SPRAM in distributed memory architecture
is set to 32KB which fulfills the memory requirement for an image
dimension up to 1024x1024 pixel for a 16-bit fixed-point system.
To verify the functionality of our MemGANs architecture, we used
a trained model of DCGAN [8] and extracted input feature maps and
kernel maps using Matlab which are then used to evaluate MemGANs
for transposed convolution. These weights and input features are
preloaded in a DRAM as stimuli in linear format as illustrated by
Figure 4(c). Since the operation of strided/transposed convolution is
performed on multiple layers of a DCGAN which can have different
configurations/dimensions, as illustrated in Figure 1, we evaluated our
design using different image sizes with the kernel of 4x4 size. We
computed performance, resource utilization and the number of read-
write accesses using Vivado HDL Design flow. Moreover, to emulate
a real-world ASIC-based implementation, the memory configuration
used in Vivado Design Tool is also provided to CACTI-p tool by HP
to compute the read/write accesses energy consumption of memory.

To compare the performance of MemGANs comprising our proposed
distributed on-chip memory design, we also implemented a state-
of-the-art-based design [11] (in a reproducible fashion) containing a

MemGANs

Input.csvInput.csvVerilog Files

MemGANs

Input.csvInput.csvVerilog Files

MemGANs

Input.csvInput.csvVerilog Files

Verilog Stimulus

Xilinx Design 

Constraints(.xdc)
Resource 

Utilization

Resource 

Utilization

Resource 

Utilization

HDL Design Flow (Xilinx Vivado)

Layers Data Extractor 

(Matlab)

DCGAN ModelDCGAN ModelDCGAN Model

Input.csvInput.csvInput.csvInput.csvInput.csvInput.csvInput.csvInput.csvInput.csv Input.csvInput.csvKernel.csvInput.csvInput.csvKernel.csvInput.csvInput.csvKernel.csv

Memory 

Configuration

Access 

Energy 

Estimator 

(CACTI_P)

Performance 

Evaluation

Performance 

Evaluation

Performance 

Evaluation

Pre-Synthesis Logic Simulation

Logic Synthesis

Post-Synthesis Logic Simulation

Design Implementation

Read/Write Access 

Energy Estimates

Read/Write Access 

Energy Estimates

Read/Write Access 

Energy Estimates

Read/Write 

Accesses

Read/Write 

Accesses

Read/Write 

Accesses

Fig. 8: Tool Flow for evaluation of MemGANs

Main Controller

Dataflow 

Controller

ZFOST

D
R

A
M IO-Buffer IO-Buffer

Conventional On-Chip Memory

IO-Buffer IO-Buffer

Conventional On-Chip Memory

Fig. 9: Implemented Architecture for evaluation of conventional on-chip
memory

conventional on-chip buffer that stores data in a linear format. The
data bus of this memory is kept 64-bits. Therefore, for a 16-bit fixed-
point system, it can store 4 data points in one location. Size of this
conventional memory is set to 512KB to fulfill the requirement of
storing input image of size up to 1024x1024 pixels. Figure 9 illustrates
the overall hardware design using the conventional on-chip memory.
The dataflow controller in this design also arranges the data in the
type-oriented format before loading it into the ZFOST to fulfill the
dataflow requirement as described in Figure 3.

B. Comparison with State-of-the-Art

First, we demonstrate the benefits of our design in terms of its
performance, including the reduction in the number of accesses from
the on-chip memory which further improved the overall processing
time and reduced the read/write energy consumption of the on-chip
memory. Next, we provide a comparison of the resource utilization of
our proposed MemGANs architecture with the architecture illustrated
in Figure 9 composed of conventional on-chip memory design.

Performance Evaluation: We compute the number of read/write
accesses of the on-chip memory, energy consumption of the associated
read/write accesses, and the overall time to process with input feature
maps of different sizes. Figure 10 illustrates that our MemGANs
reduces the number of read accesses and write accesses by 85% and
75%, respectively, when compared to the architecture shown in Figure 9
(with 64-bits wide SRAM). Figure. 11 shows that, on average, over
different image sizes, MemGANs reduces the energy consumption
of read and write accesses by 65% and 58%, respectively, when
compared to the state-of-the-art (with 64-bits wide SRAM). Figure 10
and Figure 11 also show the comparison of the proposed with the design
of Figure 9 when the bit-width of the SRAM is reduced from 64 to
16 bits. As shown in the figures, in this case, the proposed MemGANs
reduces the read and write accesses by 92% and 93%, respectively, and
the energy consumption associated with the read and write accesses by
82% and 89%, respectively. As the results of the conventional design
with 16-bit wide SRAM are worse than with 64-bit wide SRAM, for
all rest of the following results we only considered the 64-bit wide
SRAM in the conventional design.

