
Connecting Deep Neural Networks
NoCS 203

Hamburg, Germany

Axel Jantsch

September 21, 2023



DNN based Applications

2



Outline

1 Trends in Applications, Architecture and Technology

2 Customization

3 Minimize Communication

4 Imperfection

5 Self-calibrate and Adapt

6 Data Driven Computing

7 Summary

3



TRENDS IN APPLICATIONS,
ARCHITECTURE AND TECHNOLOGY



Trends

• Chiplets

• Customization

• DNN based applications

5



Packaging Hierarchy

Block, Core

Die

Package

Board

Rack

6



Chiplets:
On-Package
Integration

D. Das Sharma. Universal Chiplet

Interconnect express (UCIe): Building an

open chiplet ecosystem. Technical report.

White Paper. by UCIe Consortium, 2022



UCIe Performance

B/W Energy Latency

(GB/s/mm) (pJ/b) (ns)

PCIe 60 10 15

UCIe 1300 0.25 1

on-chip 50 000 0.01 0.5

8



Customization

• Custom technology: compute, memory

• Custom architecture: cores, accelerators

• Custom algorithm design: for GPUs, NPUs, ...

9



Customization of Architecture

Name Year Node CPU No GPU No ISP Video
En-
coder

Audio Security Motion
Pro-
cessor

NN No Display

A4 2010 45nm CortexA8 1 PowerVR 1
A5 2011 45nm CortexA9 2 PowerVR 2 1 EarSmart
A6 2012 32nm ARMv7-A 2 PowerVR 3 1 EarSmart
A7 2013 28nm ARMv8-A 2 PowerVR 4 1 Secure

Enclave
A8 2014 20nm Cyclone 2 PowerVC 4 1 1
A9 2015 16nm ArmV8-A 2 PowerVR 6 1 1 M9
A10 2016 16nm ArmV8-A 2 PowerVR 6 1 1 M10
A11 2017 10nm ArmV8-A 6 GPU 3 1 1 M11 Neural

En-
gine

A12 2018 7nm ArmV8.3-A 6 GPU 4 1 NE 8
A13 2019 7nm ArmV8.4-A 6 GPU 4 1 NE 8
A14 2020 5nm ArmV8.5-A 6 GPU 4 1 NE 16
A15 2021 5nm ArmV8 6 GPU 5 1 NE 16
A16 2022 5nm ArmV8.6-A 6 GPU 5 1 NE 16 1

Apple Axx SoCs

10



Number of
Cores in Axx

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

5

10

15

20

25

30

35

N
u
m
b
er

of
co
re
s



DNN based Applications

• DNN based features appear in many applications

• Many different DNN types, sizes, and architectures

12



DNN based Application: VADAR

Trackbed 

Anomaly AE 

(TAAE)

Infrastructure 

AE (IAE)

Rail Anomaly 

AE (RAAE)

Infrastructure 

detection

Rail 

segmentation

Rail damage 

detection

Large coherent 

area detection

One-class 

classifier

Input Image

Rail damage: yes/no Anomaly: yes/no
Image reconstruction

David Breuss, Maximilian Götzinger, Jenny Vuong, Clemens Reisner, and Axel Jantsch. “VADAR: A Vision-based Anomaly Detection Algorithm for

Railroads”. In: Proceedings of the 26th Euromicro Conference on Digital System Design (DSD). Durres, Albania, Sept. 2023

13



DNN based Application: AlphaFold

AlphaFold model architecture

John Jumper et al. “Highly accurate protein structure prediction with AlphaFold”. In: Nature 596.7873 (Aug. 2021), pages 583–589

14



DNN based Application: AlphaFold

Evoformer block

15



Where will these trends lead?

• Chiplets

→ Highly flexible super integration

• Customization

→ Explosion of the design space

• DNN based applications

→ Third digital wave in the digital revolution

16



Where will these trends lead?

• Chiplets → Highly flexible super integration

• Customization

→ Explosion of the design space

• DNN based applications

→ Third digital wave in the digital revolution

16



Where will these trends lead?

• Chiplets → Highly flexible super integration

• Customization → Explosion of the design space

• DNN based applications

→ Third digital wave in the digital revolution

16



Where will these trends lead?

