Institut fir
Computertechnik
Institute of

Computer Technology

Connecting Deep Neural Networks
NoCS 203

Hamburg, Germany

Axel Jantsch

September 21, 2023

@ Trends in Applications, Architecture and Technology

T

TRENDS IN APPLICATIONS,
ARCHITECTURE AND TECHNOLOGY

e Chiplets
e Customization

® DNN based applications

o7

Packaging Hierarchy

Package

Dual ARM Cores

Die

Block, Core

=

Chiplets:
On-Package
Integration

D. Das Sharma. Universal Chiplet
Interconnect express (UCle): Building an

open chiplet ecosystem. Technical report.

White Paper. by UCle Consortium, 2022

Open Chiplet: Platform on a Package

High-Speed Standardized
Chip-to-Chip Interface (L Cle)

Customer IP and
Customized Chiplets

/

, Seaof Coregl

.)1ete(ogengg
f

Memory

Advanced 2D/
25D/3D
Packaging

UCle Performance

B/W Energy Latency
(GB/s/mm) (pJ/b) (ns)
PCle 60 10 15
UCle 1300 0.25 1

on-chip 50000 0.01 0.5

e Custom technology: compute, memory
e Custom architecture: cores, accelerators

® Custom algorithm design: for GPUs, NPUs, ...

Customization of Architecture

Name Year Node CPU No GPU No ISP Video Audio Security Motion NN No Display
En- Pro-
coder cessor
A4 2010 45nm CortexA8 1 PowerVR 1
A5 2011 45nm CortexA9 2 PowerVR 2 1 EarSmart
A6 2012 32nm ARMv7-A 2 PowerVR 3 1 EarSmart
A7 2013 28nm ARMvV8-A 2 PowerVR 4 1 Secure
Enclave
A8 2014 20nm Cyclone 2 PowerVC 4 1 1
A9 2015 16nm ArmV8-A 2 PowerVR 6 1 1 M9
Al0 2016 16nm ArmV8-A 2 PowerVR 6 1 1 M10
All 2017 10nm ArmV8-A 6 GPU 3 1 1 M11 Neural
En-
gine
Al12 2018 7nm ArmV8.3-A 6 GPU 4 1 NE 8
Al13 2019 7nm ArmV8.4-A 6 GPU 4 1 NE 8
Al4 2020 5nm ArmV8.5-A 6 GPU 4 1 NE 16
Al5 2021 5nm ArmV8 6 GPU 5 1 NE 16
Al6 2022 5nm ArmV8.6-A 6 GPU 5 1 NE 16 1

Apple Axx SoCs

351

Number of

|
o
o

Cores in Axx

|
Lo
N

S9J0D JO JaqUIN|

|
o Lo o
N — —

wwow
NWQW
Qwow
6 NQW
%Sw
< 1oz
bwbw
@dw
VNQW
m&w
WSW
E/Qw
S,Qw

DNN based Applications

® DNN based features appear in many applications

® Many different DNN types, sizes, and architectures

DNN based Application: VADAR

— Input Image ——
v

v |
Rail Anomaly Infrastructure A:;Zfal;?eiE Large coher.ent
AE (RAAE) AE (IAE) (TAAE) area detection
! — 1 !
Rail - Rail damage : Infrastructure One-class
segmentation [—>| detection detection classifier

Rail damage: yes/no * Anomaly: yes/no

David Breuss, Maximilian Gétzinger, Jenny Vuong, Clemens Reisner, and Axel Jantsch. “VADAR: A Vision-based Anomaly Detection Algorithm for
Railroads”. In: Proceedings of the 26th Euromicro Conference on Digital System Design (DSD). Durres, Albania, Sept. 2023

DNN based Application: AlphaFold

e /—P
Genetic
Y database
search
freepre

Input sequence

Structure
database
search

Templates

Evoformer
(48 blocks)

, 1trrTt
II -
S
=D

Lttt
Pair

representation | —p-
(ere)

|

—

Structure
module
(8 blocks)

High
confidence

Low
confidence

3D structure

& Recycling (three times)

