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TRENDS IN APPLICATIONS,
ARCHITECTURE AND TECHNOLOGY



Trends

• Chiplets

• Customization

• DNN based applications
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Chiplets:
On-Package
Integration

D. Das Sharma. Universal Chiplet

Interconnect express (UCIe): Building an

open chiplet ecosystem. Technical report.

White Paper. by UCIe Consortium, 2022



UCIe Performance

B/W Energy Latency

(GB/s/mm) (pJ/b) (ns)

PCIe 60 10 15

UCIe 1300 0.25 1

on-chip 50 000 0.01 0.5
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Customization

• Custom technology: compute, memory

• Custom architecture: cores, accelerators

• Custom algorithm design: for GPUs, NPUs, ...
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Customization of Architecture

Name Year Node CPU No GPU No ISP Video
En-
coder

Audio Security Motion
Pro-
cessor

NN No Display

A4 2010 45nm CortexA8 1 PowerVR 1
A5 2011 45nm CortexA9 2 PowerVR 2 1 EarSmart
A6 2012 32nm ARMv7-A 2 PowerVR 3 1 EarSmart
A7 2013 28nm ARMv8-A 2 PowerVR 4 1 Secure

Enclave
A8 2014 20nm Cyclone 2 PowerVC 4 1 1
A9 2015 16nm ArmV8-A 2 PowerVR 6 1 1 M9
A10 2016 16nm ArmV8-A 2 PowerVR 6 1 1 M10
A11 2017 10nm ArmV8-A 6 GPU 3 1 1 M11 Neural

En-
gine

A12 2018 7nm ArmV8.3-A 6 GPU 4 1 NE 8
A13 2019 7nm ArmV8.4-A 6 GPU 4 1 NE 8
A14 2020 5nm ArmV8.5-A 6 GPU 4 1 NE 16
A15 2021 5nm ArmV8 6 GPU 5 1 NE 16
A16 2022 5nm ArmV8.6-A 6 GPU 5 1 NE 16 1

Apple Axx SoCs
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DNN based Applications

• DNN based features appear in many applications

• Many different DNN types, sizes, and architectures
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DNN based Application: VADAR

Trackbed 

Anomaly AE 

(TAAE)

Infrastructure 

AE (IAE)

Rail Anomaly 

AE (RAAE)

Infrastructure 

detection

Rail 

segmentation

Rail damage 

detection

Large coherent 

area detection

One-class 

classifier

Input Image

Rail damage: yes/no Anomaly: yes/no
Image reconstruction

David Breuss, Maximilian Götzinger, Jenny Vuong, Clemens Reisner, and Axel Jantsch. “VADAR: A Vision-based Anomaly Detection Algorithm for

Railroads”. In: Proceedings of the 26th Euromicro Conference on Digital System Design (DSD). Durres, Albania, Sept. 2023
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DNN based Application: AlphaFold

AlphaFold model architecture

John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. In: Nature 596.7873 (Aug. 2021), pages 583–589
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DNN based Application: AlphaFold

Evoformer block
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Where will these trends lead?

• Chiplets

→ Highly flexible super integration

• Customization

→ Explosion of the design space

• DNN based applications

→ Third digital wave in the digital revolution
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Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015
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CUSTOMIZATION



Customization

1 Compute with chemistry
4 Customize

• Specific technology:
• Logic, DRAM, AMS,
• Resistive memory,
• Phase change memory
• Magnetoresistive memory
• ...

• Algorithm specialization
• DNN optimization
• DNN customization
• Heterogeneous DNNs

• Custom architectures:
• DNN accelerators
• Course grain reconfigurable

computing
• video encoders
• audio processors
• security engines
• face recognition
• language processing
• goal management
• ...

John L. Hennessy and David A. Patterson. “A New Golden Age for Computer Architecture”. In: Commun. ACM 62.2 (Jan. 2019), pages 48–60

The next decade will see a Cambrian explosion of novel computer archi-
tectures, meaning exciting times for computer architects in academia and in
industry.
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Makimoto’s Wave

Standardization

Customization

MPUs

Highly flexible

super integration

Discretes

Custom

LSIs

and
Memory

ASICs

FPGA

SOC/SIP

HFSI
Standard

1967 1987 2007 2027

Makimoto’s Wave. https://semiengineering.com/knowledge_centers/standards-laws/laws/makimotos-wave/. Accessed: 2023-09-12

Tsugio Makimoto. “The hot decade of field programmable technologies”. In: Proceedings of the IEEE International Conference on

Field-Programmable Technology (FPT). 2002, pages 3–6

21
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StandardizationCustomization

Supply−Demand

Market

Quick to

Cost

Effectiveness

Supply−Demand

Imbalance

Under−supply

Differentiation

Addition

Value

Imbalance

Over−supply
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MINIMIZE COMMUNICATION



