Institut für Computertechnik Institute of Computer Technology

Connecting Deep Neural Networks NoCS 203 Hamburg, Germany

Axel Jantsch

September 21, 2023

DNN based Applications

Outline

1 Trends in Applications, Architecture and Technology

- **2** Customization
- **3** Minimize Communication
- **4** Imperfection
- **5** Self-calibrate and Adapt
- 6 Data Driven Computing
- **7** Summary

TRENDS IN APPLICATIONS, ARCHITECTURE AND TECHNOLOGY

Trends

- Chiplets
- Customization
- DNN based applications

Packaging Hierarchy

Board

Rack

Package

Die

Block, Core

6

Chiplets: On-Package Integration

Open Chiplet: Platform on a Package

High-Speed Standardized Chip-to-Chip Interface (UCle)

Sea of Cores

Memory

Advanced 2D/ 2.5D/ 3D Packaging

D. Das Sharma. Universal Chiplet Interconnect express (UCle): Building an open chiplet ecosystem. Technical report. White Paper. by UCle Consortium, 2022

UCIe Performance

		B/W	Energy	Latency		
		(GB/s/mm)	(pJ/b)	(ns)		
P	Cle	60	10	15		
U	Cle	1300	0.25	1		
0	n-chip	50 000	0.01	0.5		

- Custom technology: compute, memory
- Custom architecture: cores, accelerators
- Custom algorithm design: for GPUs, NPUs, ...

Customization of Architecture

Name	Year	Node	CPU	No	GPU	No	ISP	Video En- coder	Audio	Security	Motion Pro- cessor	NN	No	Display
A4	2010	45nm	CortexA8	1	PowerVR	1								
A5	2011	45nm	CortexA9	2	PowerVR	2	1		EarSmart					
A6	2012	32nm	ARMv7-A	2	PowerVR	3	1		EarSmart					
A7	2013	28nm	ARMv8-A	2	PowerVR	4	1			Secure				
										Enclave				
A8	2014	20nm	Cyclone	2	PowerVC	4	1	1						
A9	2015	16nm	ArmV8-A	2	PowerVR	6	1	1			M9			
A10	2016	16nm	ArmV8-A	2	PowerVR	6	1	1			M10			
A11	2017	10nm	ArmV8-A	6	GPU	3	1	1			M11	Neural		
												En-		
												gine		
A12	2018	7nm	ArmV8.3-A	6	GPU	4		1				NE	8	
A13	2019	7nm	ArmV8.4-A	6	GPU	4		1				NE	8	
A14	2020	5nm	ArmV8.5-A	6	GPU	4		1				NE	16	
A15	2021	5nm	ArmV8	6	GPU	5	1					NE	16	
A16	2022	5nm	ArmV8.6-A	6	GPU	5	1					NE	16	1

Apple Axx SoCs

Number of Cores in Axx

DNN based Applications

- DNN based features appear in many applications
- Many different DNN types, sizes, and architectures

DNN based Application: VADAR

David Breuss, Maximilian Götzinger, Jenny Vuong, Clemens Reisner, and Axel Jantsch. "VADAR: A Vision-based Anomaly Detection Algorithm for Railroads". In: Proceedings of the 26th Euromicro Conference on Digital System Design (DSD). Durres, Albania, Sept. 2023

DNN based Application: AlphaFold

AlphaFold model architecture

John Jumper et al. "Highly accurate protein structure prediction with AlphaFold". In: Nature 596.7873 (Aug. 2021), pages 583-589

DNN based Application: AlphaFold

Evoformer block

- Chiplets
- Customization
- DNN based applications

- Chiplets \rightarrow Highly flexible super integration
- Customization
- DNN based applications

- Chiplets \rightarrow Highly flexible super integration
- Customization \rightarrow Explosion of the design space
- DNN based applications

- Chiplets \rightarrow Highly flexible super integration
- Customization \rightarrow Explosion of the design space
- DNN based applications \rightarrow Third digital wave in the digital revolution

Jan M. Rabaey. "Of Brains and Computers". In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Jan M. Rabaey. "Of Brains and Computers". In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Compute with chemistry whenever possible
Send only information that is needed; send it as slow as possible

Jan M. Rabaey. "Of Brains and Computers". In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

- 1 Compute with chemistry whenever possible
- 2 Send only information that is needed; send it as slow as possible
- **3** Store information at the site where it is processed

Jan M. Rabaey. "Of Brains and Computers". In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

- 1 Compute with chemistry whenever possible
- 2 Send only information that is needed; send it as slow as possible
- **3** Store information at the site where it is processed
- **4** Customize (or ... complicate)