AlphaFold model architecture

John Jumper et al. “Highly accurate protein structure prediction with AlphaFold

". In: Nature 596.7873 (Aug. 2021), pages 583-589

AlphaFold

DNN based Application

a / 48 blocks (no shared weights)
& | o
g ‘ L g MSA
@ representation ® i
by (s.r.0) &3 (s.r,0)
Triangle Triangle
Pair update update Pair
representation using using | —» representation
irr.c) outgoing incoming (r.r.cy
edges edges

Evoformer block

Where will these trends lead?

e Chiplets
e Customization

® DNN based applications

16)

Where will these trends lead?

e Chiplets — Highly flexible super integration
e Customization

® DNN based applications

16)

Where will these trends lead?

e Chiplets — Highly flexible super integration
e Customization — Explosion of the design space

® DNN based applications

16)

Where will these trends lead?

e Chiplets — Highly flexible super integration
e Customization — Explosion of the design space

® DNN based applications — Third digital wave in the digital revolution

16)

Rabaey’s Design Principles

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17)

Rabaey’s Design Principles

@® Compute with chemistry whenever possible

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17)

Rabaey’s Design Principles

@® Compute with chemistry whenever possible

@® Send only information that is needed; send it
as slow as possible

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17)

Rabaey’s Design Principles

@® Compute with chemistry whenever possible

@® Send only information that is needed; send it
as slow as possible

© Store information at the site where it is
processed

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17)

Rabaey’s Design Principles

@® Compute with chemistry whenever possible

@® Send only information that is needed; send it
as slow as possible

© Store information at the site where it is
processed

@ Customize (or ... complicate)

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17)

Rabaey’s Design Principles

@® Compute with chemistry whenever possible

@® Send only information that is needed; send it
as slow as possible

© Store information at the site where it is
processed

@ Customize (or ... complicate)

® Randomize

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17)

Rabaey’s Design Principles

@® Compute with chemistry whenever possible

@® Send only information that is needed; send it
as slow as possible

© Store information at the site where it is
processed

@ Customize (or ... complicate)
® Randomize

@ Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1-2 (2022), pages 1-192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17)

@® Customization

19)

CUSTOMIZATION

@ Compute with chemistry
O Customize

® Specific technology: ® Custom architectures:
® | ogic, DRAM, AMS, ® DNN accelerators
® Resistive memory, ® Course grain reconfigurable
® Phase change memory computing
® Magnetoresistive memory ® video encoders
° .. ® audio processors
® Algorithm specialization ® security engines
® DNN optimization ® face recognition
e DNN customization : 'a”gl?”age processing
® Heterogeneous DNNs . goal managemen

John L. Hennessy and David A. Patterson. “A New Golden Age for Computer Architecture”. In: Commun. ACM 62.2 (Jan. 2019), pages 48-60 2’@

@ Compute with chemistry
O Customize

® Specific technology: ® Custom architectures:
® | ogic, DRAM, AMS, ® DNN accelerators
® Resistive memory, ® Course grain reconfigurable
® Phase change memory computing
® Magnetoresistive memory ® video encoders
° .. ® audio processors
* Algorithm specialization ® security engines

- . tat

The next decade will see a Cambrian explosion of novel computer archi-
tectures, meaning exciting times for computer architects in academia and in
industry.

John L. Hennessy and David A. Patterson. “A New Golden Age for Computer Architecture”. In: Commun. ACM 62.2 (Jan. 2019), pages 48-60 2’@

Makimoto's Wave

N Highly flexible
Standardization super integration

PUs
Standard and FPGA HFSI
Discretes \1967 Memory \1987 007 2027
Custom
SOC/SIP
LSIs ASICs

Customization
Makimoto's Wave. https://semiengineering.com/knowledge_centers/standards-laws/laws/makimotos-wave/. Accessed: 2023-09-12

Tsugio Makimoto. “The hot decade of field programmable technologies”. In: Proceedings of the IEEE International Conference on
Field-Programmable Technology (FPT). 2002, pages 3-6

https://semiengineering.com/knowledge_centers/standards-laws/laws/makimotos-wave/

Quick to Differentiation
Market &) A Q
PN A4
y 7 S N Value
Ve N Addition
. Cost , N %\
Effectiveness /y y; N g
’ N
% d N Supply-Demand
’ N
Supply—Demand o Y N Q) Imbalance
Imbalance % , 7 N N @ Over—supply
der—suppl 4 AN
Under—supply L N
’ \
Customization Standardization

