Vision-Based Anomaly Detection for Railroad Systems

David Breuss, Maximilian Götzinger, Axel Jantsch

Background

Railroad transportation

- Essential gear for urbanized society and economy
- One key element in tackling the climate crisis

Safety and reliability

- Meticulous infrastructure maintenance
- Essential to avoid breakdowns and accidents
- Automizing inspection is interesting

Problems

Foreign objects

Heavy vegetation

Motivation and Goals

Institut für Computertechnik Institute of Computer Technology

Vision-Based Anomaly Detection System

Autoencoders (AEs)

Neural Network-based approach

Training:

- Output = Input
- Anomaly Detection: Training without anomalies
- Extracting features from data (encoder)
- Reconstruction from code (decoder)

Enables anomaly localization

Regions of high reconstruction errors

Anomaly Detection (State-of-the-Art)

Autoencoder approach, similar to Gasparini et al [1]

- Supervised approach
- Reconstruction error is analyzed
- Focused on large construction tools
- Infrared cameras (during the night)
- Front-view perspective

We want to detect smaller objects and rail damages

Monochromatic camera, birds-eye view perspective

[1] Gasparini, Riccardo, et al. "Anomaly Detection, Localization and Classification for Railway Inspection." 25th International Conference of Pattern Recognition. 2020

VADAR

Trackbed Anomaly Detection

Original input image

Reconstruction error image "|input – output|"

Detected Large Coherent Area (LCA)

Metrics

Accuracy:

Correct Cases # Total cases

Probability of correct cases

False Positive Rate (FPR):

False Positives # Total Negatives

Probability of False Alarms

Recall:

True Positives # Relevant Cases

Probability of Correct Detection

Algorithm to Detect Dogs

11 Dogs 3 Cats

The algorithm detects 9 dogs correctly and 1 cat incorrectly as a dog

Accuracy:
$$\frac{\text{\# Correct Cases}}{\text{\# Total cases}} = \frac{11}{14} = 0.79$$

FPR:
$$\frac{\text{\# False Positives}}{\text{\# Total Negatives}} = \frac{1}{3} = 0.33$$

Recall:
$$\frac{\text{# True Positives}}{\text{# Relevant Cases}} = \frac{9}{11} = 0.82$$

Trackbed Anomaly Detection

Trackbed Anomaly Detection

Trade-off between Recall and FPR

Trackbed Anomaly Detection

Rail Damage Detection

Image Reconstruction

Rail Anomaly Autoencoder (RAAE)

Rail Segmentation

- Focus on rail heads
- Ignore rest of the trackbed

Summed-up absolute reconstruction error as anomaly indicator

Rail Anomaly Detection

Summary

- VADAR is a ML algorithm that visually
 - Detects anomalies in the trackbed
 - Detects anomalies on the rail
- Scope:
 - Top down view
 - Limited dataset
 - Limited Set of anomalies
 - Unknown performance in real setting

- Future Work:
 - Cabin view
 - Larger and more diverse dataset
 - More and more diverse set of anomalies
 - Other ML algorithms

Thank You For Your Attention

