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Abstract—In big-data (Deep) Neural Network (NN) algorithm
is often used for classification. However, such a massive mine
of data is not always available and a shortage of training
data can significantly deteriorate the performance of NNs and
other classifiers. Therefore, we propose a self-aware multiple
classifier system suitable for “Small-Data” cases. This algorithm
uses self-awareness to switch between classifiers to improve its
performance. We tested the algorithm for the classification of
iris flower species using the Iris standard database. Compared
to NN, our algorithm showed up to 17% classification success
rate improvement with up to 10 times smaller standard deviation.

I. INTRODUCTION

Lack of sufficient and efficient data set prevents machine
learning applications such as classification and prediction from
being generalized and accurate [1]. They behave accurately
during training, however, the test error can increase due to
over-fitting [2]. Therefore, there has been growing attention
to the development of the learning techniques to enhance the
generalization and accuracy of these applications [1], [3], [4].
Onisko et al. [3] used Bayesian network multiple-disorder
model to diagnose liver disorders. A drawback there is the
assumption of probability distribution and consequently setting
of respective parameters. Since they could not be learned
from the small data set, the performance heavily depends
on the probability of the assumed distribution being close
to the real distribution of the data. Shin et al. [5] demon-
strated that Support Vector Machine (SVM) outperforms Back-
Propagation Neural Network (BPN) on bankruptcy prediction
problem when the size of data set is small. Therefore, despite
their dominance, NNs do not always have the best performance
and the use of an appropriate learning algorithm improves the
performance, especially in the case of small data.

Chopra et al. dealt with the issue of small data for a face
recognition application in which their solution is to learn a
similarity metric from data [6]. They used a discriminative loss
function on an energy-based model and attempted to minimize
it in order to be able to use the similarity metric later to match
new faces. A study in [2] suggests the unsupervised learning
in deep learning applications when the size of labeled data set
is small. Unsupervised pre-training techniques have shown to
improve the generalization. The authors believe that certain
feed-forward neural network can serve the same purpose [2].

In continuation of the previous attempts to improve both
the generalization and accuracy, the idea of a multi-classifier

technique for the small data set which uses self-awareness
to switch between algorithms is proposed in this work. Due
to different mechanisms of learning, some information of the
data is often overlooked in each individual learning algorithm.
Therefore, using multiple algorithms has the advantage of
combining different information (correlations) extracted from
the data by each algorithm. As a result, a multiple classifier
system makes the best use of the data, even in a small batch.

II. LITERATURE OVERVIEW

Multiple Classifier Systems (MCSs), mostly known as clas-
sifier ensembles, have been studied over two decades [7].They
combine a set of individual classifiers in order to improve the
performance and reliability of the classification in a variety
of applications such as digital signal processing and pattern
recognition [8], [9]. Every classifier such as NN, SVM and
decision tree achieves an accurate result in specific fields and
under some constraints. Therefore, MCS inherits the desired
features of every single classifier and is able to deal with
highly complex problems, uncertainty, high-dimensionality of
data, optimization problems, and so on [10].

The goal of an MCS is to create a superior classifier
which outperforms its components. The key to reaching higher
performance or accuracy appears in the diversity of classifiers
[9], [11]. Therefore, the selection of appropriate classifiers
is considered to be the first concern. The second concern
addresses the strategy of integration of chosen classifiers.
Some focus on the input fusion, some combine the outputs
and there are some which have both input and output fusion.

Three major categories of MCS approaches include training
sample manipulation, parallel combination, and concatenation
combination [9]. Bagging and Boosting algorithms are popular
MCS methods based on the manipulation of training samples
which create multiple training data sets to generate multiple
hypotheses [8]. Each data set is used to train the learning algo-
rithm. On the other hand, parallel combination independently
trains the chosen classifiers and then uses some strategies such
as majority voting to combine the outputs [12]. In contrast,
concatenation combination consists of a chain of classifiers in
which the output of one is fed to the next one as an input [13].