Second
Digital Wave

Third
Digital Wave

First

Digital Wave
Machine
Learning

Analog Consumer
Networks
f ; f f f f f
1970 1980 1990 2000 2010 2020 2030

© Minimize Communication

MINIMIZE COMMUNICATION

Minimize Communication

@ Send only information that is needed; send it as slow as possible
® Near memory computing
® In-memory computing

® | azy communication: transmit on demand only

Near Memory Computing

TCS & SMEM, IMEM | TE& Legend
LST & ocl ’7 Compute (TensorCore)
SerDes Memory and On-Chip
Interconnect (OCI)
o HBMC MxD C ol ’* Inter-Chip Interconnect
ICR o c & (icn
c CMEM] SDS'- U [Host commuricaton
es
LST& ! =T l XLu k‘,:’> & Cj XL ‘ [Managementtiemware
SerDes Eren VMEM
oc [Off-chip
| . . | P MXU < Mxu
MXU |{| MXU | L VPU & VMEM | MXU [f| MXU et 5o PRI
u u Py Other TPUvdi 3
Chips (3) },
T\ N
! & i5 O
PCle
o o el CMEM ‘ | LsT H LsT |
c CMEM o [weme i g) ¢g
I] .
Ser- uHl < % oci F > ICR ‘
Des ~ 73 ,
3 ki
oo Sl Sl
MGR HBMC HBMC Stack

Google's Tensor Processing Unit TPUv4i

Norman P. Jouppi et al. “Ten Lessons From Three Generations Shaped Google's TPUv4i : Industrial Product”. In: 2021 ACM/IEEE 48th Annual

International Symposium on Computer Architecture (ISCA). 2021, pages 1-14
>

In Memory Computing

V1 V2

Gl 1 G12

, LV
Ohm's law: | = ¢

Kirchhoffs law: lu: = >, Ii

Conductance G = &
!)

;f
A
;‘

RS NN A>“l

vi| v v
Linear Equation (Ax = b)

sty X, LS, SX. S,

Tﬁrﬁwwﬂw

wL T T

Ternary Content Addressable Memory

MLy

N
~J~
A0

Regression solver

Daniele lelmini and Giacomo Pedretti. “Device and Circuit Architectures for In-Memory Computing”. In: Advanced Intelligent Systems 2.7 (2020), B
page 2000040. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202000040

https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202000040

Lazy Communication

Communicate as slow as possible

Lazy Communication

Communicate as slow as possible

= doubling delay decreases power by 2x - 4x

&

Lazy Communication

Communication control

State of the Art
® Global, hard-wired and central control

® Application controlled: data request
triggers communication

® Platform controlled: Power
management, DVFS

® Assuming AFSP: As Fast and as Soon
as Possible

&

Lazy Communication

Communication control

State of the Art Lazy Communication
® Global, hard-wired and central control ® Default: ASLIP:
® Application controlled: data request ® as Slow,

triggers communication e as Late

® Platform controlled: Power
management, DVFS

® Assuming AFSP: As Fast and as Soon
as Possible

® as Inaccurate as Possible
® Application provides
® deadline for data reception,

® |evel of required approximation

® Network schedules packets based on
the ASLIP principle

&

O Imperfection

IMPERFECTION

Imperfection

@ Randomize

® Perfection is expensive
e Allow for as much imperfection as can be tolerated

® Approximate computing is a broad trend

Cost of Perfection

An (e, 9) circuit is a device that consists of e-noisy gates and computes a function f
with (1 — 0)-reliability.

e-noisy gate
—|—> f
(1 — d)-reliable output

What is a lower bound of the costs, in terms of gates and energy?

Diana Marculescu. “Energy Bounds for Fault-Tolerant Nanoscale Designs”. In: Proceedings oif the of the Design, Automation and Test in Europe
Conference and Exhibition (DATE). 2005

William Evans. “Information Theory and Noisy Computation”. PhD thesis. Berkeley, CA, USA: Computer Science Division, University of California
at Berkeley, 1994

John von Neumann. “Probabilistic logics abd the synthesis of reliable organisms from unreliable components”. In: Automata Studies. Edited by
C. E. Shannon and J. McCarthy. Princeton University, 1996, pages 329-378