Jan M. Rabaey. "Of Brains and Computers". In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

- 1 Compute with chemistry whenever possible
- 2 Send only information that is needed; send it as slow as possible
- **3** Store information at the site where it is processed
- **4** Customize (or ... complicate)
- **5** Randomize

Jan M. Rabaey. "Of Brains and Computers". In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

- 1 Compute with chemistry whenever possible
- 2 Send only information that is needed; send it as slow as possible
- Store information at the site where it is processed
- **4** Customize (or ... complicate)
- 5 Randomize
- 6 Self-calibrate, adapt and heal

Jan M. Rabaey. "Of Brains and Computers". In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Outline

1 Trends in Applications, Architecture and Technology

2 Customization

- **3** Minimize Communication
- **4** Imperfection
- **5** Self-calibrate and Adapt
- 6 Data Driven Computing
- **7** Summary

CUSTOMIZATION

Customization

Compute with chemistry Customize

- Specific technology:
 - Logic, DRAM, AMS,
 - Resistive memory,
 - Phase change memory
 - Magnetoresistive memory
 - ...
- Algorithm specialization
 - DNN optimization
 - DNN customization
 - Heterogeneous DNNs

- Custom architectures:
 - DNN accelerators
 - Course grain reconfigurable computing
 - video encoders
 - audio processors
 - security engines
 - face recognition
 - language processing
 - goal management

• ...

Customization

Compute with chemistry Customize

- Specific technology:
 - Logic, DRAM, AMS,
 - Resistive memory,
 - Phase change memory
 - Magnetoresistive memory
 - ...
- Algorithm specialization

- Custom architectures:
 - DNN accelerators
 - Course grain reconfigurable computing
 - video encoders
 - audio processors
 - security engines

The next decade will see a Cambrian explosion of novel computer architectures, meaning exciting times for computer architects in academia and in industry.

Makimoto's Wave

Customization

Makimoto's Wave. https://semiengineering.com/knowledge_centers/standards-laws/laws/makimotos-wave/. Accessed: 2023-09-12

Tsugio Makimoto. "The hot decade of field programmable technologies". In: Proceedings of the IEEE International Conference on Field-Programmable Technology (FPT). 2002, pages 3–6

Outline

1 Trends in Applications, Architecture and Technology

- **2** Customization
- **3** Minimize Communication
- **4** Imperfection
- **5** Self-calibrate and Adapt
- 6 Data Driven Computing
- **7** Summary

MINIMIZE COMMUNICATION

Minimize Communication

2 Send only information that is needed; send it as slow as possible

- Near memory computing
- In-memory computing
- Lazy communication: transmit on demand only
Near Memory Computing

Google's Tensor Processing Unit TPUv4i

Norman P. Jouppi et al. "Ten Lessons From Three Generations Shaped Google's TPUv4i : Industrial Product". In: 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA). 2021, pages 1–14

In Memory Computing

Ohm's law: $I = \frac{V}{R}$ Kirchhoffs law: $I_{out} = \sum_{i} I_{i}$ Conductance $G = \frac{1}{R}$

Matrix Vector Multiplication

Linear Equation (Ax = b)

Ternary Content Addressable Memory

Regression solver

Daniele lelmini and Giacomo Pedretti. "Device and Circuit Architectures for In-Memory Computing". In: Advanced Intelligent Systems 2.7 (2020), page 2000040. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.20200040

Communicate as slow as possible

$$P \sim [rac{1}{D},rac{1}{D^2}]$$

Communicate as slow as possible

$$P \sim [rac{1}{D}, rac{1}{D^2}]$$

 \Rightarrow doubling delay decreases power by 2x - 4x

Communication control

State of the Art

- Global, hard-wired and central control
- Application controlled: data request triggers communication
- Platform controlled: Power management, DVFS
- Assuming AFSP: As Fast and as Soon as Possible

Communication control

State of the Art

- Global, hard-wired and central control
- Application controlled: data request triggers communication
- Platform controlled: Power management, DVFS
- Assuming AFSP: As Fast and as Soon as Possible

Lazy Communication

- Default: ASLIP:
 - as Slow,
 - as Late,
 - as Inaccurate as Possible
- Application provides
 - deadline for data reception,
 - level of required approximation
- Network schedules packets based on the ASLIP principle

Outline

1 Trends in Applications, Architecture and Technology

- **2** Customization
- **3** Minimize Communication
- 4 Imperfection
- **5** Self-calibrate and Adapt
- 6 Data Driven Computing
- **7** Summary

IMPERFECTION

5 Randomize

- Perfection is expensive
- Allow for as much imperfection as can be tolerated
- Approximate computing is a broad trend

Cost of Perfection

An (ϵ, δ) circuit is a device that consists of ϵ -noisy gates and computes a function f with $(1 - \delta)$ -reliability.