• Chiplets → Highly flexible super integration

• Customization → Explosion of the design space

• DNN based applications → Third digital wave in the digital revolution

16



Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17



Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17



Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17



Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17



Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17



Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17



Rabaey’s Design Principles

1 Compute with chemistry whenever possible

2 Send only information that is needed; send it
as slow as possible

3 Store information at the site where it is
processed

4 Customize (or ... complicate)

5 Randomize

6 Self-calibrate, adapt and heal

Jan M. Rabaey. “Of Brains and Computers”. In: Foundations and Trends in Integrated Circuits and Systems 2.1–2 (2022), pages 1–192

Peter Sterling and Simon Laughlin. Principles of Neural Design. MIT Press, June 2015

17



Outline

1 Trends in Applications, Architecture and Technology

2 Customization

3 Minimize Communication

4 Imperfection

5 Self-calibrate and Adapt

6 Data Driven Computing

7 Summary

18



CUSTOMIZATION



Customization

1 Compute with chemistry
4 Customize

• Specific technology:
• Logic, DRAM, AMS,
• Resistive memory,
• Phase change memory
• Magnetoresistive memory
• ...

• Algorithm specialization
• DNN optimization
• DNN customization
• Heterogeneous DNNs

• Custom architectures:
• DNN accelerators
• Course grain reconfigurable

computing
• video encoders
• audio processors
• security engines
• face recognition
• language processing
• goal management
• ...

John L. Hennessy and David A. Patterson. “A New Golden Age for Computer Architecture”. In: Commun. ACM 62.2 (Jan. 2019), pages 48–60

The next decade will see a Cambrian explosion of novel computer archi-
tectures, meaning exciting times for computer architects in academia and in
industry.

20



Customization

1 Compute with chemistry
4 Customize

• Specific technology:
• Logic, DRAM, AMS,
• Resistive memory,
• Phase change memory
• Magnetoresistive memory
• ...

• Algorithm specialization
• DNN optimization
• DNN customization
• Heterogeneous DNNs

• Custom architectures:
• DNN accelerators
• Course grain reconfigurable

computing
• video encoders
• audio processors
• security engines
• face recognition
• language processing
• goal management
• ...

John L. Hennessy and David A. Patterson. “A New Golden Age for Computer Architecture”. In: Commun. ACM 62.2 (Jan. 2019), pages 48–60

The next decade will see a Cambrian explosion of novel computer archi-
tectures, meaning exciting times for computer architects in academia and in
industry.

20



Makimoto’s Wave

Standardization

Customization

MPUs

Highly flexible

super integration

Discretes

Custom

LSIs

and
Memory

ASICs

FPGA

SOC/SIP

HFSI
Standard

1967 1987 2007 2027

Makimoto’s Wave. https://semiengineering.com/knowledge_centers/standards-laws/laws/makimotos-wave/. Accessed: 2023-09-12

Tsugio Makimoto. “The hot decade of field programmable technologies”. In: Proceedings of the IEEE International Conference on

Field-Programmable Technology (FPT). 2002, pages 3–6

21

https://semiengineering.com/knowledge_centers/standards-laws/laws/makimotos-wave/


StandardizationCustomization

Supply−Demand

Market

Quick to

Cost

Effectiveness

Supply−Demand

Imbalance

Under−supply

Differentiation

Addition

Value

Imbalance

Over−supply

22



1970 1980 1990 2000 2020 20302010

D
ig

ita
l R

ev
olu

tio
n

Analog

Wave

First

Digital Wave

Second

Digital Wave

Third

Digital Wave

TV

VCR

PC

Machine

Learning

Consumer

Networks

23



Outline

1 Trends in Applications, Architecture and Technology

2 Customization

3 Minimize Communication

4 Imperfection

5 Self-calibrate and Adapt

6 Data Driven Computing

7 Summary

24



MINIMIZE COMMUNICATION



Minimize Communication

2 Send only information that is needed; send it as slow as possible

• Near memory computing

• In-memory computing

• Lazy communication: transmit on demand only

26



Near Memory Computing

Google’s Tensor Processing Unit TPUv4i

Norman P. Jouppi et al. “Ten Lessons From Three Generations Shaped Google’s TPUv4i : Industrial Product”. In: 2021 ACM/IEEE 48th Annual

International Symposium on Computer Architecture (ISCA). 2021, pages 1–14

27



In Memory Computing

I1

I2

V2V1

G11 G12

G22G21

Ii =
∑
j

GijVj

Ohm’s law: I = V
R

Kirchhoffs law: Iout =
∑

i Ii
Conductance G = 1

R 28



Matrix Vector Multiplication
Linear Equation (Ax = b)