Some classifiers can provide the ranking score for the
classes of a given problem or a value of probability or con-
fidence. In concatenation architecture, the ranking from one
classifier is used to refine the number of classes and therefore



the most confident classes are sent to the next classifiers
[14]. Another example of ranking score uses a model such
as regression model from the vector of ranking scores and
the outputs of the classifiers enter the model for the final
decision [7]. There has not been noticeable attention to ranking
approaches probably due to the inability of most classifiers in
producing the ranking score. Moreover, this approach is mostly
preferred in the domain of pattern recognition [15].

Multiple classifier systems usually sacrifice fast compu-
tation for higher accuracy by running multiple classifiers.
Therefore, they result in high computational costs. We propose
an approach which possesses the benefits of MCS in high
performance and accuracy as well as low computational cost.
This approach aims specifically at dealing with those classi-
fication applications which suffer from the small size of data
sets. Therefore, the proposed algorithm, by exploiting several
classifiers, improves the accuracy and generalization of the
classification for the small data set. All the while it reduces
the computational cost of MCS, by keeping the number of
classifiers it runs to a minimum and avoiding to run additional
classifiers when not necessary.

III. SELF-AWARE MULTIPLE CLASSIFIER SYSTEM (MCS)

Self-awareness is the ability of the system to monitor its
state, behavior, and performance to update one or more of its
components to achieve its goals [16]. However, monitoring
has received little attention so far. Recently, TaheriNejad et
al. [17] published a study on various elements of observation
and their potential role in self-awareness. This led to further
research which showed the benefits of these elements, such
as data reliability [18], [19] and attention [19], [20], in
different applications. One of these elements of observation
is ‘confidence’ which caters the system with a measure of
reliability of the results of an algorithm. This helps the self-
aware system to take better decisions based on the reliability
of its subsystems, and use its resources in a more efficient
manner and based on the situation at hand. We have taken
advantage of this concept in the proposed algorithm and show
how it improves the performance and the reliability of the
system, especially in the case of small-data, while keeping
the number of classifiers it runs to a minimum.

Let us assume that T kl
xi

is the True Class of a sample xi

(Ground Truth) for the specific class of kl and E
Aj
xi is the

class estimated by algorithm Aj for xi. Then, we define the
confidence of Aj for this classification equal to the probability
of EAj

xi being equal to T kl
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. That is,
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is provided by each algorithm.

In other words, the confidence of the algorithm shows the
likelihood of a correct classification. Therefore, if this value
is below a certain threshold, cth, it is wise to check for
alternative methods of classification. Otherwise, it is better
to avoid running other classifiers in order to avoid the extra
computation load of other algorithms which make MCSs heavy

Fig. 1. The flowchart of proposed algorithm for self-aware classification.

and resource hungry. Hence comes the proposed algorithm
shown in Fig. 1. In the proposed approach any classification
algorithm can be used. In our experiments, described in section
IV, we use NN, SVM and Naive Bayesian (NB) classifiers.
The ranking (best, second best, last algorithm) of different
algorithms is determined in the cross-validation phase.

As we can see in Fig. 1, every time a used classifier is not
confident enough, other algorithms are used for classification
based on their rank for the estimated class. This ranking is
based on the overall confidence of all algorithms for each class
kl, which is calculated by
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where n is the number of all samples classified during the
cross-validation phase as belonging to the class kl. As shown
in Fig. 2, during the cross-validation phase the ranking in each
class, c(Akl

j ), is calculated for all algorithms and then they are
sorted based on their confidence for each class.

Fig. 2. The overall architecture of the proposed classification system.



To select the default algorithm, during the cross-validation
the overall confidence of each algorithm is calculated over all
m possible classes;

CAj
=

1

m

m∑
kl=0

c
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Akl

j

)
. (3)

The default algorithm, Ad, is the one with the largest overall
confidence. In other words, CAd

= max{CAj
|lj=0}, where l is

the total number of algorithms, in our case three (l = 2).
In summary, the proposed self-aware classifier starts with

the default algorithm, Ad, which classifies the sample xi as
belonging to the class kl with the confidence of c(Akl

d ). If
c(Akl

d ) < cth (in the experiments we use cth = 0.9), the
best classifier for the class kl is selected, as identified in the
cross-validation phase (if Ad is already the best algorithm for
the class kl the second best algorithm, As, will be selected).
If it does not provide sufficient confidence, the remaining
algorithms (Ar) are used one by one until the confidence is
above the threshold. If none of the algorithms provides a confi-
dence above the threshold, the estimated class with the highest
confidence, cmax, is selected. However, for this selection we
consider the overall reliability of various algorithms (overall
confidence, CAj