What is a lower bound of the costs, in terms of gates and energy?

Diana Marculescu. "Energy Bounds for Fault-Tolerant Nanoscale Designs". In: Proceedings oif the of the Design, Automation and Test in Europe Conference and Exhibition (DATE). 2005

William Evans. "Information Theory and Noisy Computation". PhD thesis. Berkeley, CA, USA: Computer Science Division, University of California at Berkeley, 1994

John von Neumann. "Probabilistic logics abd the synthesis of reliable organisms from unreliable components". In: *Automata Studies*. Edited by C. E. Shannon and J. McCarthy. Princeton University, 1996, pages 329–378

Imperfection in Networks

State of the Art

- Protocol stack: Fault free communication in all layers except the lowest
- Design of networks is modular: layers, hierarchy, composition
- Each module guarantees error-free communication
- Modular network design facilities network design

Imperfection in Networks

State of the Art

- Protocol stack: Fault free communication in all layers except the lowest
- Design of networks is modular: layers, hierarchy, composition
- Each module guarantees error-free communication
- Modular network design facilities network design

Imperfect Networks

- In each level/module allow for as much imperfection as possible
- Fault tolerance is distributed across the layers and the network
- Level of perfection is application dependent
- Level of perfection varies over time
- Each network layer and component can tune its fault tolerance

Outline

1 Trends in Applications, Architecture and Technology

- **2** Customization
- **3** Minimize Communication
- **4** Imperfection
- **5** Self-calibrate and Adapt
- 6 Data Driven Computing

Self-Calibrate and Adapt

Challenge

6 Self-calibrate, adapt and heal

In-field adaptation addresses a fundamental challenge:

- Design and operation is separated in phases
- A system is designed for a wide range of applications and situations
- A well designed system is always too general and not optimal for the given case
- Trade-off between generality and optimality

Design time learning

$\begin{array}{l} {\sf Design time learning} \\ + {\sf In-field Learning} \end{array}$

In-Field Learning

In-field learning applies to

- Lazy communication 2
- Keep information local 3
- Customization 4

• Adapt to required fault tolerance 5

Adaptive Networks

When to adapt

- adapt to explicit application requests
- short term: adapt to short term demand variations; ns - ms
- medium term: adapt to medium term changes: ms min
- long term: adapt to new application scenarios and slow changes: min - days

Adaptive Networks

When to adapt

- adapt to explicit application requests
- short term: adapt to short term demand variations; ns - ms
- medium term: adapt to medium term changes: ms min
- long term: adapt to new application scenarios and slow changes: min - days

What to adapt

- Performance, delay
- When to send
- What to send
- Accuracy
- Fault tolerance

Lazy communication

Adaptive Networks

When to adapt

- adapt to explicit application requests
- short term: adapt to short term demand variations; ns - ms
- medium term: adapt to medium term changes: ms min
- long term: adapt to new application scenarios and slow changes: min - days

What to adapt

- Performance, delay
- When to send
- What to send
- Accuracy
- Fault tolerance

Lazy communication

How to adapt

- Predefined
- Constrained
- Unconstrained in-field learning

Outline

1 Trends in Applications, Architecture and Technology

- **2** Customization
- **3** Minimize Communication
- **4** Imperfection
- **5** Self-calibrate and Adapt
- 6 Data Driven Computing

DATA DRIVEN COMPUTING

Control vs Data Driven Computing

Control driven

- Classic von Neumann
- Limited, shared resources
- Elaborate control for allocation of resources and scheduling of the execution

Data driven

- No shared resources
- Data flow determines the execution
- Demand-driven or data-driven
- Resources operate as slow as possible

Outline

1 Trends in Applications, Architecture and Technology

- **2** Customization
- **3** Minimize Communication
- **4** Imperfection
- **5** Self-calibrate and Adapt
- 6 Data Driven Computing

SUMMARY
Conclusions for NoCs

- Heterogeneity:
 - Hierarchical network to connect cores on chip and chiplets on package
 - Connect nodes with very different requirements
 - Requirements vary over time
 - Addressing by function, not location
- Lazy Communication: Network should communicate
 - as slow,
 - as late, and
 - as inaccurate as possible
- Fault tolerance:
 - Distribute fault tolerance across hierarchy layers
 - Adapt fault-tolerance level
- Continuous in-field learning and adapting