Regression solver
Ternary Content Addressable Memory

Daniele Ielmini and Giacomo Pedretti. “Device and Circuit Architectures for In-Memory Computing”. In: Advanced Intelligent Systems 2.7 (2020),

page 2000040. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202000040
29

https://onlinelibrary.wiley.com/doi/pdf/10.1002/aisy.202000040


Lazy Communication

Communicate as slow as possible

P ∼ [
1

D
,
1

D2
]

⇒ doubling delay decreases power by 2x - 4x

30



Lazy Communication

Communicate as slow as possible

P ∼ [
1

D
,
1

D2
]

⇒ doubling delay decreases power by 2x - 4x

30



Lazy Communication

Communication control

State of the Art
• Global, hard-wired and central control

• Application controlled: data request
triggers communication

• Platform controlled: Power
management, DVFS

• Assuming AFSP: As Fast and as Soon
as Possible

Lazy Communication

• Default: ASLIP:
• as Slow,

• as Late,

• as Inaccurate as Possible

• Application provides
• deadline for data reception,

• level of required approximation

• Network schedules packets based on
the ASLIP principle

31



Lazy Communication

Communication control

State of the Art
• Global, hard-wired and central control

• Application controlled: data request
triggers communication

• Platform controlled: Power
management, DVFS

• Assuming AFSP: As Fast and as Soon
as Possible

Lazy Communication

• Default: ASLIP:
• as Slow,

• as Late,

• as Inaccurate as Possible

• Application provides
• deadline for data reception,

• level of required approximation

• Network schedules packets based on
the ASLIP principle

31



Outline

1 Trends in Applications, Architecture and Technology

2 Customization

3 Minimize Communication

4 Imperfection

5 Self-calibrate and Adapt

6 Data Driven Computing

7 Summary

32



IMPERFECTION



Imperfection

5 Randomize

• Perfection is expensive

• Allow for as much imperfection as can be tolerated

• Approximate computing is a broad trend

34



Cost of Perfection

An (ϵ, δ) circuit is a device that consists of ϵ-noisy gates and computes a function f
with (1− δ)-reliability.

(1− δ)-reliable output

ϵ-noisy gate

f

What is a lower bound of the costs, in terms of gates and energy?

Diana Marculescu. “Energy Bounds for Fault-Tolerant Nanoscale Designs”. In: Proceedings oif the of the Design, Automation and Test in Europe

Conference and Exhibition (DATE). 2005

William Evans. “Information Theory and Noisy Computation”. PhD thesis. Berkeley, CA, USA: Computer Science Division, University of California

at Berkeley, 1994

John von Neumann. “Probabilistic logics abd the synthesis of reliable organisms from unreliable components”. In: Automata Studies. Edited by