B,

Number of gates

200

150

100

50

_—k =
-
—k =4
60 =0.01
s=10
| | | | | | So=21
0 0.1 0.2 0.3 0.4 0.5

device error probability €

10

81 |
6 |
Ecs
Eo
4? -
a=0.25
20 k=2
s=10
0 | | | 50:21

| | |
0 0.1 0.2 0.3 0.4 0.5
device error probability €

Number of gates

600

500

400

300

200

[[
— flat, s =100
— hier 11, s =50
—— hier 12, s = 4,5

| |
0 0.1 0.2 0.3

device error probability €

0.4

0.5

16=0.1

k=2
s =100
So = 200

10

— flat: s =100
— hier I11: s =50
— hier 12:

s=5,4

6 =0.01
a=0.25
1 k=2

s =100
So = 200

| | |
0 0.1 0.2 0.3

device error probability €

0.4

0.5

Imperfection in Networks

State of the Art

® Protocol stack: Fault free
communication in all layers except the
lowest

® Design of networks is modular: layers,
hierarchy, composition

® Each module guarantees error-free
communication

® Modular network design facilities
network design

Imperfection in Networks

State of the Art

® Protocol stack: Fault free
communication in all layers except the
lowest

® Design of networks is modular: layers,
hierarchy, composition

® Each module guarantees error-free
communication

® Modular network design facilities
network design

Imperfect Networks

® In each level/module allow for as
much imperfection as possible

® Fault tolerance is distributed across
the layers and the network

® | evel of perfection is application
dependent

® | evel of perfection varies over time

® Each network layer and component
can tune its fault tolerance

@ Self-calibrate and Adapt

SELF-CALIBRATE AND ADAPT

Challenge

@ Self-calibrate, adapt and heal

In-field adaptation addresses a fundamental challenge:
® Design and operation is separated in phases

® A system is designed for a wide range of applications
and situations

® A well designed system is always too general and not
optimal for the given case

® Trade-off between generality and optimality

In-Field

Learning

Optimality

Generality

In-Field

Learning

Optimality

Generality

In-Field

Learning

Optimality

In—field learning

Generality

In-Field

Learning

Optimality

?5’\0

In—field learning

Generality

Design time learning

Design time learning

A ﬁ + In-field Learning

In-Field Learning

In-field learning applies to
® Lazy communication @
® Keep information local €
e Customization @
e Adapt to required fault tolerance @

Adaptive Networks

When to adapt

® adapt to explicit application requests

® short term: adapt to short term
demand variations; ns - ms

® medium term: adapt to medium term
changes: ms - min

® long term: adapt to new application
scenarios and slow changes: min - days

Adaptive Networks

When to adapt What to adapt
® adapt to explicit application requests ® Performance, delay
® short term: adapt to short term ® When to send Lazy
demand variations; ns - ms ® \What to send communication
5 . [)
® medium term: adapt to medium term Accuracy
® Fault tolerance

changes: ms - min

® long term: adapt to new application
scenarios and slow changes: min - days

Adaptive Networks

When to adapt What to adapt
® adapt to explicit application requests ® Performance, delay
® short term: adapt to short term ® When to send Lazy
demand variations; ns - ms ® \What to send communication
® Accuracy

® medium term: adapt to medium term
changes: ms - min

Fault tolerance

® long term: adapt to new application
scenarios and slow changes: min - days

How to adapt
® Predefined

e Constrained

® Unconstrained in-field learning @

@ Data Driven Computing

DATA DRIVEN COMPUTING

Control vs Data Driven Computing

Control driven Data driven
® (Classic von Neumann ® No shared resources

® | imited, shared resources Data flow determines the execution

® Elaborate control for allocation of Demand-driven or data-driven
resources and scheduling of the

execution

Resources operate as slow as possible

@ Summary

SUMMARY

Conclusions for NoCs

Heterogeneity:
® Hierarchical network to connect cores on chip and chiplets on package
Connect nodes with very different requirements
Requirements vary over time
Addressing by function, not location

Lazy Communication: Network should communicate
® 3s slow,
® as late, and
® as inaccurate as possible

Fault tolerance:

® Distribute fault tolerance across hierarchy layers
® Adapt fault-tolerance level

e Continuous in-field learning and adapting

	Trends in Applications, Architecture and Technology
	Customization
	Minimize Communication
	Imperfection
	Self-calibrate and Adapt
	Data Driven Computing
	Summary