), and therefore, we have heuristically tipped
the scale by giving the best algorithm 5% of advantage and
the worst algorithm 5% of disadvantage. That is, the maximum
confidence is calculated using

cmax = max{1.05 c(Akl

d ), c(Akl
s ), 0.95 c(Akl

r )} (4)

and the class identified by the algorithm with maximum
confidence (cmax) is considered as the result.

IV. SIMULATION AND RESULTS

A. Simulation Setup

In our experiments we use three classifying algorithms,
namely NN, SVM and NB. NN is a network of neurons which
includes the input and output layers as well as a number of
hidden layers whose connections are weighted [21]. The goal
of training the network is to find the values of weights and
generally improve the internal structure of the network. During
training, the network adapts to minimize the error on the
training samples. The basic idea of SVM as a binary classifier
is to map the input vectors into high-dimensional feature
vectors in order to optimize the separating hyperplanes [22].
SVM uses linear or nonlinear models to generate the decision
function in the form of hyperplanes. The hyperplanes have the
maximum margin from the classes they are separating. Using
the training set, the most optimal hyperplane is produced.
Finally, Bayesian classifier is a statistical classifier, based of
Bayes’ theorem, which estimates the probability that a sample
belongs to each class [23]. The NB classifier considers that
the values of the attributes are conditionally independent of a
given class.

The proposed MCS with these three classifying algorithms
has been tested on an Iris data set from the UCI Machine
Learning Repository [24]. The data set includes 150 samples

TABLE I
A SAMPLE SET OF RESULTS FOR THE SMALLEST RUN (20) AND THE

LARGEST RUN (70). ALL RUNS INCLUDE 10 ITERATIONS.

Run 20 (20, 13, 40) 70 (70, 40, 40)
Alg. Mean Median Std. Dev. Mean Median Std. Dev.

SVM 88.50 91.25 10.08 93.50 92.50 4.74
NB 93.25 92.50 4.09 95.75 96.25 4.09
NN 77.00 85.00 20.10 95.00 95.00 4.08
Prop. 94.25 93.75 2.65 95.25 96.25 3.62

with four attributes of Sepal and Petal, width and length.
Each sample belongs to one of three species of Iris flower.
The implementation has been done using MATLAB®. The
toolboxes of NN, SVM and NB have been used and these
algorithms, as binary classifiers, have been customized in order
for the maximum performance to be achieved. The NN has 15
hidden layers and uses the scaled conjugate gradient method
over mean squared normalized error performance function to
update the weights and bias values. The SVM was designed
as a multi-class Support Vector Machine with standardized
predictor matrix and one learner. Automatic hyperparame-
ter optimization was used to minimize the five-fold cross-
validation loss. Since the toolbox provides the acquisition
function option, it was set to ‘expected-improvement-plus’
for reproducibility. Finally, NB was trained as a multi-class
naive Bayes model with default normal kernel distribution for
predictors.

The simulation results have been calculated over 10 it-
erations of the proposed algorithm for each run (setting of
training data size). At the beginning of each iteration, the
data set is randomly disordered. Six settings of training sizes,
namely {70, 60, 50, 40, 30, 20} have been tested. The ratio
of the training size to the size of cross validation set was
considered around 1.7 which leads to {40, 35, 30, 25, 17, 13}
for the respective runs. The size of the test set, however,
was fixed to 40 samples for all settings. Another parameter
of the simulation is the threshold of confidence which was
experimentally set to 90% for all classes.

B. Results and Comparison

For the sake of brevity and clarity, in Table I we have
inserted the detailed numerical results only for the 20 and
70 runs. Instead, we chose to present the results in Fig. 3 to
Fig. 5, where the trends and changes can be better and easier
seen, analyzed, and understood.