C. E. Shannon and J. McCarthy. Princeton University, 1996, pages 329–378 35



S0 = 21
s = 10

δ = 0.01

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

device error probability ϵ

N
u
m
b
er

of
ga
te
s

k = 2
k = 3
k = 4

36



S0 = 21
s = 10

k = 2

α = 0.25

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

device error probability ϵ

Eϵ,δ

E0

δ = 0.01
δ = 0.15
δ = 0.25

37



S0 = 200
s = 100

k = 2

δ = 0.1

0 0.1 0.2 0.3 0.4 0.5
200

300

400

500

600

device error probability ϵ

N
u
m
b
er

of
ga
te
s

flat, s = 100
hier l1, s = 50
hier l2, s = 4, 5

38



S0 = 200
s = 100

k = 2

α = 0.25

δ = 0.01

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

10

device error probability ϵ

Eϵ,δ

E0

flat: s = 100
hier l1: s = 50
hier l2: s = 5, 4

39



Imperfection in Networks

State of the Art
• Protocol stack: Fault free

communication in all layers except the
lowest

• Design of networks is modular: layers,
hierarchy, composition

• Each module guarantees error-free
communication

• Modular network design facilities
network design

Imperfect Networks

• In each level/module allow for as
much imperfection as possible

• Fault tolerance is distributed across
the layers and the network

• Level of perfection is application
dependent

• Level of perfection varies over time

• Each network layer and component
can tune its fault tolerance

40



Imperfection in Networks

State of the Art
• Protocol stack: Fault free

communication in all layers except the
lowest

• Design of networks is modular: layers,
hierarchy, composition

• Each module guarantees error-free
communication

• Modular network design facilities
network design

Imperfect Networks

• In each level/module allow for as
much imperfection as possible

• Fault tolerance is distributed across
the layers and the network

• Level of perfection is application
dependent

• Level of perfection varies over time

• Each network layer and component
can tune its fault tolerance

40



Outline

1 Trends in Applications, Architecture and Technology

2 Customization

3 Minimize Communication

4 Imperfection

5 Self-calibrate and Adapt

6 Data Driven Computing

7 Summary

41



SELF-CALIBRATE AND ADAPT



Challenge

6 Self-calibrate, adapt and heal

In-field adaptation addresses a fundamental challenge:

• Design and operation is separated in phases

• A system is designed for a wide range of applications
and situations

• A well designed system is always too general and not
optimal for the given case

• Trade-off between generality and optimality

43



In-Field
Learning

O
p

ti
m

al
it

y

Generality



In-Field
Learning

O
p

ti
m

al
it

y

Generality

ASIC

GPU

CPU

FPGA



In-Field
Learning

O
p

ti
m

al
it

y

Generality

ASIC

GPU

CPU

FPGA

In−field learning



In-Field
Learning

O
p

ti
m

al
it

y

Generality

ASIC

GPU

CPU

FPGA

In−field learning



Design time learning

+ In-field Learning

45



Design time learning
+ In-field Learning

45



In-Field Learning

In-field learning applies to

• Lazy communication 2

• Keep information local 3

• Customization 4

• Adapt to required fault tolerance 5

46



Adaptive Networks

When to adapt

• adapt to explicit application requests

• short term: adapt to short term
demand variations; ns - ms

• medium term: adapt to medium term
changes: ms - min

• long term: adapt to new application
scenarios and slow changes: min - days

What to adapt

• Performance, delay

• When to send

• What to send

• Accuracy

• Fault tolerance

Lazy
communication

How to adapt

• Predefined

• Constrained

• Unconstrained in-field learning

47



Adaptive Networks

When to adapt

• adapt to explicit application requests

• short term: adapt to short term
demand variations; ns - ms

• medium term: adapt to medium term
changes: ms - min

• long term: adapt to new application
scenarios and slow changes: min - days

What to adapt

• Performance, delay

• When to send

• What to send

• Accuracy

• Fault tolerance

Lazy
communication

How to adapt

• Predefined

• Constrained

• Unconstrained in-field learning

47



Adaptive Networks

When to adapt

• adapt to explicit application requests

• short term: adapt to short term
demand variations; ns - ms

• medium term: adapt to medium term
changes: ms - min

• long term: adapt to new application
scenarios and slow changes: min - days

What to adapt

• Performance, delay

• When to send

• What to send

• Accuracy

• Fault tolerance

Lazy
communication

How to adapt

• Predefined

• Constrained

• Unconstrained in-field learning
47



Outline

1 Trends in Applications, Architecture and Technology

2 Customization

3 Minimize Communication

4 Imperfection

5 Self-calibrate and Adapt

6 Data Driven Computing

7 Summary

48



DATA DRIVEN COMPUTING



Control vs Data Driven Computing

Control driven
• Classic von Neumann

• Limited, shared resources

• Elaborate control for allocation of
resources and scheduling of the
execution

Data driven
• No shared resources

• Data flow determines the execution

• Demand-driven or data-driven

• Resources operate as slow as possible

50



51



Outline

1 Trends in Applications, Architecture and Technology

2 Customization

3 Minimize Communication

4 Imperfection

5 Self-calibrate and Adapt

6 Data Driven Computing

7 Summary

52



SUMMARY



Conclusions for NoCs

• Heterogeneity:
• Hierarchical network to connect cores on chip and chiplets on package
• Connect nodes with very different requirements
• Requirements vary over time
• Addressing by function, not location

• Lazy Communication: Network should communicate
• as slow,
• as late, and
• as inaccurate as possible

• Fault tolerance:
• Distribute fault tolerance across hierarchy layers
• Adapt fault-tolerance level

• Continuous in-field learning and adapting

54






	Trends in Applications, Architecture and Technology
	Customization
	Minimize Communication
	Imperfection
	Self-calibrate and Adapt
	Data Driven Computing
	Summary