Minimize Communication

2 Send only information that is needed; send it as slow as possible

• Near memory computing

• In-memory computing

• Lazy communication: transmit on demand only

26



Near Memory Computing

Google’s Tensor Processing Unit TPUv4i

Norman P. Jouppi et al. “Ten Lessons From Three Generations Shaped Google’s TPUv4i : Industrial Product”. In: 2021 ACM/IEEE 48th Annual

International Symposium on Computer Architecture (ISCA). 2021, pages 1–14
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In Memory Computing

I1

I2

V2V1

G11 G12

G22G21

Ii =
∑
j

GijVj

Ohm’s law: I = V
R

Kirchhoffs law: Iout =
∑

i Ii
Conductance G = 1

R 28



Matrix Vector Multiplication
Linear Equation (Ax = b)

Regression solver
Ternary Content Addressable Memory

Daniele Ielmini and Giacomo Pedretti. “Device and Circuit Architectures for In-Memory Computing”. In: Advanced Intelligent Systems 2.7 (2020),

page 2000040. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202000040
29
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Lazy Communication

Communicate as slow as possible

P ∼ [
1

D
,
1

D2
]

⇒ doubling delay decreases power by 2x - 4x

30
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Lazy Communication

Communication control

State of the Art
• Global, hard-wired and central control

• Application controlled: data request
triggers communication

• Platform controlled: Power
management, DVFS

• Assuming AFSP: As Fast and as Soon
as Possible

Lazy Communication

• Default: ASLIP:
• as Slow,

• as Late,

• as Inaccurate as Possible

• Application provides
• deadline for data reception,

• level of required approximation

• Network schedules packets based on
the ASLIP principle
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IMPERFECTION



Imperfection

5 Randomize

• Perfection is expensive

• Allow for as much imperfection as can be tolerated

• Approximate computing is a broad trend

34



Cost of Perfection

An (ϵ, δ) circuit is a device that consists of ϵ-noisy gates and computes a function f
with (1− δ)-reliability.

(1− δ)-reliable output

ϵ-noisy gate

f

What is a lower bound of the costs, in terms of gates and energy?

Diana Marculescu. “Energy Bounds for Fault-Tolerant Nanoscale Designs”. In: Proceedings oif the of the Design, Automation and Test in Europe

Conference and Exhibition (DATE). 2005

William Evans. “Information Theory and Noisy Computation”. PhD thesis. Berkeley, CA, USA: Computer Science Division, University of California

at Berkeley, 1994

John von Neumann. “Probabilistic logics abd the synthesis of reliable organisms from unreliable components”. In: Automata Studies. Edited by

C. E. Shannon and J. McCarthy. Princeton University, 1996, pages 329–378 35
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Imperfection in Networks

State of the Art
• Protocol stack: Fault free

communication in all layers except the
lowest

• Design of networks is modular: layers,
hierarchy, composition

• Each module guarantees error-free
communication

• Modular network design facilities
network design

Imperfect Networks

• In each level/module allow for as
much imperfection as possible

• Fault tolerance is distributed across
the layers and the network

• Level of perfection is application
dependent

• Level of perfection varies over time

• Each network layer and component
can tune its fault tolerance
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SELF-CALIBRATE AND ADAPT



Challenge

6 Self-calibrate, adapt and heal

In-field adaptation addresses a fundamental challenge:

• Design and operation is separated in phases

• A system is designed for a wide range of applications
and situations

• A well designed system is always too general and not
optimal for the given case

• Trade-off between generality and optimality

43
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Design time learning

+ In-field Learning
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Design time learning
+ In-field Learning
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In-Field Learning

In-field learning applies to

• Lazy communication 2

• Keep information local 3

• Customization 4

• Adapt to required fault tolerance 5
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Adaptive Networks

When to adapt

• adapt to explicit application requests

• short term: adapt to short term
demand variations; ns - ms

• medium term: adapt to medium term
changes: ms - min

• long term: adapt to new application
scenarios and slow changes: min - days

What to adapt

• Performance, delay

• When to send

• What to send

• Accuracy

• Fault tolerance

Lazy
communication

How to adapt

• Predefined

• Constrained

• Unconstrained in-field learning
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DATA DRIVEN COMPUTING



Control vs Data Driven Computing

Control driven
• Classic von Neumann

• Limited, shared resources

• Elaborate control for allocation of
resources and scheduling of the
execution

Data driven
• No shared resources

• Data flow determines the execution

• Demand-driven or data-driven

• Resources operate as slow as possible
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SUMMARY



Conclusions for NoCs

• Heterogeneity:
• Hierarchical network to connect cores on chip and chiplets on package
• Connect nodes with very different requirements
• Requirements vary over time
• Addressing by function, not location

• Lazy Communication: Network should communicate
• as slow,
• as late, and
• as inaccurate as possible

• Fault tolerance:
• Distribute fault tolerance across hierarchy layers
• Adapt fault-tolerance level

• Continuous in-field learning and adapting
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