The proposed system, runs on average 1.27 algorithms for
each classification. As we can see in Fig. 3(a), the flat curve
of the proposed algorithm shows that it maintains a relatively
constant success rate during all runs, regardless of the size of
the training data. This is backed-up with the standard deviation
which is depicted in Fig. 4. Hence, we can conclude that the
proposed algorithm is highly reliable, and regardless of the
size of the training data, its results are most likely very close
to the best performance possible. We can observe this in the
clean and concentrated histogram of the result distribution of
the proposed algorithm, at the bottom of Fig. 5.



(a) Mean

(b) Median

Fig. 3. The graphs of the mean and median values of the success rate for
different runs, each calculated over 10 iterations.

In comparison with other algorithms, we observe that in the
majority of runs, the proposed algorithm outperforms other
algorithms. This superiority is absolute and larger in the case
of smaller data (in this case for the 50 run and smaller runs).
For example, as we see in Table I, the mean of the proposed
algorithm at the 20 run is 94.25 which 17% higher than that
of the NN (77.00) while having a 7.6 times smaller standard
deviation (2.65 compared to 20.10). Although the gap between
mean success rate decreases with the increase of the training
size (Fig. 3(a)), at the 40 run the standard deviation between
the two, as shown in Fig. 4, increases to a 10.5 times difference
(21.43 for the NN to 2.04 for the proposed algorithm). The best
algorithm among the single classifiers is the NB which closely
follows the proposed algorithm and even surpasses it by a
margin 0.75% and 0.5% in the mean success rate of the 60 and
70 runs. That is, as we see in Table I, for 70 runs the average
of NB is 95.75 compared to that of the proposed algorithm
whereas they both have a median of 96.25. In terms of standard
deviation, NB is only better in the case of the 60 run by having
0.78 of the standard deviation of the proposed algorithm. In the
case of median1, on the other hand, as depicted in Fig. 3(b),
the proposed algorithm has the best success rate in all cases.

In summary, our experiments show that the proposed algo-
rithm is superior for small-data classification. That is, when
there is only a small set of data available, the proposed algo-
rithm can improve the overall performance (mean success rate)
and be more reliable (showing a smaller standard deviation).
Although this gap, especially in terms of mean success rate,
closes with the increase in the size of the training data, the
proposed algorithm is still a more reliable algorithm (smaller
standard deviation). Therefore, its consistent performance
makes it a suitable candidate across the range. Last but not
least, in all cases, it is most likely that the proposed algorithm

1Median is the middle value in an ordered list of data [25]. In our case,
that is the assorted success rates of each algorithm.

Fig. 4. The standard deviation of the success rate over 10 iterations.

provides the best (a near-optimal) answer consistently and at
each try thanks to having a higher median throughout (which
is closer to the average) and a smaller standard deviation. This
can be seen clearly in Fig. 5 where the histogram shows the
distribution of the success rate of all four algorithms in each
iteration of the 20 runs. We observe that the results of the
proposed algorithm are concentrated in the upper tenth of the
chart, while others have a wider distribution (in the case of
the NN even in the 4th tenth). This is particularly significant,
because in most practical applications the classification is done
only through one iteration, hence, the quality of the result at
each iteration is very crucial and having an algorithm which
most likely produces the best or a near-optimal answer is of
paramount importance.

V. CONCLUSION

We have proposed a MCS that selects one of the available
classifiers based on a confidence metric. The confidence,
defined as the probability of correct classification, is computed
for each classifying algorithm during the test session. We
showed that, by using confidence as a classifier selection
criterion, we can outperform each individual classifier while
avoiding the cost of running several classifier algorithms (on
average the proposed system run only 1.27 algorithms per sam-
ple). In a case study we used a Neural Network, Support Vector
Machine, and a Naive Bayes model as component classifiers,
and applied our proposed self-aware MCS algorithm on an
data repository with Iris flower images and found out that our
proposed algorithm performs better in almost all tested cases
and is particularly accurate when small data sets are used.

Fig. 5. The success rate histograms of all algorithms in the 20 runs, where
the x axis shows the success rate (at intervals of 2%). Each column shows
the number of iterations (out of 10) which had the respective success rate.
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