Since the feature map for the first layer needs to be loaded from
the off-chip memory, the loading time for both MemGANs and the



16x16 32x32 64x64 128x128 256x256 512x512 1024x1024

𝟏𝟎𝟓

𝟏𝟎𝟒

𝟏𝟎𝟑

𝟏𝟎𝟐

𝟏𝟎𝟏

𝟏𝟎𝟎

Read Access Write Access Read Access Write Access Read Access Write Access

Conventional 

Approach (16-Bits 

Wide SRAM)

Conventional 

Approach (64-Bits 

Wide SRAM)

MemGANs

Fig. 10: Comparison between number of accesses

16x16 32x32 64x64 128x128 256x256 512x512 1024x1024
𝟏𝟎𝟒

𝟏𝟎𝟑

𝟏𝟎𝟐

𝟏𝟎𝟏

𝟏𝟎𝟎

𝟏𝟎−𝟏

Read Energy Write Energy Read Energy Write Energy Read Energy Write Energy

Conventional 

Approach (16-Bits 

Wide SRAM)

Conventional 

Approach (64-Bits 

Wide SRAM)

MemGANs

Fig. 11: Comparison between accesses Energy

0

250

500

750

1000

1250

1500

0

20

40

60

80

100

120

D
a

ta
 L

o
a

d
in

g
 T

im
e 

[u
s]

P
ro

ce
ss

in
g
 T

im
e 

[u
s]

Image Dimension

Processing Time MemGANs (us)

Processing Time Conventional Memory Design (us)

Data Loading Time (us)

Fig. 12: Performance evaluation between MemGAN and the design of [11]
for transposed convolution

design of Figure 9 is the same. Figure 12 illustrates the data loading
time from off-chip memory along with the processing time by both the
hardware designs. Our MemGANs outperforms the design of Figure 9
in processing time of an input feature map. Over different image sizes,
MemGANs supports the ZFOST to achieve 3.65x faster processing
time than the baseline. In terms of the overall power consumption the
proposed MemGANs consume 5% more power compared to the design
of Figure 9 due to the additional re-packaging units used in the design.
The overall power consumption as well as the power breakdown of
both the designs is shown in Table III.

Resource Utilization: To compare the utilization of hardware
resources, we implemented both, MemGANs (Figure 5) and the design
of [11] (Figure 9), using Xilinx Vivado design tool for the Xilinx Kintex
7 device (xc7k325tffg900-2 FPGA). As shown in Table II, MemGANs
utilizes more resources in comparison to the design of Figure 9, thereby
providing trade-off for obtaining improved performance and energy
efficiency, as discussed in the previous section. Table II illustrates
that MemGANs utilizes 6x more BRAMs, whereas the utilization of
look-up-tables, flip flops and the DSP blocks on FPGA is increased by
1.16x, 1.14x, and 1.14x, respectively, when compared to the design of
Figure 9.

TABLE II: Comparison of Resource Utilization

Available Utilized

Mem-GAN Conventional Memory Design
LUT 203800 19138 16439
FF 407600 984 863

RAM 445 48 8
DSP 840 16 14

TABLE III: Power breakdown comparison of the proposed design with the
conventional design

Power Consumption Break Down [W]
Module MemGANs Conventional Design

Re-Packaging Unit (DRAM to IO-Buffer) 0.08 -
Re-Packaging Unit (ZFOST to IO-Buffer) 0.50 -
Main Controller 0.04 0.18
Dataflow Controller 0.12 0.39
ZFOST 0.10 0.10
IOBUFFER (BRAM Blocks in FPGA) 1.74 1.79
Total Power 2.59 2.46

VI. CONCLUSION

In this paper, we proposed a novel on-chip memory architecture
(MemGANs) with an optimized data re-organization unit for improving
the performance and energy efficiency of GANs training using the Zero-
Free Output STationary (ZFOST) microarchitecture. Our architecture
fulfills the requirement of multi-pixel load to the input register array of
the ZFOST. The re-packaging unit provides data organization support,
which helps to organize the data in the required type-oriented format.

When compared to the state-of-the-art design of [11], our MemGANs
reduces (1) the number of memory read and write accesses by 85% and
75%, respectively; and (2) the energy consumption during the read and
write accesses by 65% and 58%, respectively. Moreover, MemGANs
supports ZFOST to achieve 3.65x faster processing time as compared
to state-of-the-art [11].

ACKNOWLEDGMENT

This work was partially supported by the Erasmus+ International
Credit Mobility (KA107).

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, p. 436, 2015.

[2] X. Zhu, Z. Ghahramani, and J. D. Lafferty, “Semi-supervised learning
using gaussian fields and harmonic functions,” in Proceedings of the 20th
International conference on Machine learning (ICML-03), 2003, pp. 912–
919.

[3] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations
by solving jigsaw puzzles,” in European Conference on Computer Vision.
Springer, 2016, pp. 69–84.

[4] E. L. Denton, S. Gross, and R. Fergus, “Semi-supervised learning
with context-conditional generative adversarial networks,” CoRR, vol.
abs/1611.06430, 2016. [Online]. Available: http://arxiv.org/abs/1611.06430

[5] M. Song, K. Zhong, J. Zhang, Y. Hu, D. Liu, W. Zhang, J. Wang, and
T. Li, “In-situ ai: Towards autonomous and incremental deep learning for
iot systems,” in 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2018, pp. 92–103.

[6] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems, 2014, pp. 2672–2680.

[7] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Gener-
ative adversarial text to image synthesis,” arXiv preprint arXiv:1605.05396,
2016.

[8] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-
ing with deep convolutional generative adversarial networks,” CoRR, vol.
abs/1511.06434, 2015. [Online]. Available: http://arxiv.org/abs/1511.06434

[9] W. Lawson, E. Bekele, and K. Sullivan, “Finding anomalies with gen-
erative adversarial networks for a patrolbot,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops, 2017,
pp. 12–13.

[10] A. Ghosh, B. Bhattacharya, and S. B. R. Chowdhury, “SAD-
GAN: synthetic autonomous driving using generative adversarial
networks,” CoRR, vol. abs/1611.08788, 2016. [Online]. Available:
http://arxiv.org/abs/1611.08788

[11] M. Song, J. Zhang, H. Chen, and T. Li, “Towards efficient microarchi-
tectural design for accelerating unsupervised gan-based deep learning,”
in 2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 66–77.


